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Inverse Dynamics of Flexible
Multibodies

Applications of artificial manipulation and robotics are steadily increasing in ar-
eas such as: microelectronics, agile space aircraft, vacuum mechatronics, satel-
lite-mounted robots, biomedical sciences, teleoperation, assembly lines, manu-
facturing, and so forth. As a consequence, more demands are being placed on
these systems, such as the need to design and use light and fast arms handling
heavy payload with accuracy and low energy consumption. If the various links of
a manipulator are to be considered rigid, they must be structurally stiff, and this
leads to bulky and massive designs. If speed is not to be sacrificed, powerful and
heavy actuators with high energy consumption are in turn required to move these
arms. The most natural remedy is to use flexible multibodies with slender links.

The requirement that manipulators and multibody systems be flexible places
new demands and challenges in their design, analysis, and control. The flexibility
of their members becomes a very important factor that must be considered, so
that vibrations are avoided, particularly for position control. In this chapter, con-
centration will be placed on the inverse dynamics of flexible multibodies. This
recently introduced approach (Bayo (1987) and Bayo et al. (1989)) consists of
finding the feed-forward torques that need to be applied at the joints so that the
end effector can follow a desired trajectory. From the vibration control view-
point, the inverse dynamics provides an inversion of the system dynamics. This
gives the control specialist a strong tool with which he can design stable and ro-
bust control laws for the motion control of multibody systems (Paden et al.
(1993)).

This chapter begins with the solution of the single-link case where the elastic
Coriolis and centrifugal terms are negligible, and algorithms are proposed for the
solution of the resulting time invariant system. The algorithms are then extended
for the time variant case that includes the Coriolis and centrifugal terms.
Solutions in the time and frequency domains are provided. It is clearly shown
how the inverse solution is anticipatory; also called non-causal, meaning that
the actuation precedes the endpoint motion and continues after it has stopped.
For the sake of clarity and conciseness, we will concentrate on the planar case,
and we will provide indications as to how to proceed with the 3D cases.
Simulation examples are given to clarify the meaning of the inverse dynamics.
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Figure 12.1.  Flexible multibody system.

The techniques and methods explained in this chapter are somehow more ad-
vanced than those seen in previous chapters. Non-causal integration requires that
the reader be familiar with the basics of Fourier and Laplace analysis. In this
chapter, we deviate from the natural coordinates and use the reference point coor-
dinates instead. This is because the reference point coordinates provide a better
setting for the non-causal inversion that the inverse dynamics require.

12.1  Inverse Dynamics Equations for Planar Motion

Consider a general multi-link flexible multibody system (Figure 12.1). The ob-
jective is to move the end effector along a given trajectory without overshoot and
residual elastic oscillations of the tip. These oscillations are due mainly to the
transverse elastic displacements of the links. The longitudinal axial oscillations
are negligible because of the much greater rigidity of the links in their axial di-
rection. For the sake of simplicity, the equations will be derived for planar ma-
nipulators with revolute joints. The procedure, however, is also valid for general
spatial manipulators.

The solution is obtained by first studying an individual link in the chain,
coupling the equations of the individual links, and then setting up an iteration
scheme that converges to the desired torques and corresponding joint displace-
ments.
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Figure 12.2.  Nominal motion (dotted) and elastic deformation (solid) in a flexible
body.

12.1.1  Inverse Dynamics Equations of an Individual Link

The individual flexible link depicted in Figure 12.2 forms part of a planar multi-
link manipulator and has a total length L, mass per unit length m , moment of
inertia I, area A, Young modulus E, shear modulus G, and shear coefficient k. A
tip mass of value Mt is attached at one end, and a hub of inertia Ih at the other
end. The hub is attached to the actuator.

A point P at a distance x from the center of the hub has undergone elastic de-
flections of value ux and uy and rotation q. These are defined with respect to a
nominal position characterized by the moving frame (e1, e2) attached to the hub,
that rotates at a specified (nominal) angular velocity and acceleration wwwwh and wwww h,
respectively. The idea of the inverse dynamics is to force the end of the link to
follow the specified (desired) nominal motion. This is an important conceptual
difference with the methods of Chapter 11, in which the nominal motion of the
moving frame was not specified, because it was actually unknown.

As a consequence of the elastic deflections and rotating nominal motion, the
point P is subjected to a total translational acceleration ap and angular accelera-
tion wwww p. Using the principles of relative motion (Greenwood (1988)), the accel-
eration of the point P can be set in terms of the translation and angular accelera-
tions at the hub, ah and wwww h, angular velocity wwwwh at the hub, and the relative ve-
locity vrel and acceleration arel of point P. The latter are due to the elastic deflec-
tions ux and uy with respect to the moving frame. In vectorial notation:

ap = wwww h Ù  (wwww h Ù  rp) +  wwww h Ù  rp +  2  wwww h Ù  v r el +  ah +  a rel (12.1a)

wwww p = wwww h +  qqqq (12.1b)

where rp = (x + ux) e1(t) + uy e2(t) is the position of P after deformation,
relative to the hub.
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The components of the relative velocity are ux and uy. Those of the relative
acceleration are ux and uy. Performing the vectorial operations involved in (12.1)
the following components of the accelerations are obtained:

ax = Ð wh
2 ux Ð wh uy Ð 2 wh uy + ux Ð w h

2 x + ahx  

ay = Ð wh
2 uy + wh ux + 2 wh ux + uy + wh x + ahy  (12.2)

w p = w h + q 

Using the Timoshenko beam theory which includes the effects of shear de-
formation and rotatory inertia, the principle of virtual displacements (Chapter 4)
can be used directly to set up the equations of motion:

m ax dux + m ay duy + m h 2 wpd q  dx + Ih (wh + qh)dqh + M t at dut +
0

L

+ EA ux
' dux

' + EI q 'dq '
 + GAk (q Ð ux

') d(q Ð ux
')  dx = 

0

L

=  Tdqh + R ty duty + R tx dutx +Tdqt

(12.3)

where h is the radius of gyration of the section. The subscripts h and t indicate
hub and tip, respectively. The symbol (') indicates derivative with respect to the
spatial variable, and dux, duy, and dq represent a set of virtual elastic displace-
ments. T is the unknown torque to be applied at the hub, so that the prescribed
tip motion is obtained. Rty , Rtx, and Tt are the reaction forces and the torque at
the tip that comes from the next link in the chain (See Figure 12.2). Note that
the acceleration at the hub is decomposed into w h and w h. The first is the nomi-
nal acceleration, and the second is the acceleration due to the elastic deflections.
Also observe that the reactions at the hub do not have any effect on the total vir-
tual work. This assumption is met by imposing the constraint that the hub
move along the nominal path without any elastic deformations (See Figure
12.1). As shown later in the discussion, this condition is enforced in each of the
links to compute the inverse dynamic torques. Substituting equation (12.2) into
(12.3), one can obtain:

[m uxdux + m uyduy + m  h 2 qdq] dx
0

L

 + [2m w h (ux duy Ð uy dux) ] dx
0

L

 +

+ [ m w h
2(Ðux dux Ð uy duy) + wh m (ux duy Ð uy dux] dx

0

L

 +

+ Ih(wh + qh) dqh + M t atdut + [EI q 'dq '
+ GAk(qÐuy

') d(qÐuy
') + EAux

' dux
'] dx

0

L

  =

= T dqh + R tyduty + R txdutx + Ttdqt Ð [Ðmw h
2 xdux + mwh x duy + mh 2whdq]dx

0

L

 

(12.4)
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Figure 12.3.  Finite element partition in the body.

The first integral on the LHS corresponds to the internal virtual work done by
the inertial forces including the rotatory inertia. The second integral term repre-
sents the work done by the Coriolis forces. The third integral corresponds to the
centrifugal and tangential forces due to the rotating frame. This last effect also
produces additional forcing terms that are represented in the RHS of the equation.
The fourth integral corresponds to the virtual work done by the internal axial and
shear forces and bending moments.

The displacement field of equation (12.3) can be discretized using the finite el-
ement or assumed mode method under pin-free boundary conditions (Figure
12.3). A set of interpolation functions are defined within each body:

 ux(x,t) = Hi(x) ux
i(t)å

1

n

,  uy(x,t) = Hi(x) uy
i(t)å

1

n

 ,  q(x,t) = Hi(x)  q i
(t)å

1

n

  (12.5)

where Hi are the interpolation functions; ux
i, uy

i, and q i
 indicate the nodal or gen-

eralized deflections.
Substituting equations (12.5) in the virtual work expression (12.4), and fol-

lowing standard procedures for the formation and assemblage of element matrices
(Bathe 1982), the equations of motion of the link may be expressed by a set of
time varying differential equations in the form

 M  v + C  + Cc(wh)  v + K + Kc(wh, wh)  v = T Ð Q(wh, w h) (12.6)

where M and K are the conventional finite element (or assumed mode) mass and
stiffness matrices, respectively. Cc and Kc are the time varying Coriolis and
centrifugal stiffness matrices that depend on the nominal angular velocity wh and
acceleration w h of the link. Matrix C has been added to represent the internal
viscous damping of the material. Vector T contains one non-zero term only, and
that is the unknown torque at the hub. Finally, Q contains the reactions and the
torque at the end of the link and the known forces produced by the rotating frame
effect. A detailed description of these matrices for a Timoshenko beam finite el-
ement is given in the Appendix.
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12.1.2  Solution of the Inverse Dynamics for an Individual Link

The set of equations (12.6) may be partitioned as follows:

M  

q h

v i

vt

 + [C + C(wh)] 

q h

v i

vt

 + [K + Kc(w h, w h)] 
q h

v i

vt

 = 
1
0
0

 T Ð 
Qh

Qi

Qt

(12.7)

where qh is the rotation at the hub, vt is the elastic deflection of the end point,
and vi is the vector containing all the other internal finite element degrees of
freedom such as displacements and rotations of the nodal points, as shown in
Figure 12.3. The force vector Q is partitioned in the same manner.

The solution of equations (12.7) for a specified nominal motion, defined by
wh and w h, and a set of external forces applied to the link, constitutes the for-
ward dynamic problem. This simply requires the numerical integration of a set of
time variant ODEs for which techniques are readily available (See Chapter 7). A
problem of different and more complicated nature is the inverse dynamics. This
problem is to find the torque T that will ensure that the endpoint will move ac-
cording to a specified trajectory avoiding any possible oscillations and deviations
from the path. The problem can be quantitatively stated as the finding of T(t) in
equation (12.7) under the condition that elastic normal deflection at the tip vt(t)
be zero.

12.1.2.1  The Time Invariant Case

Under low nominal speeds of operations, the elastic Coriolis and centrifugal
terms acting on the LHS of equation (12.7) become insignificant and are cus-
tomarily neglected. An example will be shown later which clearly illustrates this
assumption. Consequently, equation (12.6) becomes

 M  v + C  v + K v = T Ð Q(wh, w h) (12.8)

Observe that the force vector Q in the RHS of (12.8) contains the external
Coriolis and centrifugal forcing terms due to the rigid body motion which are not
neglected (See Appendix).

Direct integration in the time domain. The inverse dynamics is, in the
classical sense, an ill-posed problem, because its solution does not depend con-
tinuously on the data. The intention of this section is to briefly describe that a
standard integration in the time domain leads to an unbounded (thus unstable) so-
lution and that the unique stable solution is found to be non-causal. Actuation is
required before the endpoint has started to move as well as after the endpoint has
stopped. After a first glance at equation (12.8) one may be tempted to partition
the system of equations as follows:

M11 m1 2

M21 M22

 

q h

v i

vt

 + C11 c1 2

C21 C22

 

q h

v i

vt

 + K11 k1 2

K21 K22

 
q h

v i

vt

 = 
1
0
0

 TÐ 
Qh(t)
Qi(t)
Qt(t)

(12.9)
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where for a system with n degrees of freedom (n equations): M11, C11, and K11
are 1´(nÐ1) row vectors; m12, c12 and k12 are (1´1) elements; M21, C21, and
K21 are (nÐ1)´(nÐ1) matrices; and, M22, C22, and K22 are (nÐ1)´1 column vec-
tors. Collecting the vt(t) dependent known terms on the right-hand side, the last
nÐ1 equations of (12.9) can be rewritten as:

M11 
q h

v i

 + m12 vt + C 11 
q h

v i

 + c12 vt + K11 
q h

v i
 + k12 vt = T(t) Ð Q h(t) (12.10)

while the first equation of (12.9) is

M 11 
q h

v i

 + m12 vt + C 11 
q h

v i

 + c12 vt + K11 
q h

v i
 + k12 vt = T(t) Ð Q h(t)  (12.11)

In principle, given initial conditions for qh(t=0) and vi(t=0), equation (12.10)
may be integrated to yield qh(t) and vi(t) (inverse kinematics). Then, substitution
of qh(t) and vi(t) into equation (12.11) would yield the required actuating torque
T(t) (inverse dynamics). However, this simple approach yields an unbounded
and thus unacceptable solution, which does include a time delay between the
actuation and the response at the endpoint.

In order to clarify this point, let the beginning of the prescribed tip motion be
at time zero; so that vi(t) is zero for t < 0, and let the arm be initially at rest.
Since the elastic waves in a solid have a finite speed of propagation, intuition
dictates that in the case of a flexible arm, the torque must be applied before the
tip starts moving; that is, it must be non-zero before t=0. This time anticipation
is necessary for the actuation to reach the end of the arm. Using a term customar-
ily used in control theory, the desired torque should be non-causal. As a conse-
quence, if standard numerical integration of ODEs for initial value problems is
carried out, no time anticipation would be present, and the resulting torque be-
comes unbounded. From a control point of view it can be said that this way of
proceeding leads to a causal inverse which, in the case of a non-minimum phase
problem such as the one at hand, is always unbounded and thus unstable. This
important point is addressed in detail in Moulin (1989), and Moulin and Bayo
(1991).

Allowing for this time delay, let the actuation begin at some negative time t
with the arm initially at rest and initial conditions equal to zero. Now, over [t,
0] vt(t) is identically zero, and the unique solution of equation (12.9) with zero
initial conditions and zero terms on the right-hand side will be qh(t)=0 and
vi(t)=0. Substitution of qh(t) and vi(t) into equation (12.11) leads again to T(t)
= 0 over [t, 0]. Hence, the torque resulting from this approach is always zero be-
fore the tip starts moving and does not lead to the desired time anticipatory non-
causal inverse dynamic solution described above. The delay effect does not ap-
pear, regardless of the value of the time t introduced, and the resulting torque be-
comes unbounded.

In summary, the inverse dynamic equations need to be solved by means of an
integration process that will yield the time delay between actuation and response.
The fact that the stable solution is non-causal in that it starts at negative time
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and extends to future time precludes standard time domain initial value ODE
solvers from obtaining the proper solution. We will show in the next sections
how this problem can be circumvented by solving the inverse dynamics in the
frequency domain using the Fourier transform, or in the time domain using the
bilateral Laplace transform.

Solution in the frequency domain. The frequency domain approach cap-
tures the desired time delay between actuation and response, because the initial
and end conditions are imposed at -¥ and +¥, respectively. The system of equa-
tions (12.8) can be transformed by means of the fast Fourier transform (FFT)
(Newland (1984)) into a set of algebraic equations with complex entries. The fre-
quency associated with each of the Fourier pairs is equal to wi = (2p/P) i , where
P is the total time interval considered for the motion of the system and i is the
number of the Fourier pair. For a particular frequency w, equation (2) becomes

M +  1
j w

 C Ð  1

w 2
 K  

vh

v i

vt

 = 

T (w)

0

0

 Ð 
Qh

Qi

Qt

 (12.12)

where the caret stands for the Fourier transform, and Q represents all the known
forcing terms. Equation (12.12) may be expressed in simplified notation as

H v = I T (w) Ð Q (12.13)

The transfer matrix H is a complex non-singular symmetric matrix except for
w = 0 for which it is not defined. However, the zero frequency represents the rigid
body motion. Therefore, the corresponding component of the torque can be ob-
tained by simply applying equilibrium of the moments produced by all the ex-
ternal forces about the origin of the link. For the Fourier pairs with w ¹ 0, T (w)
may be obtained by solving (12.13) for each frequency as follows:

 
vh

v i

vt

 = 
Gh h Ghi Ght

Gih Gii Git

Gth Gti Gtt

  

T (w)

0

0

 Ð 
Qh

Qi

Qt

(12.14)

where G is the inverse of the complex transfer matrix H. From (12.14), it is ob-
vious that

vt = Gth T (w) Ð Gth Qh Ð G ti Q i Ð  Gtt Qt (12.15)

Equation (12.15) may now be solved for the required torque T under the condi-
tion that vt = 0:

T (w) = Gth
Ð1

  Gth Qh + G ti Q i +  Gtt Qt  (12.16)

The values of the torque T(t) are obtained through the application of the in-
verse discrete Fourier transform. The joint angles and velocities that will yield
the desired endpoint motion (inverse kinematics), and which are used for control
purposes (Paden et al. (1993)), can be obtained in the time domain by a forward
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integration of equation (12.8). Since the forces Q are linear functions of the
nominal accelerations, equation (12.16) also leads to an expression for the trans-
fer function between the torque T and the endpoint acceleration. This transfer
function contains poles in the right half-plane; thus characterizing this non-mini-
mum phase system.

By using the frequency domain, the initial and final conditions are imposed at
-¥ and +¥. This leads to an inverse dynamics torque that shows the above-men-
tioned time anticipation with respect to the endpoint motion (See example be-
low); thus providing the non-causal inverse to this non-minimum phase prob-
lem. A formal explanation of this issue is given in Moulin (1989), and Moulin
and Bayo (1991).

The following algorithm summarizes the steps necessary for the inverse dy-
namics and kinematics of a single-link arm in the frequency domain:

Algorithm 12-1

1. Define the rigid nominal motion, wh and w h .
2. Evaluate the forcing terms Qh, Qi, and Qt which depend on wh and w h .
3. Apply the fast Fourier transform to the forcing terms.
4. Solve for the torque T (w) in the frequency domain using equation (12.16).

This involves the solution of a set of algebraic linear complex equations.
5. Obtain T(t) through the inverse discrete Fourier transform.
6. Perform a forward time integration of equation (12.8) to obtain the joint an-

gles and velocities (inverse kinematics).

Stable integration in the time domain. From the above observation that
in order to obtain a stable inverse that includes the delay between the actuation
and response, the integration process needs to be carried out from -¥ to +¥. The
equivalent of equation (12.16) in the time domain is

T(t) = hth(tÐt) Qh(t) + hti(tÐt) Qi(t) + htt(tÐt) Qt(t)  dt 
Ð¥

¥

(12.17)

where hth, hti, and htt are the impulse response functions that correspond to the
transfer functions defined in (12.16). The former are the inverse Fourier trans-
forms of the latter.

Since there is no complex algebra involved, the integration in the time do-
main will in general be faster than that in the frequency domain. In addition,
since the impulse response functions depend only on the physical characteristics
of the link, they can be computed off-line. The only on-line computations in-
volved consequently to obtain the torque T(t) will be the evaluation of the inte-
gral (12.17).

It should be observed that equation (12.17) differs from the familiar Duhamel
integral:

y (t) = h (t Ð t)  i (t) dt
0

t
(12.18)



418      12. Inverse Dynamics of Flexible Multibodies

Figure 12.4.  Typical tip-to-hub impulse response function of a flexible body.

relating the input i(t) to the output y(t) of a linear system with impulse re-
sponse function h(t) by the bounds of integration.

Equation (12.18) which is typical of a causal response is valid when the input
i(t) and the response function h(t) are zero for t < 0. The condition on h(t)
states that there is no output before there is an input, in other words the system
is causal. In the inverse dynamics problem, the input is formally the tip
acceleration profile, and the output is formally the actuating torque. As
mentioned above, there is a delay in the forward problem between hub torque
actuation and tip response. Therefore in the inverse problem, the torque must be
applied before the tip starts moving. The inverse is non-causal. For a non-causal
system, the impulse response functions in (12.17) are not identically zero for
negative time. Figure 12.4 shows a typical impulse response function for
inverse dynamics. The convolution integral of (12.17) cannot be reduced to that
of (12.18).

The use of equation (12.17) hinges on the availability of the impulse re-
sponse functions. This can be obtained in the following manner: if the input ah

is a Dirac delta function at time t, then the output T(t) is the impulse response
function translated by t . One way of obtaining hi(t) numerically is to use equa-
tion (12.16) with an approximation of a delta function for w h. Having computed
the impulse response functions, we now turn to the evaluation of the convolu-
tion integral defined by (12.17). This equation can be evaluated at discrete time
intervals of length Dt, using a suitable composite integration rule.

The following paragraph summarizes the steps involved in the inverse dynam-
ics integration in the time domain:
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Algorithm 12-2

1. Define the rigid nominal motion: wh and w h.
2. Evaluate the impulse response functions.
3. Calculate the forcing terms Fh, Fi, and Ft which depend on wh and w h.
4. Solve for the torque T(t) by means of the convolution integrals (12.17).
5. Perform a forward time integration of equation (12.8) to obtain the joint an-

gles and velocities (inverse kinematics).

This algorithm leads to a very fast computation of the inverse dynamics and
allows one to obtain real time response (Bayo and Moulin (1989a)). Another ef-
ficient time domain approach consists of decomposing the transfer function into
its causal and non-causal components (Kwon and Book (1990)).

12.1.2.2  The Time Varying Case

In case the manipulator undergoes a fast motion and one desires to include the
elastic Coriolis and centrifugal terms, the solution for the torque T(t) can still be
found in either the frequency or time domains by means of an iteration procedure.
In order to set up the iterative process, equation (12.6) may be restated as fol-
lows:

M  v  + C v+ K  v = l T Ð Q(w h, w h) Ð Cc(wh) v Ð Kc(w h, w h) v (12.19)

where all the time invariant terms have been left in the LHS of the equation and
the time varying ones have been collected on the RHS. The vector l contains a
unit value for the degree of freedom corresponding to the hub rotation and zero
for the rest, as shown in equation (12.7).

The iteration process is initiated by solving equation (12.19) for the unknown
torque T, using either the frequency or time domain procedures described above.
The first iteration is done in the absence of the last two terms involving Cc and
Kc in the RHS and yields a displacement vector v1(t) which in turn will be used
to compute the last two terms in (12.19). The process is then repeated with the
new force vector under the constraint that vt(t)=0. The iteration procedure may
be stopped, when the norm ||vi - viÐ1|| for the solution of two consecutive itera-
tions is smaller than a prescribed tolerance. A formal proof of convergence of
this algorithm is given by Moulin et al. (1992). The experience of the authors in
all the cases analyzed reveals that unless the accelerations and velocities are large,
the terms involving Kc and Cc are insignificant, and this iterative procedure can
be neglected. Also and most importantly, when the speeds of operations are
large, not only the Coriolis and centrifugal terms need be included but also the
nonlinear geometric stiffening effects (Bayo and Moulin (1989b)).
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Algorithm 12-3

1. Define the rigid nominal motion: wh and w h.
2. Evaluate the forcing terms on the RHS of (12.19) that depend on wh , w h, v ,

and v .
3. Apply the fast Fourier transform to the forcing terms.

4. Solve for the torque T (w) in the frequency or time domains.
5. Add T(t) to the forces on the RHS of equation (12.19) and perform a forward

integration to obtain v(t) (inverse kinematics).
6. Check convergence. If convergence is obtained, stop; otherwise go to step 2.

12.2  Recursive Inverse Dynamics for Open-Chain
Configurations

In this section, the procedure outlined above for the inverse dynamics of the sin-
gle-link is extended in a recursive manner for multi-link open-chain configura-
tions. These cases can be decomposed into a series of individual links that can be
analyzed recursively. This analysis is similar to that used in the previous sec-
tion.

12.2.1  The Planar Open-Chain Case

Similar to the single-link case, the solution process for an open-chain robot is
started by defining the nominal motion consisting of the inverse kinematics of
the robot as if it were rigid and characterized by the qh, wh, and w h of each indi-
vidual link. A difference with respect to the single link arises from the fact that
an intermediate link in the chain contains reaction forces at its endpoint. These
forces come from the next distal link and are to be added to those arising from
the moving frame effect to form the forcing vector Q in equation (12.19). The
solution of equation (12.19) for the desired torque requires that these reaction
forces contained in the force vector Q be known in each link.

In the open-chain case this difficulty can be easily overcome by starting the
inverse dynamics with the last link, since in this case there are no link reaction
forces at its end. Once the torque for the last link has been obtained under the
condition that the elastic displacement at the tip is zero, the next step is to com-
pute the reactions at the hub which will be transmitted to the previous link in
the chain. These reactions may be obtained simply by equilibrium considera-
tions. The procedure continues with the next link in the chain in the same man-
ner as before. Reaction forces are present and therefore included. This process is
conceptually similar to the recursive Newton-Euler scheme for inverse dynamics
of rigid manipulators.

The method continues with the rest of the links, until the torque on the first
link is determined. This way of proceeding assures that the end of each link
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moves along the desired nominal trajectory without oscillating from it, as shown
in Figure 12.1. Once the torques T have been obtained, the motions at any point
of the links specified by vi or the angles qh (inverse kinematics) follow from
equation (12.6) by a direct analysis. The basic steps involved in the process are
summarized as follows:

Algorithm 12-4

1. Define the nominal motion consisting of inverse kinematics of the system
considered rigid.

2. For each link j starting from the last in the chain:
a) Compute the torque Tj imposing vtip

j =0 and obtain v(t) (inverse kinemat-
ics) following the single-link time-varying approach.

b) Compute the link reaction forces Rj from equilibrium.

12.2.2  The Spatial Open-Chain Case

In the case of spatial manipulators with elastic properties in all directions, the
elastic displacements contained in the plane defined by the joint axis and the tip
of the link cannot be controlled by only one joint torque. These elastic displace-
ments will influence the motions of subsequent links, introducing perturbations
in their nominal motion. The nominal position of each link will be modified by
the elastic displacements at the end of the previous link as follows:

rn
i  = rn

iÐ1  Ð  v tip  (12.20)

where rn is a vector describing the nominal position and orientation of the link,
vtip indicates the elastic deformations at the end of the previous link, and "i" is
the iteration number. The steps described above for the open- and closed-chain
will have to be repeated introducing the displacement corrections, starting with
the last link. Assuming that the elastic deformations are small compared to the
overall nominal motions, the process should converge rapidly.

According to the authors' experience, the recursive procedure described in the
previous section is the most suitable for open-chain configurations in which the
elastic deflections on the proximal links does not affect the overall motion of the
distal links. Such is the case in the planar open-chain case or in spatial manipu-
lators that are designed with large stiffness in the plane defined by the joint axis
and the endpoint of the link; so that the corresponding elastic displacements are
negligible. If this is not the case, the recursive procedure demands an iteration
process to account for those perturbations, and the inverse dynamics for each link
needs to be repeated until convergence. Non-recursive approaches are more suit-
able and efficient under these circumstances, and we will see them in the next
section. Other special recursive methods that avoid the need to iterate are cur-
rently being developed in this exciting area of research (Ledesma and Bayo
(1992b)).
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12.3  Non-Recursive Inverse Dynamics

The methods of this section are due to R. Ledesma and E. Bayo.
We presented in the previous section a recursive procedure for the inverse dy-

namics that relied on a pinned-free finite element or assumed mode model of a
flexible beam, and the equation for the inverse dynamics torque was formulated
by imposing the condition, that the transverse deformation of the free end of each
link be zero throughout the motion. The recursive procedure is suitable for open-
chain but not for closed-chain configurations.

In this section, we describe a non-recursive approach to solve the general pla-
nar inverse dynamics and kinematics, that has been introduced by Ledesma and
Bayo (1992a). For the sake of simplicity, we will not describe herein the more
general non-recursive procedure for spatial flexible multibodies which is pre-
sented in Ledesma and Bayo (1993). Compared to the recursive procedure, this
non-recursive approach is more systematic and general and becomes the only
choice, when closed-chain systems are encountered. The finite element model of
the elastic links now has pinned-pinned boundary conditions. This allows one
to express the end effector trajectory in terms of the rigid body coordinates only.
In addition it leads to a simplified form of the inverse kinematics equations.
Once these are solved, the equations of motion give an explicit expression for
the inverse dynamics torque.

The starting point is the equation for the forward dynamics (11.33) that was
developed in Section 11.2. In partitioned form, this equation may be written as

 

mRR mRq mRf
m qR mq q mqf
m fR m fq mff

 
R

qqqq

qf

 +  
0 0 0
0 0 0
0 0 cff

 
R

qqqq

qf

 +  
0 0 0
0 0 0
0 0 kff

 
R
qqqq
qf

 

 +  
FFFF R

T

FFFF q
T

FFFF qf

T

 llll  = 
QeR

Qeq
Qef

 +  
QvR

Qvq
Qvf

 

(12.21)

where, as shown in Figure 12.5, R represents the Cartesian components of the
origins of all the body axes with respect to the inertial frame and qqqq are the angles
of rotation of the body axes. These are the coordinates that define the rigid body
motion namely qr = [R, qqqq]T. The term Qe represents the external loads, and Qv

the quadratic velocity terms. The second set of equations in (12.21) can be rear-
ranged to express the externally applied joint forces as

Q eq  = m qR R  +  m q q qqqq  +  m q f qf +  FFFF q
T

 llll  Ð  Q vq (12.22)

Equation (12.22) constitutes the inverse dynamics equation that yields the
joint forces (torques) necessary for the endpoint or any other control point to fol-
low a prescribed trajectory. In order to obtain Qeq the nodal acceleration vector qf

is needed. This vector can be obtained from the third set of equations in (12.21)
which may be written as
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Figure 12.5.  Reference frame for a planar flexible body.

X

Y

Elbow Motor

Base Motor

Link No. 1 Link No. 2

Figure 12.6.  Open-chain planar multibody system.

m ff qf +  c ff qf +  k ff qf = Qef +  Qvf Ð  m fR R  Ð  m fq qqqq  Ð  FFFFf
T

 llll   (12.23)

The vector of applied nodal forces Qef can be expressed in terms of the exter-
nally applied torques through the following mapping:

Qef = Ge Qeq  (12.24)

where in the planar case the matrix Gf is a constant Boolean matrix which maps
the externally applied torques to the vector of externally applied nodal forces. For
example, in the open-chain planar multibody system shown in Figure 12.6, the
Boolean matrix Gf is constructed such that: the external moment on the node lo-
cated at the base of the first link is equal to the base motor torque, the moment
on the node located at the tip of the first link is the negative of the elbow motor
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torque, the external moment on the node located at the base of the second link is
equal to the elbow motor torque, and all other external forces are zero.

Substituting equations (12.22) and (12.24) into (12.23) yields

m ff qf +  c ff qf +  k ff qf = G f m q f qf +  F1(llll , qr, qr, qr, q f, qf) (12.25)

where F1 is a force vector that includes the inertial terms, reaction terms between
contiguous bodies, and quadratic velocity terms.

The problem statement for the inverse kinematics is that of finding the non-
causal internal states qf so that the endpoint coordinates characterized by a subset
of the rigid body coordinates qr follow a prescribed trajectory. The inverse kine-
matics equations (12.25) are nonlinear in the variable qf. As pointed out before,
the nonlinear non-causal inversion cannot be carried out by standard numerical
integration of ODEs. It requires a linearization process in either the frequency
domain or time domain or splitting the linearized system into its causal and anti-
causal components.

The key to the linearization process for the non-recursive approach relies on
decomposing the inertial coupling submatrix mqf into the sum of a time-invari-
ant matrix and a time-varying matrix:

m q f = mqf
c  +  mqf

t  (12.26)

where the first and second components in the RHS are the time-invariant and the
time-varying parts of mqf , respectively. This decomposition is essential for the
iteration process needed to obtain the non-causal solution to the nonlinear inver-
sion problem. Substituting (12.26) into (12.25), one can obtain the inverse
kinematics equation of motion for the internal nodal displacements qf :

mff
*  qf +  c ff qf +  k ff qf = F(llll , qr, qr, qr, q f, qf) (12.27)

where
mff

*  = m ff Ð  G f mqf
c  (12.28)

The mass matrix m ff 
*  is non-symmetric. It is precisely the non-symmetry of

the mass matrix that produces internal states qf  (nodal deformations). These
states are non-causal with respect to the endpoint motion when non-causal tech-
niques are employed to obtain the proper inversion of the nonlinear, non-mini-
mum problem characterized by (12.27). The nonlinear inversion can now be car-
ried out efficiently in the frequency domain, since the leading matrices have been
constructed such that they remain constant throughout the motion. It is thus
solved (12.27) iteratively in the frequency domain to yield the nodal deformation
vector qf that is non-causal with respect to the endpoint motion. Note that this
iterative procedure is similar to that used in the recursive case. Each iteration can
also be carried out in the time domain through the use of an equation similar to
(12.17).

Once the non-causal nodal accelerations are known, equation (12.22) can be
used to explicitly compute the non-causal inverse dynamics joint efforts. The in-
verse dynamics torques and internal states given by equations (12.22) and
(12.25), respectively, depend on the Lagrange multipliers and rigid body coordi-
nates which in turn depend on the internal states and the applied torque. The rigid
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body coordinates and Lagrange multipliers are different from their normal values,
when the components of the multibody system are flexible. Therefore, a forward
dynamic analysis is required to obtain an improved estimate of the generalized
coordinates and Lagrange multipliers. In order to ensure that the iteration process
converges to obtain the joint efforts that will cause the end-effector to follow the
desired trajectory, the forward dynamics analysis is carried out with the additional
constraint that the coordinates of the endpoint follow the desired trajectory.

To summarize, the procedure for obtaining the inverse dynamics solution for
flexible multibody systems involves the following steps:

Algorithm 12-5

1. Perform a rigid body inverse dynamic analysis to obtain the nominal values
of the rigid body coordinates qr and Lagrange multipliers llll.

2. Solve the inverse kinematics equation (12.25), either in the frequency or time
domain, to obtain the non-causal nodal accelerations qf 

3. Compute the inverse dynamics joint efforts Qeq, using equation (12.22).

4. Perform a forward dynamic analysis, using equation (12.21) to obtain new
values for the generalized coordinates and Lagrange multipliers.

5. Repeat steps 2 through 4 until convergence in the inverse dynamics torques is
achieved.

Compare the recursive procedure and the non-recursive Lagrangian procedure
for the inverse dynamics of multibody systems. In the former method, each body
in the multibody system is analyzed sequentially, starting from the last element
in the chain. For each element, the joint torques are determined first under the as-
sumption that the rigid body coordinates are moving according to the nominal
trajectory. With the joint actuation known for this component, a forward dy-
namic analysis is carried out for this component to determine the nodal deforma-
tions. The reaction forces from the next element in the chain are subsequently de-
termined from equilibrium considerations. This recursive method works very
well for open-chain systems but is not suitable for closed-chains. In these cases,
the reaction forces at the cuts need to be accounted for by ad hoc procedures
(Bayo et al. (1989)). The non-recursive method avoids this problem, since the re-
actions between different bodies are automatically accounted for by the Lagrange
multipliers and no distinction is made between open-chain and closed-chain con-
figurations. The non-recursive procedure, although more involved, is therefore
more systematic and general.

12.3.1  A Planar Open-Chain Example

In order to illustrate the performance of the above-mentioned algorithms we de-
scribe in this section some results. Consider the system of Figure 12.6 which
consists of two flexible aluminum links and two revolute joints driven directly
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Figure 12.7.  Tip acceleration profile.

by servo motors. The intention is to apply both the recursive and non-recursive
approaches and compare the results to test their validity.

The links have the following characteristics:

First link: L = 0.66m, A = 1.2097x10Ð4 m2, I = 2.2864x10Ð10 m4,
Mt = 1.049 Kg, Ih = 0.0011823 m4

Second link: L = 0.66 m, A = 0.4032x10Ð4 m2, I = 8.4683x10Ð12 m4,
Mt = 0.067 Kg, Ih = 0.00048 m4

They both share the following properties: E = 7.11x1010 N/m2, mass density
r = 2715 Kg/m3, shear coefficient k = 5/6, and a damping ratio of 0.002. The
cross section of the links is such that the arm is rigid in the vertical direction and
flexible in the horizontal direction.

A straight-line tip trajectory along the x axis is generated according to the ac-
celeration profile shown in Figure 12.7 which corresponds to an endpoint dis-
placement of 0.483 meters. Optimal acceleration profiles for inverse dynamics
have also been proposed (Bayo and Paden (1987), and Serna and Bayo (1990)).

Figure 12.8 shows the inverse dynamics torque profile for the base motor.
Both the recursive and non-recursive methods yield the same results that super-
impose to each other (solid curve). The inverse dynamics torque profiles for the
elbow motor computed by both methods also coincide and are superimposed to
each other in Figure 12.9 (solid curve). Therefore, it is a good validation to see
that the results obtained are the same regardless of the method used. The corre-
sponding rigid body torques which are torques obtained considering that the sys-
tem is rigid are also shown as dashed curves in Figures 12.8 and 12.9 to clearly
illustrate the pre-actuation present in the inverse dynamics torque profiles of the
flexible system.
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Figure 12.8.  Rigid (dotted) and flexible (solid) inverse dynamics torques for first mo-
tor.

Figure 12.9.  Rigid (dotted) and flexible inverse (solid) dynamics torques for second
motor.

The inverse dynamics torques produce the desired tip trajectory without over-
shoot or residual oscillations. Figure 12.10 shows a comparison of the tip posi-
tion error in the y direction resulting from feed forwarding the inverse dynamics
torque (solid curve) and the rigid body torque (dashed curve). While the inverse
dynamics torque provides an excellent tracking of the tip trajectory, the rigid
torque induces a large oscillation in the tip motion. Figure 12.11 shows a com-
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Figure 12.10.  Tip error: inverse dynamic (solid) vs. rigid torques (dotted).

Figure 12.11.  Elastic hub rotation: inverse dynamic (solid) vs. rigid torques (dotted).

parison of the elastic angular rotation at the base of the second link, obtained by
a feed forward of the inverse dynamics torque (solid curve) to that obtained by a
feed forward of the rigid body torque (dashed curve). One can observe that while
the inverse dynamics torque does not induce residual vibration, the rigid body
torque induces substantial residual oscillation.

A very important feature of the inverse dynamics is that not only the tip tra-
jectory is tracked but also that the vibrations are minimized; so that the actual
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Link No. 3
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Figure 12.12.  Closed-chain flexible multibody systems.

Figure 12.13.  Rigid (dotted) and flexible inverse (solid) dynamics torques.

motion of the whole system resembles that of a rigid system (Bayo et al. (1988
and 1989)). An experimental validation consisting in feed forwarding the inverse
dynamics torques to this flexible multibody system is presented in Bayo et al.
(1989). An exponentially stable control scheme based on the inverse dynamics
has been recently proposed and experimentally validated by Paden et al. (1993).
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Figure 12.14.  Tip error: inverse dynamic (solid) vs. rigid torques (dotted).

12.3.2  A Planar Closed-Chain Example

The non-recursive procedure can be applied to closed-chain configurations with-
out loss of generality. For example, the inverse dynamics and kinematics are cal-
culated for the closed-chain system depicted in the Figure 12.12. A straight-line
tip trajectory along the diagonal (See Figure 12.12) is generated according to an
acceleration profile similar to that of Figure 12.7. Figure 12.13 shows the in-
verse dynamics torque profile for one of the base motors. In this case, only the
non-recursive method is applied, since the closed-loop configuration precludes
the recursive procedure from a straightforward application. The corresponding
rigid-body torque (torques obtained considering that the system is rigid) is also
shown as a dashed curve in Figures 12.13 to again illustrate the pre-actuation
present in the inverse dynamics torque profile of the flexible system.

Figure 12.14 shows a comparison of the tip position error in the y direction
resulting from feed forwarding the inverse dynamics torque (solid curve) and the
rigid body torque (dashed curve). While the inverse dynamics torque provides an
excellent tracking of the tip trajectory, the rigid torque induces a large oscillation
in the tip motion.
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Appendix

We present in this Appendix the body matrices of equation (12.6) corresponding
to a Timoshenko beam finite element. The axial deformation is modeled with
linear element shapes defined by

 N1(x ) = x
L

  and   N2(x ) = 1 Ð x
L

 

and Hermite polynomials for the bending deformation are

H1(x) = 1 Ð 3(x
L

)
2
 + 2(x

L
)
3
    ,     H2(x) = x Ð 2L(x

L
)
2
 + L(x

L
)
3

H3(x) = 3(x
L

)
2
 Ð 2(x

L
)
3
         ,      H4(x) = Ð L(x

L
)
2
 + L(x

L
)
3

   

Element mass matrix

  m L
420

 

140 0 0 70 0 0

0 156+504h 2

L 2
22L+42h 2

L
0 54Ð504h 2

L 2
Ð13L+42h 2

L

0 22L+42h 2

L
4L 2+56h 2 0 13LÐ42h 2

L
Ð3L 2Ð14h 2

70 0 0 140 0 0

0 54Ð504h 2

L 2
13LÐ42h 2

L
0 156+504h 2

L 2
Ð22LÐ42h 2

L

0 Ð13L+42h 2

L
Ð3L 2Ð14h 2 0 Ð22LÐ42h 2

L
4L 2+56h 2

   

Element centrifugal matrix

  m L
420

 

Ð140 w h
2

Ð147 w h  21 L w h Ð70 w h
2

Ð63 w h 14 L w h

147 w h Ð156 w h
2

Ð22 L w h
2

63 w h Ð54 w h
2

 13 L w h
2

Ð21 L w h Ð22 L w h
2

Ð4 L
2
 w h

2
14 L  w h  Ð13 L w h

2
3 L

2
 w h

2

Ð70 w h
2

Ð63 w h Ð14 L w h Ð140 w h
2

Ð147 w h 21 L w h

63 w h Ð54 w h
2

Ð13 L w h
2

147 w h Ð156 w h
2

 22 L w h
2

Ð14 L w h  13 L w h
2

3 L
2
 w h

2
Ð21 L w h  22 L w h

2
Ð4 L

2
 w h

2

 

The part of the element centrifugal matrix multiplying w h is skew-
symmetric, and the part multiplying w h

2 is symmetric.
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Element Coriolis matrix

 Ð 2 m L w h

60
 

0 21 3 L 0 9 Ð2 L
Ð21 0 0 Ð9 0 0

Ð3 L 0 0 Ð2 L 0 0
0 9 2 L 0 21 Ð3 L
Ð9 0  0 Ð21  0 0
2 L  0 0 3 L 0 0

The element Coriolis matrix is skew-symmetric.

Element stiffness matrix

  

EA
L

0 0 Ð EA
L

0 0

0 12 EI

L 3
6 EI

L 2
0 Ð12 EI

L 3
6 EI

L 2

0 6 EI

L 2
4 EI

L
0 Ð6 EI

L 2
2 EI

L

Ð EA
L

0 0 EA
L

0 0

0 Ð12 EI

L 3
Ð6 EI

L 2
0 12 EI

L 3
Ð6 EI

L 2

0 6 EI

L 2
2 EI

L
0 Ð6 EI

L 2
4 EI

L

   

Element force vector

   m L 2 
60

 

10 w h
2 (1 + 3 d

L
 )

Ð w h (9 + 30 d
L

 )

Ð w h (2 L + 5 d )

10 w h
2 (2 + 3 d

L
 )

Ð w h (21 + 30 d
L

 )

Ð w h (Ð 3 L Ð 5 d )
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