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License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CRE-
ATIVE COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PRO-
TECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE
WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW
IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND
AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS
LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU
THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF
SUCH TERMS AND CONDITIONS.

1. Definitions

a. “Adaptation” means a work based upon the Work, or upon the Work and other pre-
existing works, such as a translation, adaptation, derivative work, arrangement of music or
other alterations of a literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may be recast, trans-
formed, or adapted including in any form recognizably derived from the original, except that
a work that constitutes a Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical work, performance or
phonogram, the synchronization of the Work in timed-relation with a moving image (“synch-
ing”) will be considered an Adaptation for the purpose of this License.

b. “Collection” means a collection of literary or artistic works, such as encyclopedias and an-
thologies, or performances, phonograms or broadcasts, or other works or subject matter other
than works listed in Section 1(f) below, which, by reason of the selection and arrangement of
their contents, constitute intellectual creations, in which the Work is included in its entirety
in unmodified form along with one or more other contributions, each constituting separate
and independent works in themselves, which together are assembled into a collective whole.
A work that constitutes a Collection will not be considered an Adaptation (as defined above)
for the purposes of this License.

c. “Distribute” means to make available to the public the original and copies of the Work
through sale or other transfer of ownership.

d. “Licensor” means the individual, individuals, entity or entities that offer(s) the Work under
the terms of this License.

e. “Original Author” means, in the case of a literary or artistic work, the individual, individ-
uals, entity or entities who created the Work or if no individual or entity can be identified,
the publisher; and in addition (i) in the case of a performance the actors, singers, musicians,
dancers, and other persons who act, sing, deliver, declaim, play in, interpret or otherwise
perform literary or artistic works or expressions of folklore; (ii) in the case of a phonogram
the producer being the person or legal entity who first fixes the sounds of a performance
or other sounds; and, (iii) in the case of broadcasts, the organization that transmits the
broadcast.

f. “Work” means the literary and/or artistic work offered under the terms of this License
including without limitation any production in the literary, scientific and artistic domain,
whatever may be the mode or form of its expression including digital form, such as a book,
pamphlet and other writing; a lecture, address, sermon or other work of the same nature;
a dramatic or dramatico-musical work; a choreographic work or entertainment in dumb
show; a musical composition with or without words; a cinematographic work to which are
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assimilated works expressed by a process analogous to cinematography; a work of drawing,
painting, architecture, sculpture, engraving or lithography; a photographic work to which are
assimilated works expressed by a process analogous to photography; a work of applied art; an
illustration, map, plan, sketch or three-dimensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a phonogram; a compilation of data to
the extent it is protected as a copyrightable work; or a work performed by a variety or circus
performer to the extent it is not otherwise considered a literary or artistic work.

g. “You” means an individual or entity exercising rights under this License who has not pre-
viously violated the terms of this License with respect to the Work, or who has received
express permission from the Licensor to exercise rights under this License despite a previous
violation.

h. “Publicly Perform” means to perform public recitations of the Work and to communicate
to the public those public recitations, by any means or process, including by wire or wireless
means or public digital performances; to make available to the public Works in such a way that
members of the public may access these Works from a place and at a place individually chosen
by them; to perform the Work to the public by any means or process and the communication
to the public of the performances of the Work, including by public digital performance; to
broadcast and rebroadcast the Work by any means including signs, sounds or images.

i. “Reproduce” means to make copies of the Work by any means including without limitation
by sound or visual recordings and the right of fixation and reproducing fixations of the Work,
including storage of a protected performance or phonogram in digital form or other electronic
medium.

2. Fair Dealing Rights

Nothing in this License is intended to reduce, limit, or restrict any uses free from copyright
or rights arising from limitations or exceptions that are provided for in connection with the
copyright protection under copyright law or other applicable laws.

3. License Grant

Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,
royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to
exercise the rights in the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Re-
produce the Work as incorporated in the Collections; and,

b. to Distribute and Publicly Perform the Work including as incorporated in Collections.

The above rights may be exercised in all media and formats whether now known or hereafter
devised. The above rights include the right to make such modifications as are technically
necessary to exercise the rights in other media and formats, but otherwise you have no rights
to make Adaptations. Subject to 8(f), all rights not expressly granted by Licensor are hereby
reserved, including but not limited to the rights set forth in Section 4(d).

4. Restrictions

The license granted in Section 3 above is expressly made subject to and limited by the following
restrictions:
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a. You may Distribute or Publicly Perform the Work only under the terms of this License. You
must include a copy of, or the Uniform Resource Identifier (URI) for, this License with every
copy of the Work You Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of the recipient of the Work
to exercise the rights granted to that recipient under the terms of the License. You may not
sublicense the Work. You must keep intact all notices that refer to this License and to the
disclaimer of warranties with every copy of the Work You Distribute or Publicly Perform.
When You Distribute or Publicly Perform the Work, You may not impose any effective
technological measures on the Work that restrict the ability of a recipient of the Work from
You to exercise the rights granted to that recipient under the terms of the License. This
Section 4(a) applies to the Work as incorporated in a Collection, but this does not require
the Collection apart from the Work itself to be made subject to the terms of this License. If
You create a Collection, upon notice from any Licensor You must, to the extent practicable,
remove from the Collection any credit as required by Section 4(c), as requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner
that is primarily intended for or directed toward commercial advantage or private monetary
compensation. The exchange of the Work for other copyrighted works by means of digital file-
sharing or otherwise shall not be considered to be intended for or directed toward commercial
advantage or private monetary compensation, provided there is no payment of any monetary
compensation in connection with the exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or Collections, You must, unless a request
has been made pursuant to Section 4(a), keep intact all copyright notices for the Work
and provide, reasonable to the medium or means You are utilizing: (i) the name of the
Original Author (or pseudonym, if applicable) if supplied, and/or if the Original Author
and/or Licensor designate another party or parties (e.g., a sponsor institute, publishing
entity, journal) for attribution (”Attribution Parties”) in Licensor’s copyright notice, terms
of service or by other reasonable means, the name of such party or parties; (ii) the title of
the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that Licensor
specifies to be associated with the Work, unless such URI does not refer to the copyright
notice or licensing information for the Work. The credit required by this Section 4(c) may be
implemented in any reasonable manner; provided, however, that in the case of a Collection,
at a minimum such credit will appear, if a credit for all contributing authors of Collection
appears, then as part of these credits and in a manner at least as prominent as the credits
for the other contributing authors. For the avoidance of doubt, You may only use the credit
required by this Section for the purpose of attribution in the manner set out above and, by
exercising Your rights under this License, You may not implicitly or explicitly assert or imply
any connection with, sponsorship or endorsement by the Original Author, Licensor and/or
Attribution Parties, as appropriate, of You or Your use of the Work, without the separate,
express prior written permission of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the
right to collect royalties through any statutory or compulsory licensing scheme cannot be
waived, the Licensor reserves the exclusive right to collect such royalties for any exercise
by You of the rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right
to collect royalties through any statutory or compulsory licensing scheme can be waived,
the Licensor reserves the exclusive right to collect such royalties for any exercise by
You of the rights granted under this License if Your exercise of such rights is for a
purpose or use which is otherwise than noncommercial as permitted under Section 4(b)
and otherwise waives the right to collect royalties through any statutory or compulsory
licensing scheme; and,
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iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties,
whether individually or, in the event that the Licensor is a member of a collecting
society that administers voluntary licensing schemes, via that society, from any exercise
by You of the rights granted under this License that is for a purpose or use which is
otherwise than noncommercial as permitted under Section 4(b).

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by
applicable law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or
as part of any Collections, You must not distort, mutilate, modify or take other derogatory
action in relation to the Work which would be prejudicial to the Original Author’s honor or
reputation.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICEN-
SOR OFFERS THEWORKAS-IS ANDMAKES NO REPRESENTATIONS ORWARRANTIES
OF ANY KIND CONCERNING THEWORK, EXPRESS, IMPLIED, STATUTORY OR OTH-
ERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHAN-
TIBILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE
ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF
ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS
DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION
MAY NOT APPLY TO YOU.

6. Limitation on Liability

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCI-
DENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT
OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN AD-
VISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach
by You of the terms of this License. Individuals or entities who have received Collections
from You under this License, however, will not have their licenses terminated provided such
individuals or entities remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7,
and 8 will survive any termination of this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the
duration of the applicable copyright in the Work). Notwithstanding the above, Licensor
reserves the right to release the Work under different license terms or to stop distributing
the Work at any time; provided, however that any such election will not serve to withdraw
this License (or any other license that has been, or is required to be, granted under the terms
of this License), and this License will continue in full force and effect unless terminated as
stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers
to the recipient a license to the Work on the same terms and conditions as the license granted
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to You under this License.

b. If any provision of this License is invalid or unenforceable under applicable law, it shall
not affect the validity or enforceability of the remainder of the terms of this License, and
without further action by the parties to this agreement, such provision shall be reformed to
the minimum extent necessary to make such provision valid and enforceable.

c. No term or provision of this License shall be deemed waived and no breach consented to
unless such waiver or consent shall be in writing and signed by the party to be charged with
such waiver or consent.

d. This License constitutes the entire agreement between the parties with respect to the Work
licensed here. There are no understandings, agreements or representations with respect to
the Work not specified here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be modified without the
mutual written agreement of the Licensor and You.

e. The rights granted under, and the subject matter referenced, in this License were drafted
utilizing the terminology of the Berne Convention for the Protection of Literary and Artis-
tic Works (as amended on September 28, 1979), the Rome Convention of 1961, the WIPO
Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty of 1996 and the
Universal Copyright Convention (as revised on July 24, 1971). These rights and subject
matter take effect in the relevant jurisdiction in which the License terms are sought to be
enforced according to the corresponding provisions of the implementation of those treaty
provisions in the applicable national law. If the standard suite of rights granted under appli-
cable copyright law includes additional rights not granted under this License, such additional
rights are deemed to be included in the License; this License is not intended to restrict the
license of any rights under applicable law.
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Trademarks

ANSYS is a registered trademark of ANSYS Inc.
CFX is a registered trademark of Ansys Inc.
CHEMKIN is a registered trademark of Reaction Design Corporation
EnSight is a registered trademark of Computational Engineering International Ltd.
Fieldview is a registered trademark of Intelligent Light
Fluent is a registered trademark of Ansys Inc.
GAMBIT is a registered trademark of Ansys Inc.
Icem-CFD is a registered trademark of Ansys Inc.
I-DEAS is a registered trademark of Structural Dynamics Research Corporation
JAVA is a registered trademark of Sun Microsystems Inc.
Linux is a registered trademark of Linus Torvalds
OpenFOAM is a registered trademark of OpenCFD Ltd
ParaView is a registered trademark of Kitware
STAR-CD is a registered trademark of Computational Dynamics Ltd.
UNIX is a registered trademark of The Open Group
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Chapter 1

Introduction

This guide accompanies the release of version v1606+ of the Open Source Field Operation
and Manipulation (OpenFOAM) C++ libraries. It provides a description of the operation
of OpenFOAM including case set-up, the wide-ranging functionality available, followed
by running applications and post-processing the results.

OpenFOAM is first and foremost a C++ library, used primarily to create executables,
known as applications. The applications fall into two categories: solvers, that are each
designed to solve a specific problem in continuum mechanics; and utilities, that are de-
signed to perform tasks that involve data manipulation. New solvers and utilities can be
created by its users with some pre-requisite knowledge of the underlying method, physics
and programming techniques involved.

OpenFOAM is supplied with pre- and post-processing environments. The interface
to the pre- and post-processing are themselves OpenFOAM utilities, thereby ensuring
consistent data handling across all environments. The overall structure of OpenFOAM is
shown in Figure 1.1.

Applications
User

Tools
MeshingUtilities Standard

Applications
Others

e.g.EnSight

Post-processingSolvingPre-processing

Open Source Field Operation and Manipulation (OpenFOAM) C++ Library

ParaView

Figure 1.1: Overview of OpenFOAM structure.

The file structure of OpenFOAM cases is described in chapter 2, with examples of the
syntax and file format required when specifying various input quantities.

Running OpenFOAM applications is presented in chapter 3 for serial operation and
the additional steps required for parallel operation.

Mesh generation is described in chapter 4 using the mesh generators supplied with
OpenFOAM and conversion of mesh data generated by third-party products.

Chapter 5 provides details of the numerous models offered by OpenFOAM, including
boundary conditions, thermophysical and turbulence models.

Solving OpenFOAM cases is presented in chapter 6, including descriptions of numer-
ical schemes, case control, and solution monitoriing.

Post-processing is described in chapter 7.
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Comprehensive reference lists for the avaliable solvers, utilities, libraries and boundary
conditions are available in appendix A
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Chapter 2

OpenFOAM cases

This chapter deals with the file structure and organisation of OpenFOAM cases. Nor-
mally, a user would assign a name to a case, e.g. the tutorial case of flow in a cavity
is simply named cavity. This name becomes the name of a directory in which all the
case files and subdirectories are stored. The case directories themselves can be located
anywhere but we recommend they are within a run subdirectory of the user’s project
directory, i.e.$HOME/OpenFOAM/${USER}-v1606+.

One advantage of this is that the $FOAM RUN environment variable is set to $HOME/OpenFOAM/${USER
v1606+/run by default; the user can quickly move to that directory by executing a preset
alias, run, at the command line.

It is suggested that beginners in OpenFOAM start their journey with the tutori-
als. Each solver has at least one tutorial which shows its use. These are located in
the $FOAM TUTORIALS directory, reached quickly by executing the tut alias at the
command line. The tutorials directory structure mimics the solvers structure for easier
navigation. Selected tutorials are described in the Tutorial Guide.

2.1 File structure of OpenFOAM cases

The basic directory structure for a OpenFOAM case, that contains the minimum set of
files required to run an application, is shown in Figure 2.1 and described as follows:

A constant directory that contains a full description of the case mesh in a subdirec-
tory polyMesh and files specifying physical properties for the application concerned,
e.g.transportProperties.

A system directory for setting parameters associated with the solution procedure itself.
It contains at least the following 3 files: controlDict where run control parameters are
set including start/end time, time step and parameters for data output; fvSchemes
where discretisation schemes used in the solution may be selected at run-time; and,
fvSolution where the equation solvers, tolerances and other algorithm controls are
set for the run.

The ‘time’ directories containing individual files of data for particular fields. The
data can be: either, initial values and boundary conditions that the user must
specify to define the problem; or, results written to file by OpenFOAM. Note that
the OpenFOAM fields must always be initialised, even when the solution does not
strictly require it, as in steady-state problems. The name of each time directory is
based on the simulated time at which the data is written and is described fully in
section 6.1. It is sufficient to say now that since we usually start our simulations
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<case>

system

controlDict
fvSchemes

polyMesh

. . . Properties

constant

see section 6.1
see section 6.2
see section 6.3

see section 4.1.2

see chapter 5

fvSolution

boundary
faces
neighbour
owner

time directories see section 2.2.8

points

Figure 2.1: Case directory structure

at time t = 0, the initial conditions are usually stored in a directory named 0 or
0.000000e+00, depending on the name format specified. For example, in the cavity
tutorial, the velocity field U and pressure field p are initialised from files 0/U and
0/p respectively.

2.2 Basic input/output file format

OpenFOAM needs to read a range of data structures such as strings, scalars, vectors,
tensors, lists and fields. The input/output (I/O) format of files is designed to be extremely
flexible to enable the user to modify the I/O in OpenFOAM applications as easily as
possible. The I/O follows a simple set of rules that make the files extremely easy to
understand, in contrast to many software packages whose file format may not only be
difficult to understand intuitively but also not be published anywhere. The description
of the OpenFOAM file format is described in the following sections.

2.2.1 General syntax rules

The format follows some of the general principles of C++ source code.

• Files have free form, with no particular meaning assigned to any column and no
need to indicate continuation across lines.

• Lines have no particular meaning except to a // comment delimiter which makes
OpenFOAM ignore any text that follows it until the end of line.

• A comment over multiple lines is done by enclosing the text between /* and */

delimiters.

2.2.2 Dictionaries

OpenFOAM uses dictionaries as the most common means of specifying data. A dictionary
is an entity that contains a set of data entries that can be retrieved by the I/O by means
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of keywords. The keyword entries follow the general format

<keyword> <dataEntry1> ... <dataEntryN>;

Most entries are single data entries of the form:

<keyword> <dataEntry>;

Most OpenFOAM data files are themselves dictionaries containing a set of keyword en-
tries. Dictionaries provide the means for organising entries into logical categories and can
be specified hierarchically so that any dictionary can itself contain one or more dictionary
entries. The format for a dictionary is to specify the dictionary name followed the entries
enclosed in curly braces {} as follows

<dictionaryName>

{
... keyword entries ...

}

2.2.3 The data file header

All data files that are read and written by OpenFOAM begin with a dictionary named
FoamFile containing a standard set of keyword entries, listed in Table 2.1. The table

Keyword Description Entry
version I/O format version 2.0

format Data format ascii / binary

location Path to the file, in "..." (optional)
class OpenFOAM class constructed from the

data file concerned
typically dictionary or a
field, e.g.volVectorField

object Filename e.g.controlDict

Table 2.1: Header keywords entries for data files.

provides brief descriptions of each entry, which is probably sufficient for most entries with
the notable exception of class. The class entry is the name of the C++ class in the
OpenFOAM library that will be constructed from the data in the file. Without knowledge
of the underlying code which calls the file to be read, and knowledge of the OpenFOAM
classes, the user will probably be unable to surmise the class entry correctly. However,
most data files with simple keyword entries are read into an internal dictionary class and
therefore the class entry is dictionary in those cases.

The following example shows the use of keywords to provide data for a case using the
types of entry described so far. The extract, from an fvSolution dictionary file, contains
2 dictionaries, solvers and PISO. The solvers dictionary contains multiple data entries for
solver and tolerances for each of the pressure and velocity equations, represented by the
p and U keywords respectively; the PISO dictionary contains algorithm controls.

17

18 solvers
19 {
20 p
21 {
22 solver PCG;
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23 preconditioner DIC;
24 tolerance 1e-06;
25 relTol 0.05;
26 }
27

28 pFinal
29 {
30 $p;
31 relTol 0;
32 }
33

34 U
35 {
36 solver smoothSolver;
37 smoother symGaussSeidel;
38 tolerance 1e-05;
39 relTol 0;
40 }
41 }
42

43 PISO
44 {
45 nCorrectors 2;
46 nNonOrthogonalCorrectors 0;
47 pRefCell 0;
48 pRefValue 0;
49 }
50

51

52 // ************************************************************************* //

2.2.4 Lists

OpenFOAM applications contain lists, e.g. a list of vertex coordinates for a mesh de-
scription. Lists are commonly found in I/O and have a format of their own in which the
entries are contained within round braces ( ). There is also a choice of format preceeding
the round braces:

simple the keyword is followed immediately by round braces

<listName>

(

... entries ...

);

numbered the keyword is followed by the number of elements <n> in the list

<listName>

<n>

(

... entries ...

);

token identifier the keyword is followed by a class name identifier Label<Type> where
<Type> states what the list contains, e.g. for a list of scalar elements is

<listName>

List<scalar>

<n> // optional

(

... entries ...

);
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Note that <scalar> in List<scalar> is not a generic name but the actual text that
should be entered.

The simple format is a convenient way of writing a list. The other formats allow
the code to read the data faster since the size of the list can be allocated to memory
in advance of reading the data. The simple format is therefore preferred for short lists,
where read time is minimal, and the other formats are preferred for long lists.

2.2.5 Scalars, vectors and tensors

A scalar is a single number represented as such in a data file. A vector is a VectorSpace
of rank 1 and dimension 3, and since the number of elements is always fixed to 3, the
simple List format is used. Therefore a vector (1.0, 1.1, 1.2) is written:

(1.0 1.1 1.2)

In OpenFOAM, a tensor is a VectorSpace of rank 2 and dimension 3 and therefore the
data entries are always fixed to 9 real numbers. Therefore the identity tensor can be
written:

(

1 0 0

0 1 0

0 0 1

)

This example demonstrates the way in which OpenFOAM ignores the line return is so
that the entry can be written over multiple lines. It is treated no differently to listing the
numbers on a single line:

( 1 0 0 0 1 0 0 0 1 )

2.2.6 Dimensional units

In continuum mechanics, properties are represented in some chosen units, e.g. mass in
kilograms (kg), volume in cubic metres (m3), pressure in Pascals (kgm−1 s−2). Algebraic
operations must be performed on these properties using consistent units of measurement;
in particular, addition, subtraction and equality are only physically meaningful for prop-
erties of the same dimensional units. As a safeguard against implementing a meaningless
operation, OpenFOAM attaches dimensions to field data and physical properties and
performs dimension checking on any tensor operation.

The I/O format for a dimensionSet is 7 scalars delimited by square brackets, e.g.

[0 2 -1 0 0 0 0]

where each of the values corresponds to the power of each of the base units of measure-
ment listed in Table 2.2. The table gives the base units for the Système International
(SI) and the United States Customary System (USCS) but OpenFOAM can be used
with any system of units. All that is required is that the input data is correct for the

chosen set of units. It is particularly important to recognise that OpenFOAM requires
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No. Property SI unit USCS unit
1 Mass kilogram (kg) pound-mass (lbm)
2 Length metre (m) foot (ft)
3 Time — — — — second (s) — — — —
4 Temperature Kelvin (K) degree Rankine (◦R)
5 Quantity kilogram-mole (kgmol) pound-mole (lbmol)
6 Current — — — — ampere (A) — — — —
7 Luminous intensity — — — — candela (cd) — — — —

Table 2.2: Base units for SI and USCS

some dimensioned physical constants, e.g. the Universal Gas Constant R, for certain cal-
culations, e.g. thermophysical modelling. These dimensioned constants are specified in
a DimensionedConstant sub-dictionary of main controlDict file of the OpenFOAM instal-
lation ($WM PROJECT DIR/etc/controlDict). By default these constants are set in SI
units. Those wishing to use the USCS or any other system of units should modify these
constants to their chosen set of units accordingly.

2.2.7 Dimensioned types

Physical properties are typically specified with their associated dimensions. These entries
have the format that the following example of a dimensionedScalar demonstrates:

nu nu [0 2 -1 0 0 0 0] 1;

The first nu is the keyword; the second nu is the word name stored in class word, usually
chosen to be the same as the keyword; the next entry is the dimensionSet and the final
entry is the scalar value.

2.2.8 Fields

Much of the I/O data in OpenFOAM are tensor fields, e.g. velocity, pressure data, that
are read from and written into the time directories. OpenFOAM writes field data using
keyword entries as described in Table 2.3.

Keyword Description Example
dimensions Dimensions of field [1 1 -2 0 0 0 0]

internalField Value of internal field uniform (1 0 0)

boundaryField Boundary field see file listing in section 2.2.8

Table 2.3: Main keywords used in field dictionaries.

The data begins with an entry for its dimensions. Following that, is the internalField,
described in one of the following ways.

Uniform field a single value is assigned to all elements within the field, taking the form:

internalField uniform <entry>;

Nonuniform field each field element is assigned a unique value from a list, taking the
following form where the token identifier form of list is recommended:
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internalField nonuniform <List>;

The boundaryField is a dictionary containing a set of entries whose names correspond
to each of the names of the boundary patches listed in the boundary file in the polyMesh
directory. Each patch entry is itself a dictionary containing a list of keyword entries.
The compulsory entry, type, describes the patch field condition specified for the field.
The remaining entries correspond to the type of patch field condition selected and can
typically include field data specifying initial conditions on patch faces. A selection of
patch field conditions available in OpenFOAM are listed in Table ?? and Table ?? with a
description and the data that must be specified with it. Example field dictionary entries
for velocity U are shown below:

17 dimensions [0 1 -1 0 0 0 0];
18

19 internalField uniform (0 0 0);
20

21 boundaryField
22 {
23 movingWall
24 {
25 type fixedValue;
26 value uniform (1 0 0);
27 }
28

29 fixedWalls
30 {
31 type noSlip;
32 }
33

34 frontAndBack
35 {
36 type empty;
37 }
38 }
39

40 // ************************************************************************* //

2.2.9 Directives and macro substitutions

There is additional file syntax that offers great flexibility for the setting up of OpenFOAM
case files, namely directives and macro substitutions. Directives are commands that can
be contained within case files that begin with the hash (#) symbol. Macro substitutions
begin with the dollar ($) symbol.

At present there are 4 directive commands available in OpenFOAM:

#include "<fileName>" (or #includeIfPresent "<fileName>" reads the file of name
<fileName>;

#inputMode has two options: merge, which merges keyword entries in successive dictio-
naries, so that a keyword entry specified in one place will be overridden by a later
specification of the same keyword entry; overwrite, which overwrites the contents
of an entire dictionary; generally, use merge;

#remove <keywordEntry> removes any included keyword entry; can take a word or
regular expression;

#codeStream followed by verbatim C++ code, compiles, loads and executes the code
on-the-fly to generate the entry.
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2.2.10 The #include and #inputMode directives

For example, let us say a user wishes to set an initial value of pressure once to be used
as the internal field and initial value at a boundary. We could create a file, e.g. named
initialConditions, which contains the following entries:

pressure 1e+05;

#inputMode merge

In order to use this pressure for both the internal and initial boundary fields, the user
would simply include the following macro substitutions in the pressure field file p:

#include "initialConditions"

internalField uniform $pressure;

boundaryField

{
patch1

{
type fixedValue;

value $internalField;

}
}

This is a fairly trivial example that simply demonstrates how this functionality works.
However, the functionality can be used in many, more powerful ways particularly as a
means of generalising case data to suit the user’s needs. For example, if a user has a set
of cases that require the same RAS turbulence model settings, a single file can be created
with those settings which is simply included in the turbulenceProperties file of each case.
Macro substitutions can extend well beyond a single value so that, for example, sets of
boundary conditions can be predefined and called by a single macro. The extent to which
such functionality can be used is almost endless.

2.2.11 The #codeStream directive

The #codeStream directive takes C++ code which is compiled and executed to deliver
the dictionary entry. The code and compilation instructions are specified through the
following keywords.

• code: specifies the code, called with arguments OStream& os and const dictionary&

dict which the user can use in the code, e.g. to lookup keyword entries from within
the current case dictionary (file).

• codeInclude (optional): specifies additional C++ #include statements to include
OpenFOAM files.

• codeOptions (optional): specifies any extra compilation flags to be added to EXE INC

in Make/options.

• codeLibs (optional): specifies any extra compilation flags to be added to LIB LIBS

in Make/options.
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Code, like any string, can be written across multiple lines by enclosing it within hash-
bracket delimiters, i.e. #{...#}. Anything in between these two delimiters becomes a
string with all newlines, quotes, etc. preserved.

An example of #codeStream is given below. The code in the controlDict file looks up
dictionary entries and does a simple calculation for the write interval:

startTime 0;
endTime 100;
...
writeInterval #codeStream
{

code
#{

scalar start = readScalar(dict.lookup("startTime"));
scalar end = readScalar(dict.lookup("endTime"));
label nDumps = 5;
os << ((end - start)/nDumps);

#};
};
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Chapter 3

Running applications

We should reiterate from the outset that OpenFOAM is a C++ library used primarily to
create executables, known as applications. OpenFOAM is distributed with a large set of
precompiled applications but users also have the freedom to create their own or modify
existing ones. Applications are split into two main categories:

solvers that are each designed to solve a specific problem in computational continuum
mechanics;

utilities that perform simple pre-and post-processing tasks, mainly involving data ma-
nipulation and algebraic calculations.

OpenFOAM is divided into a set of precompiled libraries that are dynamically linked
during compilation of the solvers and utilities. Libraries such as those for physical models
are supplied as source code so that users may conveniently add their own models to the
libraries. This chapter gives an overview of solvers, utilities and libraries, their creation,
modification, compilation and execution.

3.1 Running applications

Each application is designed to be executed from a terminal command line, typically
reading and writing a set of data files associated with a particular case. The data files
for a case are stored in a directory named after the case as described in section 2.1; the
directory name with full path is here given the generic name <caseDir>.

For any application, the form of the command line entry for any can be found by
simply entering the application name at the command line with the -help option, e.g.
typing

blockMesh -help

returns the usage

Usage: blockMesh [OPTIONS]

options:

-blockTopology write block edges and centres as .obj files

-case <dir> specify alternate case directory, default is the cwd

-dict <file> specify alternative dictionary for the blockMesh description

-noFunctionObjects

do not execute functionObjects
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-region <name> specify alternative mesh region

-srcDoc display source code in browser

-doc display application documentation in browser

-help print the usage

The arguments in square brackets, [ ], are optional flags. If the application is exe-
cuted from within a case directory, it will operate on that case. Alternatively, the -case
<caseDir> option allows the case to be specified directly so that the application can be
executed from anywhere in the filing system.

Like any UNIX/Linux executable, applications can be run as a background process,
i.e. one which does not have to be completed before the user can give the shell additional
commands. If the user wished to run the blockMesh example as a background process
and output the case progress to a log file, they could enter:

blockMesh > log &

3.2 Running applications in parallel

This section describes how to run OpenFOAM in parallel on distributed processors. The
method of parallel computing used by OpenFOAM is known as domain decomposition, in
which the geometry and associated fields are broken into pieces and allocated to separate
processors for solution. The process of parallel computation involves: decomposition of
mesh and fields; running the application in parallel; and, post-processing the decomposed
case as described in the following sections. The parallel running uses the public domain
openMPI implementation of the standard message passing interface (MPI).

3.2.1 Decomposition of mesh and initial field data

The mesh and fields are decomposed using the decomposePar utility. The underlying
aim is to break up the domain with minimal effort but in such a way to guarantee a
fairly economic solution. The geometry and fields are broken up according to a set of
parameters specified in a dictionary named decomposeParDict that must be located in
the system directory of the case of interest. An example decomposeParDict dictionary can
be copied from the interFoam/damBreak tutorial if the user requires one; the dictionary
entries within it are reproduced below:

17

18 numberOfSubdomains 4;
19

20 method simple;
21

22 simpleCoeffs
23 {
24 n (2 2 1);
25 delta 0.001;
26 }
27

28 hierarchicalCoeffs
29 {
30 n (1 1 1);
31 delta 0.001;
32 order xyz;
33 }
34

35 manualCoeffs
36 {
37 dataFile "";
38 }
39

40 distributed no;
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41

42 roots ( );
43

44

45 // ************************************************************************* //

The user has a choice of four methods of decomposition, specified by the method keyword
as described below.

simple Simple geometric decomposition in which the domain is split into pieces by di-
rection, e.g. 2 pieces in the x direction, 1 in y etc.

hierarchical Hierarchical geometric decomposition which is the same as simple except
the user specifies the order in which the directional split is done, e.g. first in the
y-direction, then the x-direction etc.

scotch Scotch decomposition which requires no geometric input from the user and at-
tempts to minimise the number of processor boundaries. The user can specify a
weighting for the decomposition between processors, through an optional process-
orWeights keyword which can be useful on machines with differing performance
between processors. There is also an optional keyword entry strategy that con-
trols the decomposition strategy through a complex string supplied to Scotch. For
more information, see the source code file: $FOAM SRC/decompositionMethods/-
decompositionMethods/scotchDecomp/scotchDecomp.C

manual Manual decomposition, where the user directly specifies the allocation of each
cell to a particular processor.

For each method there are a set of coefficients specified in a sub-dictionary of decom-
positionDict, named <method>Coeffs as shown in the dictionary listing. The full set of
keyword entries in the decomposeParDict dictionary are explained in Table 3.1.

The decomposePar utility is executed in the normal manner by typing

decomposePar

On completion, a set of subdirectories will have been created, one for each processor, in
the case directory. The directories are named processorN where N = 0, 1, . . . represents a
processor number and contains a time directory, containing the decomposed field descrip-
tions, and a constant/polyMesh directory containing the decomposed mesh description.

3.2.2 Running a decomposed case

A decomposed OpenFOAM case is run in parallel using the openMPI implementation of
MPI.

openMPI can be run on a local multiprocessor machine very simply but when run-
ning on machines across a network, a file must be created that contains the host names
of the machines. The file can be given any name and located at any path. In the fol-
lowing description we shall refer to such a file by the generic name, including full path,
<machines>.

The <machines> file contains the names of the machines listed one machine per line.
The names must correspond to a fully resolved hostname in the /etc/hosts file of the
machine on which the openMPI is run. The list must contain the name of the machine
running the openMPI. Where a machine node contains more than one processor, the node
name may be followed by the entry cpu=n where n is the number of processors openMPI
should run on that node.
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Compulsory entries
numberOfSubdomains Total number of subdomains N
method Method of decomposition simple/

hierarchical/
scotch/ metis/
manual/

simpleCoeffs entries
n Number of subdomains in x, y, z (nx ny nz)

delta Cell skew factor Typically, 10−3

hierarchicalCoeffs entries
n Number of subdomains in x, y, z (nx ny nz)

delta Cell skew factor Typically, 10−3

order Order of decomposition xyz/xzy/yxz. . .

scotchCoeffs entries
processorWeights

(optional)
List of weighting factors for allocation
of cells to processors; <wt1> is the
weighting factor for processor 1, etc.;
weights are normalised so can take any
range of values.

(<wt1>...<wtN>)

strategy Decomposition strategy (optional); de-
faults to "b"

manualCoeffs entries
dataFile Name of file containing data of alloca-

tion of cells to processors
"<fileName>"

Distributed data entries (optional) — see section 3.2.3
distributed Is the data distributed across several

disks?
yes/no

roots Root paths to case directories; <rt1>

is the root path for node 1, etc.
(<rt1>...<rtN>)

Table 3.1: Keywords in decompositionDict dictionary.

For example, let us imagine a user wishes to run openMPI from machine aaa on the
following machines: aaa; bbb, which has 2 processors; and ccc. The <machines> would
contain:

aaa

bbb cpu=2

ccc

An application is run in parallel using mpirun.

mpirun --hostfile <machines> -np <nProcs>

<foamExec> <otherArgs> -parallel > log &
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where: <nProcs> is the number of processors; <foamExec> is the executable, e.g.icoFoam;
and, the output is redirected to a file named log. For example, if icoFoam is run on 4
nodes, specified in a file named machines, on the cavity tutorial in the $FOAM RUN/-
tutorials/incompressible/icoFoam directory, then the following command should be exe-
cuted:

mpirun --hostfile machines -np 4 icoFoam -parallel > log &

3.2.3 Distributing data across several disks

Data files may need to be distributed if, for example, if only local disks are used in
order to improve performance. In this case, the user may find that the root path to the
case directory may differ between machines. The paths must then be specified in the
decomposeParDict dictionary using distributed and roots keywords. The distributed
entry should read

distributed yes;

and the roots entry is a list of root paths, <root0>, <root1>, . . . , for each node

roots

<nRoots>

(

"<root0>"

"<root1>"

...

);

where <nRoots> is the number of roots.
Each of the processorN directories should be placed in the case directory at each of

the root paths specified in the decomposeParDict dictionary. The system directory and
files within the constant directory must also be present in each case directory. Note: the
files in the constant directory are needed, but the polyMesh directory is not.

3.2.4 Post-processing parallel processed cases

When post-processing cases that have been run in parallel the user has two options:

• reconstruction of the mesh and field data to recreate the complete domain and fields,
which can be post-processed as normal;

• post-processing each segment of decomposed domain individually.

3.2.4.1 Reconstructing mesh and data

After a case has been run in parallel, it can be reconstructed for post-processing. The case
is reconstructed by merging the sets of time directories from each processorN directory into
a single set of time directories. The reconstructPar utility performs such a reconstruction
by executing the command:

reconstructPar

When the data is distributed across several disks, it must be first copied to the local case
directory for reconstruction.
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3.2.4.2 Post-processing decomposed cases

The user may post-process decomposed cases using the paraFoam post-processor, de-
scribed in section 7.1. The whole simulation can be post-processed by reconstructing the
case or alternatively it is possible to post-process a segment of the decomposed domain
individually by simply treating the individual processor directory as a case in its own
right.
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Chapter 4

Mesh generation and conversion

This chapter describes all topics relating to the creation of meshes in OpenFOAM: sec-
tion 4.1 gives an overview of the ways a mesh may be described in OpenFOAM; section 4.3
covers the blockMesh utility for generating simple meshes of blocks of hexahedral cells;
section 4.4 covers the snappyHexMesh utility for generating complex meshes of hexahedral
and split-hexahedral cells automatically from triangulated surface geometries; section 4.5
describes the options available for conversion of a mesh that has been generated by a
third-party product into a format that OpenFOAM can read.

4.1 Mesh description

This section provides a specification of the way the OpenFOAM C++ classes handle a
mesh. The mesh is an integral part of the numerical solution and must satisfy certain
criteria to ensure a valid, and hence accurate, solution. During any run, OpenFOAM
checks that the mesh satisfies a fairly stringent set of validity constraints and will cease
running if the constraints are not satisfied. The consequence is that a user may experience
some frustration in ‘correcting’ a large mesh generated by third-party mesh generators
before OpenFOAM will run using it. This is unfortunate but we make no apology for
OpenFOAM simply adopting good practice to ensure the mesh is valid; otherwise, the
solution is flawed before the run has even begun.

By default OpenFOAM defines a mesh of arbitrary polyhedral cells in 3-D, bounded
by arbitrary polygonal faces, i.e. the cells can have an unlimited number of faces where,
for each face, there is no limit on the number of edges nor any restriction on its alignment.
A mesh with this general structure is known in OpenFOAM as a polyMesh. This type
of mesh offers great freedom in mesh generation and manipulation in particular when
the geometry of the domain is complex or changes over time. The price of absolute
mesh generality is, however, that it can be difficult to convert meshes generated using
conventional tools. The OpenFOAM library therefore provides cellShape tools to manage
conventional mesh formats based on sets of pre-defined cell shapes.

4.1.1 Mesh specification and validity constraints

Before describing the OpenFOAM mesh format, polyMesh, and the cellShape tools, we
will first set out the validity constraints used in OpenFOAM. The conditions that a mesh
must satisfy are:
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4.1.1.1 Points

A point is a location in 3-D space, defined by a vector in units of metres (m). The points
are compiled into a list and each point is referred to by a label, which represents its
position in the list, starting from zero. The point list cannot contain two different points

at an exactly identical position nor any point that is not part at least one face.

4.1.1.2 Faces

A face is an ordered list of points, where a point is referred to by its label. The ordering
of point labels in a face is such that each two neighbouring points are connected by an
edge, i.e. you follow points as you travel around the circumference of the face. Faces are
compiled into a list and each face is referred to by its label, representing its position in
the list. The direction of the face normal vector is defined by the right-hand rule, i.e.
looking towards a face, if the numbering of the points follows an anti-clockwise path, the
normal vector points towards you, as shown in Figure 4.1.

4

3

0

2

1

Sf

Figure 4.1: Face area vector from point numbering on the face

There are two types of face:

Internal faces Those faces that connect two cells (and it can never be more than two).
For each internal face, the ordering of the point labels is such that the face normal
points into the cell with the larger label, i.e. for cells 2 and 5, the normal points
into 5;

Boundary faces Those belonging to one cell since they coincide with the boundary
of the domain. A boundary face is therefore addressed by one cell(only) and a
boundary patch. The ordering of the point labels is such that the face normal
points outside of the computational domain.

Faces are generally expected to be convex; at the very least the face centre needs to
be inside the face. Faces are allowed to be warped, i.e. not all points of the face need to
be coplanar.

4.1.1.3 Cells

A cell is a list of faces in arbitrary order. Cells must have the properties listed below.

Contiguous The cells must completely cover the computational domain and must not
overlap one another.
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Convex Every cell must be convex and its cell centre inside the cell.

Closed Every cell must be closed, both geometrically and topologically where:

• geometrical closedness requires that when all face area vectors are oriented to
point outwards of the cell, their sum should equal the zero vector to machine
accuracy;

• topological closedness requires that all the edges in a cell are used by exactly
two faces of the cell in question.

Orthogonality For all internal faces of the mesh, we define the centre-to-centre vector
as that connecting the centres of the 2 cells that it adjoins oriented from the cen-
tre of the cell with smaller label to the centre of the cell with larger label. The
orthogonality constraint requires that for each internal face, the angle between the
face area vector, oriented as described above, and the centre-to-centre vector must
always be less than 90◦.

4.1.1.4 Boundary

A boundary is a list of patches, each of which is associated with a boundary condition.
A patch is a list of face labels which clearly must contain only boundary faces and no
internal faces. The boundary is required to be closed, i.e. the sum all boundary face area
vectors equates to zero to machine tolerance.

4.1.2 The polyMesh description

The constant directory contains a full description of the case polyMesh in a subdirectory
polyMesh. The polyMesh description is based around faces and, as already discussed,
internal cells connect 2 cells and boundary faces address a cell and a boundary patch.
Each face is therefore assigned an ‘owner’ cell and ‘neighbour’ cell so that the connectivity
across a given face can simply be described by the owner and neighbour cell labels. In
the case of boundaries, the connected cell is the owner and the neighbour is assigned the
label ‘-1’. With this in mind, the I/O specification consists of the following files:

points a list of vectors describing the cell vertices, where the first vector in the list repre-
sents vertex 0, the second vector represents vertex 1, etc.;

faces a list of faces, each face being a list of indices to vertices in the points list, where
again, the first entry in the list represents face 0, etc.;

owner a list of owner cell labels, the index of entry relating directly to the index of the
face, so that the first entry in the list is the owner label for face 0, the second entry
is the owner label for face 1, etc;

neighbour a list of neighbour cell labels;

boundary a list of patches, containing a dictionary entry for each patch, declared using
the patch name, e.g.

movingWall

{
type patch;

nFaces 20;

startFace 760;
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}

The startFace is the index into the face list of the first face in the patch, and
nFaces is the number of faces in the patch.

Note that if the user wishes to know how many cells are in their domain, there is a

note in the FoamFile header of the owner file that contains an entry for nCells.

4.1.3 The cellShape tools

We shall describe the alternative cellShape tools that may be used particularly when
converting some standard (simpler) mesh formats for the use with OpenFOAM library.

The vast majority of mesh generators and post-processing systems support only a
fraction of the possible polyhedral cell shapes in existence. They define a mesh in terms
of a limited set of 3D cell geometries, referred to as cell shapes. The OpenFOAM library
contains definitions of these standard shapes, to enable a conversion of such a mesh into
the polyMesh format described in the previous section.

The cellShape models supported by OpenFOAM are shown in Table 4.1. The shape is
defined by the ordering of point labels in accordance with the numbering scheme contained
in the shape model. The ordering schemes for points, faces and edges are shown in
Table 4.1. The numbering of the points must not be such that the shape becomes twisted
or degenerate into other geometries, i.e. the same point label cannot be used more that
once is a single shape. Moreover it is unnecessary to use duplicate points in OpenFOAM
since the available shapes in OpenFOAM cover the full set of degenerate hexahedra.

The cell description consists of two parts: the name of a cell model and the ordered
list of labels. Thus, using the following list of points

8

(

(0 0 0)

(1 0 0)

(1 1 0)

(0 1 0)

(0 0 0.5)

(1 0 0.5)

(1 1 0.5)

(0 1 0.5)

)

A hexahedral cell would be written as:

(hex 8(0 1 2 3 4 5 6 7))

Here the hexahedral cell shape is declared using the keyword hex. Other shapes are
described by the keywords listed in Table 4.1.

4.1.4 1- and 2-dimensional and axi-symmetric problems

OpenFOAM is designed as a code for 3-dimensional space and defines all meshes as
such. However, 1- and 2- dimensional and axi-symmetric problems can be simulated
in OpenFOAM by generating a mesh in 3 dimensions and applying special boundary
conditions on any patch in the plane(s) normal to the direction(s) of interest. More
specifically, 1- and 2- dimensional problems use the empty patch type and axi-symmetric
problems use the wedge type. The use of both are described in section 4.2.2 and the
generation of wedge geometries for axi-symmetric problems is discussed in section 4.3.3.
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Cell type Keyword Vertex numbering Face numbering Edge numbering

Hexahedron hex

2

7

3

10

4

6

5

0 1
2

3

5

4
0

1

2

3

4
5

6
7

8 9
1011

Wedge wedge

2

10

3 4

56

0

1

2
35

4

0
1

2

3
5

6

7

8
9

10

4

Prism prism

2

10

3 4

5

0

1

3
4

2

0

1
2

3
4

5

6 7
8

Pyramid pyr

2

10

4

3
0

2
34

1

0
1

2

3

4 5
67

Tetrahedron tet 0 1

2

3

1
2

3

0

0

1

2
3

4

5

Tet-wedge tetWedge

2

10

3 4

0

1
3

2

0
1

2

3

4
5

6

Table 4.1: Vertex, face and edge numbering for cellShapes.
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4.2 Boundaries

In this section we discuss the way in which mesh boundaries are treated in OpenFOAM.
We first need to consider that, for the purpose of applying boundary conditions, a bound-
ary is generally broken up into a set of patches. One patch may include one or more
enclosed areas of the boundary surface which do not necessarily need to be physically
connected.

4.2.1 Specification of patch types in OpenFOAM

The patch types are specified in the mesh and field files of a OpenFOAM case. More
precisely:

• the base type is specified under the type keyword for each patch in the boundary
file, located in the constant/polyMesh directory;

An example boundary file is shown below for a sonicFoam case

17

18 6
19 (
20 inlet
21 {
22 type patch;
23 nFaces 50;
24 startFace 10325;
25 }
26 outlet
27 {
28 type patch;
29 nFaces 40;
30 startFace 10375;
31 }
32 bottom
33 {
34 type symmetryPlane;
35 inGroups 1(symmetryPlane);
36 nFaces 25;
37 startFace 10415;
38 }
39 top
40 {
41 type symmetryPlane;
42 inGroups 1(symmetryPlane);
43 nFaces 125;
44 startFace 10440;
45 }
46 obstacle
47 {
48 type patch;
49 nFaces 110;
50 startFace 10565;
51 }
52 defaultFaces
53 {
54 type empty;
55 inGroups 1(empty);
56 nFaces 10500;
57 startFace 10675;
58 }
59 )
60

61 // ************************************************************************* //

The type in the boundary file is patch for all patches except those patches that have
some geometrical constraint applied to them, i.e. the symmetryPlane and empty patches.

4.2.2 Base types

The base and geometric types are described below; the keywords used for specifying these
types in OpenFOAM are summarised in Table 4.2.
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wedge aligned along

coordinate plane

<5◦ Axis of symmetry

wedge patch 1

wedge patch 2

Figure 4.2: Axi-symmetric geometry using the wedge patch type.

Selection Key Description
patch generic patch
symmetryPlane plane of symmetry
empty front and back planes of a 2D geometry
wedge wedge front and back for an axi-symmetric geometry
cyclic cyclic plane
wall wall — used for wall functions in turbulent flows
processor inter-processor boundary

Table 4.2: Basic patch types.

patch The basic patch type for a patch condition that contains no geometric or topological
information about the mesh (with the exception of wall), e.g. an inlet or an outlet.

wall There are instances where a patch that coincides with a wall needs to be identifiable
as such, particularly where specialist modelling is applied at wall boundaries. A
good example is wall turbulence modelling where a wall must be specified with a
wall patch type, so that the distance from the wall of the cell centres next to the
wall are stored as part of the patch.

symmetryPlane For a symmetry plane.

empty While OpenFOAM always generates geometries in 3 dimensions, it can be in-
structed to solve in 2 (or 1) dimensions by specifying a special empty condition on
each patch whose plane is normal to the 3rd (and 2nd) dimension for which no
solution is required.

wedge For 2 dimensional axi-symmetric cases, e.g. a cylinder, the geometry is specified
as a wedge of small angle (e.g. < 5◦) and 1 cell thick running along the plane of
symmetry, straddling one of the coordinate planes, as shown in Figure 4.2. The
axi-symmetric wedge planes must be specified as separate patches of wedge type.
The details of generating wedge-shaped geometries using blockMesh are described
in section 4.3.3.
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cyclic Enables two patches to be treated as if they are physically connected; used for
repeated geometries, e.g. heat exchanger tube bundles. One cyclic patch is linked
to another through a neighbourPatch keyword in the boundary file. Each pair
of connecting faces must have similar area to within a tolerance given by the
matchTolerance keyword in the boundary file. Faces do not need to be of the
same orientation.

processor If a code is being run in parallel, on a number of processors, then the mesh
must be divided up so that each processor computes on roughly the same number
of cells. The boundaries between the different parts of the mesh are called processor
boundaries.

4.3 Mesh generation with the blockMesh utility

This section describes the mesh generation utility, blockMesh, supplied with OpenFOAM.
The blockMesh utility creates parametric meshes with grading and curved edges.

The mesh is generated from a dictionary file named blockMeshDict located in the
constant/polyMesh directory of a case. blockMesh reads this dictionary, generates the
mesh and writes out the mesh data to points and faces, cells and boundary files in the
same directory.

The principle behind blockMesh is to decompose the domain geometry into a set of 1
or more three dimensional, hexahedral blocks. Edges of the blocks can be straight lines,
arcs or splines. The mesh is ostensibly specified as a number of cells in each direction of
the block, sufficient information for blockMesh to generate the mesh data.

Each block of the geometry is defined by 8 vertices, one at each corner of a hexahedron.
The vertices are written in a list so that each vertex can be accessed using its label,
remembering that OpenFOAM always uses the C++ convention that the first element of
the list has label ‘0’. An example block is shown in Figure 4.3 with each vertex numbered
according to the list. The edge connecting vertices 1 and 5 is curved to remind the reader
that curved edges can be specified in blockMesh.

It is possible to generate blocks with less than 8 vertices by collapsing one or more
pairs of vertices on top of each other, as described in section 4.3.3.

Each block has a local coordinate system (x1, x2, x3) that must be right-handed. A
right-handed set of axes is defined such that to an observer looking down the Oz axis,
with O nearest them, the arc from a point on the Ox axis to a point on the Oy axis is in
a clockwise sense.

The local coordinate system is defined by the order in which the vertices are presented
in the block definition according to:

• the axis origin is the first entry in the block definition, vertex 0 in our example;

• the x1 direction is described by moving from vertex 0 to vertex 1;

• the x2 direction is described by moving from vertex 1 to vertex 2;

• vertices 0, 1, 2, 3 define the plane x3 = 0;

• vertex 4 is found by moving from vertex 0 in the x3 direction;

• vertices 5,6 and 7 are similarly found by moving in the x3 direction from vertices
1,2 and 3 respectively.
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Figure 4.3: A single block

Keyword Description Example/selection
convertToMeters Scaling factor for the vertex

coordinates
0.001 scales to mm

vertices List of vertex coordinates (0 0 0)

edges Used to describe arc or
spline edges

arc 1 4 (0.939 0.342 -0.5)

block Ordered list of vertex labels
and mesh size

hex (0 1 2 3 4 5 6 7)

(10 10 1)

simpleGrading (1.0 1.0 1.0)

patches List of patches symmetryPlane base

( (0 1 2 3) )

mergePatchPairs List of patches to be merged see section 4.3.2

Table 4.3: Keywords used in blockMeshDict.

4.3.1 Writing a blockMeshDict file

The blockMeshDict file is a dictionary using keywords described in Table 4.3. The
convertToMeters keyword specifies a scaling factor by which all vertex coordinates in
the mesh description are multiplied. For example,

convertToMeters 0.001;

means that all coordinates are multiplied by 0.001, i.e. the values quoted in the blockMesh-
Dict file are in mm.

4.3.1.1 The vertices

The vertices of the blocks of the mesh are given next as a standard list named vertices,
e.g. for our example block in Figure 4.3, the vertices are:

vertices

(

( 0 0 0 ) // vertex number 0
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( 1 0 0.1) // vertex number 1

( 1.1 1 0.1) // vertex number 2

( 0 1 0.1) // vertex number 3

(-0.1 -0.1 1 ) // vertex number 4

( 1.3 0 1.2) // vertex number 5

( 1.4 1.1 1.3) // vertex number 6

( 0 1 1.1) // vertex number 7

);

4.3.1.2 The edges

Each edge joining 2 vertex points is assumed to be straight by default. However any edge
may be specified to be curved by entries in a list named edges. The list is optional; if
the geometry contains no curved edges, it may be omitted.

Each entry for a curved edge begins with a keyword specifying the type of curve from
those listed in Table 4.4.

Keyword selection Description Additional entries
arc Circular arc Single interpolation point
simpleSpline Spline curve List of interpolation points
polyLine Set of lines List of interpolation points
polySpline Set of splines List of interpolation points
line Straight line —

Table 4.4: Edge types available in the blockMeshDict dictionary.

The keyword is then followed by the labels of the 2 vertices that the edge connects.
Following that, interpolation points must be specified through which the edge passes.
For a arc, a single interpolation point is required, which the circular arc will intersect.
For simpleSpline, polyLine and polySpline, a list of interpolation points is required.
The line edge is directly equivalent to the option executed by default, and requires no
interpolation points. Note that there is no need to use the line edge but it is included
for completeness. For our example block in Figure 4.3 we specify an arc edge connecting
vertices 1 and 5 as follows through the interpolation point (1.1, 0.0, 0.5):

edges

(

arc 1 5 (1.1 0.0 0.5)

);

4.3.1.3 The blocks

The block definitions are contained in a list named blocks. Each block definition is a
compound entry consisting of a list of vertex labels whose order is described in section 4.3,
a vector giving the number of cells required in each direction, the type and list of cell
expansion ratio in each direction.

Then the blocks are defined as follows:

blocks

(
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hex (0 1 2 3 4 5 6 7) // vertex numbers

(10 10 10) // numbers of cells in each direction

simpleGrading (1 2 3) // cell expansion ratios

);

The definition of each block is as follows:

Vertex numbering The first entry is the shape identifier of the block, as defined in the
.OpenFOAM-v1606+/cellModels file. The shape is always hex since the blocks are
always hexahedra. There follows a list of vertex numbers, ordered in the manner
described on page U-38.

Number of cells The second entry gives the number of cells in each of the x1 x2 and
x3 directions for that block.

Cell expansion ratios The third entry gives the cell expansion ratios for each direction
in the block. The expansion ratio enables the mesh to be graded, or refined, in
specified directions. The ratio is that of the width of the end cell δe along one edge
of a block to the width of the start cell δs along that edge, as shown in Figure 4.4.
Each of the following keywords specify one of two types of grading specification
available in blockMesh.

simpleGrading The simple description specifies uniform expansions in the local x1,
x2 and x3 directions respectively with only 3 expansion ratios, e.g.

simpleGrading (1 2 3)

edgeGrading The full cell expansion description gives a ratio for each edge of the
block, numbered according to the scheme shown in Figure 4.3 with the arrows
representing the direction ‘from first cell. . . to last cell’ e.g. something like

edgeGrading (1 1 1 1 2 2 2 2 3 3 3 3)

This means the ratio of cell widths along edges 0-3 is 1, along edges 4-7 is 2
and along 8-11 is 3 and is directly equivalent to the simpleGrading example
given above.

δs
Expansion ratio =

δe
δs δe

Expansion direction

Figure 4.4: Mesh grading along a block edge

4.3.1.4 The boundary

The boundary of the mesh is given in a list named boundary. The boundary is broken
into patches (regions), where each patch in the list has its name as the keyword, which
is the choice of the user, although we recommend something that conveniently identifies
the patch, e.g.inlet; the name is used as an identifier for setting boundary conditions in
the field data files. The patch information is then contained in sub-dictionary with:

• type: the patch type, either a generic patch on which some boundary conditions
are applied or a particular geometric condition, as listed in Table 4.2 and described
in section 4.2.2;
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• faces: a list of block faces that make up the patch and whose name is the choice of
the user, although we recommend something that conveniently identifies the patch,
e.g.inlet; the name is used as an identifier for setting boundary conditions in the
field data files.

blockMesh collects faces from any boundary patch that is omitted from the boundary
list and assigns them to a default patch named defaultFaces of type empty. This means
that for a 2 dimensional geometry, the user has the option to omit block faces lying in
the 2D plane, knowing that they will be collected into an empty patch as required.

Returning to the example block in Figure 4.3, if it has an inlet on the left face, an
output on the right face and the four other faces are walls then the patches could be
defined as follows:

boundary // keyword

(

inlet // patch name

{
type patch; // patch type for patch 0

faces

(

(0 4 7 3); // block face in this patch

);

} // end of 0th patch definition

outlet // patch name

{
type patch; // patch type for patch 1

faces

(

(1 2 6 5)

);

}

walls

{
type wall;

faces

(

(0 1 5 4)

(0 3 2 1)

(3 7 6 2)

(4 5 6 7)

);

}
);

Each block face is defined by a list of 4 vertex numbers. The order in which the vertices
are given must be such that, looking from inside the block and starting with any vertex,
the face must be traversed in a clockwise direction to define the other vertices.

When specifying a cyclic patch in blockMesh, the user must specify the name of the
related cyclic patch through the neighbourPatch keyword. For example, a pair of cyclic
patches might be specified as follows:
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left

{
type cyclic;

neighbourPatch right;

faces ((0 4 7 3));

}
right

{
type cyclic;

neighbourPatch left;

faces ((1 5 6 2));

}

4.3.2 Multiple blocks

A mesh can be created using more than 1 block. In such circumstances, the mesh is
created as has been described in the preceeding text; the only additional issue is the
connection between blocks, in which there are two distinct possibilities:

face matching the set of faces that comprise a patch from one block are formed from
the same set of vertices as a set of faces patch that comprise a patch from another
block;

face merging a group of faces from a patch from one block are connected to another
group of faces from a patch from another block, to create a new set of internal faces
connecting the two blocks.

To connect two blocks with face matching, the two patches that form the connection
should simply be ignored from the patches list. blockMesh then identifies that the faces
do not form an external boundary and combines each collocated pair into a single internal
faces that connects cells from the two blocks.

The alternative, face merging, requires that the block patches to be merged are first
defined in the patches list. Each pair of patches whose faces are to be merged must then
be included in an optional list named mergePatchPairs. The format of mergePatchPairs
is:

mergePatchPairs

(

( <masterPatch> <slavePatch> ) // merge patch pair 0

( <masterPatch> <slavePatch> ) // merge patch pair 1

...

)

The pairs of patches are interpreted such that the first patch becomes the master and
the second becomes the slave. The rules for merging are as follows:

• the faces of the master patch remain as originally defined, with all vertices in their
original location;

• the faces of the slave patch are projected onto the master patch where there is some
separation between slave and master patch;
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• the location of any vertex of a slave face might be adjusted by blockMesh to eliminate
any face edge that is shorter than a minimum tolerance;

• if patches overlap as shown in Figure 4.5, each face that does not merge remains as
an external face of the original patch, on which boundary conditions must then be
applied;

• if all the faces of a patch are merged, then the patch itself will contain no faces and
is removed.

patch 1

patch 2

region of internal connecting faces

region of external boundary faces

Figure 4.5: Merging overlapping patches

The consequence is that the original geometry of the slave patch will not necessarily be
completely preserved during merging. Therefore in a case, say, where a cylindrical block
is being connected to a larger block, it would be wise to the assign the master patch to the
cylinder, so that its cylindrical shape is correctly preserved. There are some additional
recommendations to ensure successful merge procedures:

• in 2 dimensional geometries, the size of the cells in the third dimension, i.e. out of
the 2D plane, should be similar to the width/height of cells in the 2D plane;

• it is inadvisable to merge a patch twice, i.e. include it twice in mergePatchPairs;

• where a patch to be merged shares a common edge with another patch to be merged,
both should be declared as a master patch.

4.3.3 Creating blocks with fewer than 8 vertices

It is possible to collapse one or more pair(s) of vertices onto each other in order to create
a block with fewer than 8 vertices. The most common example of collapsing vertices is
when creating a 6-sided wedge shaped block for 2-dimensional axi-symmetric cases that
use the wedge patch type described in section 4.2.2. The process is best illustrated by
using a simplified version of our example block shown in Figure 4.6. Let us say we wished
to create a wedge shaped block by collapsing vertex 7 onto 4 and 6 onto 5. This is simply
done by exchanging the vertex number 7 by 4 and 6 by 5 respectively so that the block
numbering would become:
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hex (0 1 2 3 4 5 5 4)

0

3

4

7 6

5

1

2

Figure 4.6: Creating a wedge shaped block with 6 vertices

The same applies to the patches with the main consideration that the block face
containing the collapsed vertices, previously (4 5 6 7) now becomes (4 5 5 4). This
is a block face of zero area which creates a patch with no faces in the polyMesh, as the
user can see in a boundary file for such a case. The patch should be specified as empty
in the blockMeshDict and the boundary condition for any fields should consequently be
empty also.

4.3.4 Running blockMesh

As described in section 3.1, the following can be executed at the command line to run
blockMesh for a case in the <case> directory:

blockMesh -case <case>

The blockMeshDict file must exist in subdirectory constant/polyMesh.

4.4 Mesh generation with the snappyHexMesh utility

This section describes the mesh generation utility, snappyHexMesh, supplied with Open-
FOAM. The snappyHexMesh utility generates 3-dimensional meshes containing hexahedra
(hex) and split-hexahedra (split-hex) automatically from triangulated surface geometries
in Stereolithography (STL) format. The mesh approximately conforms to the surface
by iteratively refining a starting mesh and morphing the resulting split-hex mesh to the
surface. An optional phase will shrink back the resulting mesh and insert cell layers. The
specification of mesh refinement level is very flexible and the surface handling is robust
with a pre-specified final mesh quality. It runs in parallel with a load balancing step every
iteration.
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STL surface

Figure 4.7: Schematic 2D meshing problem for snappyHexMesh

4.4.1 The mesh generation process of snappyHexMesh

The process of generating a mesh using snappyHexMesh will be described using the
schematic in Figure 4.7. The objective is to mesh a rectangular shaped region (shaded
grey in the figure) surrounding an object described by and STL surface, e.g. typical for
an external aerodynamics simulation. Note that the schematic is 2-dimensional to make
it easier to understand, even though the snappyHexMesh is a 3D meshing tool.

In order to run snappyHexMesh, the user requires the following:

• surface data files in STL format, either binary or ASCII, located in a constant/triSurface
sub-directory of the case directory;

• a background hex mesh which defines the extent of the computational domain and
a base level mesh density; typically generated using blockMesh, discussed in sec-
tion 4.4.2.

• a snappyHexMeshDict dictionary, with appropriate entries, located in the system
sub-directory of the case.

The snappyHexMeshDict dictionary includes: switches at the top level that control the
various stages of the meshing process; and, individual sub-directories for each process.
The entries are listed in Table 4.5.

All the geometry used by snappyHexMesh is specified in a geometry sub-dictionary
in the snappyHexMeshDict dictionary. The geometry can be specified through an STL
surface or bounding geometry entities in OpenFOAM. An example is given below:

geometry
{

sphere.stl // STL filename
{

type triSurfaceMesh;
regions
{

secondSolid // Named region in the STL file
{

name mySecondPatch; // User-defined patch name
} // otherwise given sphere.stl_secondSolid

}
}

box1x1x1 // User defined region name
{

type searchableBox; // region defined by bounding box
min (1.5 1 -0.5);
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Keyword Description Example
castellatedMesh Create the castellated mesh? true

snap Do the surface snapping stage? true

doLayers Add surface layers? true

mergeTolerance Merge tolerance as fraction of bounding box
of initial mesh

1e-06

debug Controls writing of intermediate meshes and
screen printing
— Write final mesh only 0

— Write intermediate meshes 1

— Write volScalarField with cellLevel for
post-processing

2

— Write current intersections as .obj files 4

geometry Sub-dictionary of all surface geometry used
castellatedMeshControls Sub-dictionary of controls for castellated mesh
snapControls Sub-dictionary of controls for surface snapping
addLayersControls Sub-dictionary of controls for layer addition
meshQualityControls Sub-dictionary of controls for mesh quality

Table 4.5: Keywords at the top level of snappyHexMeshDict.

max (3.5 2 0.5);
}

sphere2 // User defined region name
{

type searchableSphere; // region defined by bounding sphere
centre (1.5 1.5 1.5);
radius 1.03;

}
};

4.4.2 Creating the background hex mesh

Before snappyHexMesh is executed the user must create a background mesh of hexahedral
cells that fills the entire region within by the external boundary as shown in Figure 4.8.
This can be done simply using blockMesh. The following criteria must be observed when

Figure 4.8: Initial mesh generation in snappyHexMesh meshing process

creating the background mesh:
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• the mesh must consist purely of hexes;

• the cell aspect ratio should be approximately 1, at least near surfaces at which
the subsequent snapping procedure is applied, otherwise the convergence of the
snapping procedure is slow, possibly to the point of failure;

• there must be at least one intersection of a cell edge with the STL surface, i.e. a
mesh of one cell will not work.

Figure 4.9: Cell splitting by feature edge in snappyHexMesh meshing process

4.4.3 Cell splitting at feature edges and surfaces

Cell splitting is performed according to the specification supplied by the user in the
castellatedMeshControls sub-dictionary in the snappyHexMeshDict. The entries for castel-
latedMeshControls are presented in Table 4.6.

The splitting process begins with cells being selected according to specified edge fea-
tures first within the domain as illustrated in Figure 4.9. The features list in the
castellatedMeshControls sub-dictionary permits dictionary entries containing a name of an
edgeMesh file and the level of refinement, e.g.:

features
(

{
file "features.eMesh"; // file containing edge mesh
level 2; // level of refinement

}
);

The edgeMesh containing the features can be extracted from the STL geometry file using
surfaceFeatureExtract, e.g.

surfaceFeatureExtract -includedAngle 150 surface.stl features

Following feature refinement, cells are selected for splitting in the locality of specified
surfaces as illustrated in Figure 4.10. The refinementSurfaces dictionary in castel-
latedMeshControls requires dictionary entries for each STL surface and a default level

specification of the minimum and maximum refinement in the form (<min> <max>).
The minimum level is applied generally across the surface; the maximum level is ap-
plied to cells that can see intersections that form an angle in excess of that specified by
resolveFeatureAngle.
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Keyword Description Example
locationInMesh Location vector inside the region to be meshed (5 0 0)

N.B. vector must not coincide with a cell face
either before or during refinement

maxLocalCells Maximum number of cells per processor dur-
ing refinement

1e+06

maxGlobalCells Overall cell limit during refinement (i.e. before
removal)

2e+06

minRefinementCells If ≥ number of cells to be refined, surface re-
finement stops

0

maxLoadUnbalance Maximum processor imbalance during refine-
ment where a value of 0 represents a perfect
balance

0.1

nCellsBetweenLevels Number of buffer layers of cells between dif-
ferent levels of refinement

1

resolveFeatureAngle Applies maximum level of refinement to cells
that can see intersections whose angle exceeds
this

30

allowFreeStandingZoneFaces Allow the generation of free-standing zone
faces

flase

features List of features for refinement
refinementSurfaces Dictionary of surfaces for refinement
refinementRegions Dictionary of regions for refinement

Table 4.6: Keywords in the castellatedMeshControls sub-dictionary of snappyHexMeshDict.

The refinement can optionally be overridden on one or more specific region of an STL
surface. The region entries are collected in a regions sub-dictionary. The keyword for
each region entry is the name of the region itself and the refinement level is contained
within a further sub-dictionary. An example is given below:

refinementSurfaces
{

sphere.stl
{

level (2 2); // default (min max) refinement for whole surface
regions
{

secondSolid
{

level (3 3); // optional refinement for secondSolid region
}

}
}

}

4.4.4 Cell removal

Once the feature and surface splitting is complete a process of cell removal begins. Cell
removal requires one or more regions enclosed entirely by a bounding surface within the
domain. The region in which cells are retained are simply identified by a location vector
within that region, specified by the locationInMesh keyword in castellatedMeshControls.
Cells are retained if, approximately speaking, 50% or more of their volume lies within the
region. The remaining cells are removed accordingly as illustrated in Figure 4.11.
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4.4.5 Cell splitting in specified regions

Those cells that lie within one or more specified volume regions can be further split as il-
lustrated in Figure 4.12 by a rectangular region shown by dark shading. The refinement-
Regions sub-dictionary in castellatedMeshControls contains entries for refinement of the
volume regions specified in the geometry sub-dictionary. A refinement mode is applied to
each region which can be:

• inside refines inside the volume region;

• outside refines outside the volume region

• distance refines according to distance to the surface; and can accommodate differ-
ent levels at multiple distances with the levels keyword.

For the refinementRegions, the refinement level is specified by the levels list of entries
with the format(<distance> <level>). In the case of inside and outside refinement,
the <distance> is not required so is ignored (but it must be specified). Examples are
shown below:

refinementRegions
{

box1x1x1
{

mode inside;
levels ((1.0 4)); // refinement level 4 (1.0 entry ignored)

}

sphere.stl
{ // refinement level 5 within 1.0 m

mode distance; // refinement level 3 within 2.0 m
levels ((1.0 5) (2.0 3)); // levels must be ordered nearest first

}
}

4.4.6 Snapping to surfaces

The next stage of the meshing process involves moving cell vertex points onto surface
geometry to remove the jagged castellated surface from the mesh. The process is:

1. displace the vertices in the castellated boundary onto the STL surface;

2. solve for relaxation of the internal mesh with the latest displaced boundary vertices;

Figure 4.10: Cell splitting by surface in snappyHexMesh meshing process
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Figure 4.11: Cell removal in snappyHexMesh meshing process

3. find the vertices that cause mesh quality parameters to be violated;

4. reduce the displacement of those vertices from their initial value (at 1) and repeat
from 2 until mesh quality is satisfied.

The method uses the settings in the snapControls sub-dictionary in snappyHexMeshDict,
listed in Table 4.7. An example is illustrated in the schematic in Figure 4.13 (albeit with

Keyword Description Example
nSmoothPatch Number of patch smoothing iterations before

finding correspondence to surface
3

tolerance Ratio of distance for points to be attracted
by surface feature point or edge, to local
maximum edge length

4.0

nSolveIter Number of mesh displacement relaxation it-
erations

30

nRelaxIter Maximum number of snapping relaxation it-
erations

5

nFeatureSnapIter Number of feature edge snapping iterations 10

implicitFeatureSnap Detect (geometric only) features by sampling
the surface

false

explicitFeatureSnap Use castellatedMeshControls features true
multiRegionFeatureSnap Detect features between multiple surfaces

when using the explicitFeatureSnap
false

Table 4.7: Keywords in the snapControls dictionary of snappyHexMeshDict.

mesh motion that looks slightly unrealistic).

4.4.7 Mesh layers

The mesh output from the snapping stage may be suitable for the purpose, although it
can produce some irregular cells along boundary surfaces. There is an optional stage of
the meshing process which introduces additional layers of hexahedral cells aligned to the
boundary surface as illustrated by the dark shaded cells in Figure 4.14.

The process of mesh layer addition involves shrinking the existing mesh from the
boundary and inserting layers of cells, broadly as follows:
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Figure 4.12: Cell splitting by region in snappyHexMesh meshing process

Figure 4.13: Surface snapping in snappyHexMesh meshing process

Figure 4.14: Layer addition in snappyHexMesh meshing process
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1. the mesh is projected back from the surface by a specified thickness in the direction
normal to the surface;

2. solve for relaxation of the internal mesh with the latest projected boundary vertices;

3. check if validation criteria are satisfied otherwise reduce the projected thickness and
return to 2; if validation cannot be satisfied for any thickness, do not insert layers;

4. if the validation criteria can be satisfied, insert mesh layers;

5. the mesh is checked again; if the checks fail, layers are removed and we return to 2.

The layer addition procedure uses the settings in the addLayersControls sub-dictionary
in snappyHexMeshDict; entries are listed in Table 4.8. The layers sub-dictionary contains
entries for each patch on which the layers are to be applied and the number of surface layers
required. The patch name is used because the layers addition relates to the existing mesh,
not the surface geometry; hence applied to a patch, not a surface region. An example
layers entry is as follows:

layers
{

sphere.stl_firstSolid
{

nSurfaceLayers 1;
}
maxY
{

nSurfaceLayers 1;
}

}

4.4.8 Mesh quality controls

The mesh quality is controlled by the entries in the meshQualityControls sub-dictionary
in snappyHexMeshDict; entries are listed in Table 4.9.

4.5 Mesh conversion

The user can generate meshes using other packages and convert them into the format
that OpenFOAM uses. There are numerous mesh conversion utilities listed in Table A.2.
Some of the more popular mesh converters are listed below and their use is presented in
this section.

fluentMeshToFoam reads a Fluent.msh mesh file, working for both 2-D and 3-D cases;

starToFoam reads STAR-CD/PROSTAR mesh files.

gambitToFoam reads a GAMBIT.neu neutral file;

ideasToFoam reads an I-DEAS mesh written in ANSYS.ans format;

cfx4ToFoam reads a CFX mesh written in .geo format;
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4.5.1 fluentMeshToFoam

Fluent writes mesh data to a single file with a .msh extension. The file must be written
in ASCII format, which is not the default option in Fluent. It is possible to convert
single-stream Fluent meshes, including the 2 dimensional geometries. In OpenFOAM, 2
dimensional geometries are currently treated by defining a mesh in 3 dimensions, where
the front and back plane are defined as the empty boundary patch type. When reading
a 2 dimensional Fluent mesh, the converter automatically extrudes the mesh in the third
direction and adds the empty patch, naming it frontAndBackPlanes.

The following features should also be observed.

• The OpenFOAM converter will attempt to capture the Fluent boundary condition
definition as much as possible; however, since there is no clear, direct correspondence
between the OpenFOAM and Fluent boundary conditions, the user should check the
boundary conditions before running a case.

• Creation of axi-symmetric meshes from a 2 dimensional mesh is currently not sup-
ported but can be implemented on request.

• Multiple material meshes are not permitted. If multiple fluid materials exist, they
will be converted into a single OpenFOAM mesh; if a solid region is detected, the
converter will attempt to filter it out.

• Fluent allows the user to define a patch which is internal to the mesh, i.e. consists
of the faces with cells on both sides. Such patches are not allowed in OpenFOAM
and the converter will attempt to filter them out.

• There is currently no support for embedded interfaces and refinement trees.

The procedure of converting a Fluent.msh file is first to create a new OpenFOAM case
by creating the necessary directories/files: the case directory containing a controlDict file
in a system subdirectory. Then at a command prompt the user should execute:

fluentMeshToFoam <meshFile>

where <meshFile> is the name of the .msh file, including the full or relative path.

4.5.2 starToFoam

This section describes how to convert a mesh generated on the STAR-CD code into a form
that can be read by OpenFOAM mesh classes. The mesh can be generated by any of the
packages supplied with STAR-CD, i.e.PROSTAR, SAMM, ProAM and their derivatives.
The converter accepts any single-stream mesh including integral and arbitrary couple
matching and all cell types are supported. The features that the converter does not
support are:

• multi-stream mesh specification;

• baffles, i.e. zero-thickness walls inserted into the domain;

• partial boundaries, where an uncovered part of a couple match is considered to be
a boundary face;

• sliding interfaces.
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For multi-stream meshes, mesh conversion can be achieved by writing each individual
stream as a separate mesh and reassemble them in OpenFOAM.

OpenFOAM adopts a policy of only accepting input meshes that conform to the
fairly stringent validity criteria specified in section 4.1. It will simply not run using
invalid meshes and cannot convert a mesh that is itself invalid. The following sections
describe steps that must be taken when generating a mesh using a mesh generating
package supplied with STAR-CD to ensure that it can be converted to OpenFOAM format.
To avoid repetition in the remainder of the section, the mesh generation tools supplied
with STAR-CD will be referred to by the collective name STAR-CD.

4.5.2.1 General advice on conversion

We strongly recommend that the user run the STAR-CD mesh checking tools before
attempting a starToFoam conversion and, after conversion, the checkMesh utility should
be run on the newly converted mesh. Alternatively, starToFoam may itself issue warnings
containing PROSTAR commands that will enable the user to take a closer look at cells with
problems. Problematic cells and matches should be checked and fixed before attempting
to use the mesh with OpenFOAM. Remember that an invalid mesh will not run with
OpenFOAM, but it may run in another environment that does not impose the validity
criteria.

Some problems of tolerance matching can be overcome by the use of a matching
tolerance in the converter. However, there is a limit to its effectiveness and an apparent
need to increase the matching tolerance from its default level indicates that the original
mesh suffers from inaccuracies.

4.5.2.2 Eliminating extraneous data

When mesh generation in is completed, remove any extraneous vertices and compress the
cells boundary and vertex numbering, assuming that fluid cells have been created and all
other cells are discarded. This is done with the following PROSTAR commands:

CSET NEWS FLUID

CSET INVE

The CSET should be empty. If this is not the case, examine the cells in CSET and adjust
the model. If the cells are genuinely not desired, they can be removed using the PROSTAR
command:

CDEL CSET

Similarly, vertices will need to be discarded as well:

CSET NEWS FLUID

VSET NEWS CSET

VSET INVE

Before discarding these unwanted vertices, the unwanted boundary faces have to be col-
lected before purging:

CSET NEWS FLUID

VSET NEWS CSET

BSET NEWS VSET ALL

BSET INVE
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If the BSET is not empty, the unwanted boundary faces can be deleted using:

BDEL BSET

At this time, the model should contain only the fluid cells and the supporting vertices,
as well as the defined boundary faces. All boundary faces should be fully supported by the
vertices of the cells, if this is not the case, carry on cleaning the geometry until everything
is clean.

4.5.2.3 Removing default boundary conditions

By default, STAR-CD assigns wall boundaries to any boundary faces not explicitly associ-
ated with a boundary region. The remaining boundary faces are collected into a default

boundary region, with the assigned boundary type 0. OpenFOAM deliberately does not
have a concept of a default boundary condition for undefined boundary faces since it
invites human error, e.g. there is no means of checking that we meant to give all the
unassociated faces the default condition.

Therefore all boundaries for each OpenFOAM mesh must be specified for a mesh to
be successfully converted. The default boundary needs to be transformed into a real
one using the procedure described below:

1. Plot the geometry with Wire Surface option.

2. Define an extra boundary region with the same parameters as the default region
0 and add all visible faces into the new region, say 10, by selecting a zone option
in the boundary tool and drawing a polygon around the entire screen draw of the
model. This can be done by issuing the following commands in PROSTAR:

RDEF 10 WALL

BZON 10 ALL

3. We shall remove all previously defined boundary types from the set. Go through
the boundary regions:

BSET NEWS REGI 1

BSET NEWS REGI 2

... 3, 4, ...

Collect the vertices associated with the boundary set and then the boundary faces
associated with the vertices (there will be twice as many of them as in the original
set).

BSET NEWS REGI 1

VSET NEWS BSET

BSET NEWS VSET ALL

BSET DELE REGI 1

REPL

This should give the faces of boundary Region 10 which have been defined on top
of boundary Region 1. Delete them with BDEL BSET. Repeat these for all regions.
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4.5.2.4 Renumbering the model

Renumber and check the model using the commands:

CSET NEW FLUID

CCOM CSET

VSET NEWS CSET

VSET INVE (Should be empty!)

VSET INVE

VCOM VSET

BSET NEWS VSET ALL

BSET INVE (Should be empty also!)

BSET INVE

BCOM BSET

CHECK ALL

GEOM

Internal PROSTAR checking is performed by the last two commands, which may reveal
some other unforeseeable error(s). Also, take note of the scaling factor because PROSTAR
only applies the factor for STAR-CD and not the geometry. If the factor is not 1, use the
scalePoints utility in OpenFOAM.

4.5.2.5 Writing out the mesh data

Once the mesh is completed, place all the integral matches of the model into the couple
type 1. All other types will be used to indicate arbitrary matches.

CPSET NEWS TYPE INTEGRAL

CPMOD CPSET 1

The components of the computational grid must then be written to their own files. This
is done using PROSTAR for boundaries by issuing the command

BWRITE

by default, this writes to a .23 file (versions prior to 3.0) or a .bnd file (versions 3.0 and
higher). For cells, the command

CWRITE

outputs the cells to a .14 or .cel file and for vertices, the command

VWRITE

outputs to file a .15 or .vrt file. The current default setting writes the files in ASCII
format. If couples are present, an additional couple file with the extension .cpl needs to
be written out by typing:

CPWRITE
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After outputting to the three files, exit PROSTAR or close the files. Look through
the panels and take note of all STAR-CD sub-models, material and fluid properties used
– the material properties and mathematical model will need to be set up by creating and
editing OpenFOAM dictionary files.

The procedure of converting the PROSTAR files is first to create a new OpenFOAM
case by creating the necessary directories. The PROSTAR files must be stored within the
same directory and the user must change the file extensions: from .23, .14 and .15 (below
STAR-CD version 3.0), or .pcs, .cls and .vtx (STAR-CD version 3.0 and above); to .bnd,
.cel and .vrt respectively.

4.5.2.6 Problems with the .vrt file

The .vrt file is written in columns of data of specified width, rather than free format. A
typical line of data might be as follows, giving a vertex number followed by the coordi-
nates:

19422 -0.105988957 -0.413711881E-02 0.000000000E+00

If the ordinates are written in scientific notation and are negative, there may be no space
between values, e.g.:

19423 -0.953953117E-01-0.338810333E-02 0.000000000E+00

The starToFoam converter reads the data using spaces to delimit the ordinate values and
will therefore object when reading the previous example. Therefore, OpenFOAM includes
a simple script, foamCorrectVrt to insert a space between values where necessary, i.e. it
would convert the previous example to:

19423 -0.953953117E-01 -0.338810333E-02 0.000000000E+00

The foamCorrectVrt script should therefore be executed if necessary before running the
starToFoam converter, by typing:

foamCorrectVrt <file>.vrt

4.5.2.7 Converting the mesh to OpenFOAM format

The translator utility starToFoam can now be run to create the boundaries, cells and
points files necessary for a OpenFOAM run:

starToFoam <meshFilePrefix>

where <meshFilePrefix> is the name of the prefix of the mesh files, including the full or
relative path. After the utility has finished running, OpenFOAM boundary types should
be specified by editing the boundary file by hand.

Open∇FOAM-v1606+



4.5 Mesh conversion U-59

4.5.3 gambitToFoam

GAMBIT writes mesh data to a single file with a .neu extension. The procedure of con-
verting a GAMBIT.neu file is first to create a new OpenFOAM case, then at a command
prompt, the user should execute:

gambitToFoam <meshFile>

where <meshFile> is the name of the .neu file, including the full or relative path.

The GAMBIT file format does not provide information about type of the boundary
patch, e.g. wall, symmetry plane, cyclic. Therefore all the patches have been created as
type patch. Please reset after mesh conversion as necessary.

4.5.4 ideasToFoam

OpenFOAM can convert a mesh generated by I-DEAS but written out in ANSYS format
as a .ans file. The procedure of converting the .ans file is first to create a new OpenFOAM
case, then at a command prompt, the user should execute:

ideasToFoam <meshFile>

where <meshFile> is the name of the .ans file, including the full or relative path.

4.5.5 cfx4ToFoam

CFX writes mesh data to a single file with a .geo extension. The mesh format in CFX is
block-structured, i.e. the mesh is specified as a set of blocks with glueing information and
the vertex locations. OpenFOAM will convert the mesh and capture the CFX boundary
condition as best as possible. The 3 dimensional ‘patch’ definition in CFX, containing
information about the porous, solid regions etc. is ignored with all regions being converted
into a single OpenFOAM mesh. CFX supports the concept of a ‘default’ patch, where
each external face without a defined boundary condition is treated as a wall. These faces
are collected by the converter and put into a defaultFaces patch in the OpenFOAM
mesh and given the type wall; of course, the patch type can be subsequently changed.

Like, OpenFOAM 2 dimensional geometries in CFX are created as 3 dimensional
meshes of 1 cell thickness. If a user wishes to run a 2 dimensional case on a mesh created
by CFX, the boundary condition on the front and back planes should be set to empty;
the user should ensure that the boundary conditions on all other faces in the plane of the
calculation are set correctly. Currently there is no facility for creating an axi-symmetric
geometry from a 2 dimensional CFX mesh.

The procedure of converting a CFX.geo file is first to create a new OpenFOAM case,
then at a command prompt, the user should execute:

cfx4ToFoam <meshFile>

where <meshFile> is the name of the .geo file, including the full or relative path.
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4.6 Mapping fields between different geometries

The mapFields utility maps one or more fields relating to a given geometry onto the
corresponding fields for another geometry. It is completely generalised in so much as
there does not need to be any similarity between the geometries to which the fields relate.
However, for cases where the geometries are consistent, mapFields can be executed with
a special option that simplifies the mapping process.

For our discussion of mapFields we need to define a few terms. First, we say that
the data is mapped from the source to the target. The fields are deemed consistent if
the geometry and boundary types, or conditions, of both source and target fields are
identical. The field data that mapFields maps are those fields within the time directory
specified by startFrom/startTime in the controlDict of the target case. The data is read
from the equivalent time directory of the source case and mapped onto the equivalent
time directory of the target case.

4.6.1 Mapping consistent fields

A mapping of consistent fields is simply performed by executing mapFields on the (target)
case using the -consistent command line option as follows:

mapFields <source dir> -consistent

4.6.2 Mapping inconsistent fields

When the fields are not consistent, as shown in Figure 4.15, mapFields requires a map-
FieldsDict dictionary in the system directory of the target case. The following rules apply
to the mapping:

• the field data is mapped from source to target wherever possible, i.e. in our example
all the field data within the target geometry is mapped from the source, except those
in the shaded region which remain unaltered;

• the patch field data is left unaltered unless specified otherwise in the mapFieldsDict
dictionary.

The mapFieldsDict dictionary contain two lists that specify mapping of patch data. The
first list is patchMap that specifies mapping of data between pairs of source and target
patches that are geometrically coincident, as shown in Figure 4.15. The list contains
each pair of names of source and target patch. The second list is cuttingPatches that
contains names of target patches whose values are to be mapped from the source internal
field through which the target patch cuts. In the situation where the target patch only
cuts through part of the source internal field, e.g. bottom left target patch in our example,
those values within the internal field are mapped and those outside remain unchanged.
An example mapFieldsDict dictionary is shown below:

17

18 patchMap ( lid movingWall );
19

20 cuttingPatches ( fixedWalls );
21

22

23 // ************************************************************************* //

mapFields <source dir>
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Internal target patches:
can be mapped using cuttingPatches

Target field geometry
Source field geometry

can be mapped using patchMap

Coincident patches:

Figure 4.15: Mapping inconsistent fields

4.6.3 Mapping parallel cases

If either or both of the source and target cases are decomposed for running in parallel,
additional options must be supplied when executing mapFields:

-parallelSource if the source case is decomposed for parallel running;

-parallelTarget if the target case is decomposed for parallel running.
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Keyword Description Example
layers Dictionary of layers
relativeSizes Are layer thicknesses relative to undistorted cell

size outside layer or absolute?
true/false

expansionRatio Expansion factor for layer mesh 1.0

finalLayerThickness Thickness of layer furthest from the wall, ei-
ther relative or absolute according to the
relativeSizes entry

1

firstLayerThickness Thickness of layer closest to the wall, either rel-
ative or absolute according to

0.3

thickness Overall thickness of all layers 0.3

minThickness Minimum overall thickness of all layers, below
which surface is not extruded

0.1

nGrow Number of layers of connected faces that are not
grown if points are not extruded; helps conver-
gence of layer addition close to features

1

featureAngle Angle above which surface is not extruded 60

maxFaceThickness-

Ratio

Face thickness ratio above which surface is not
extruded, useful for warped cells

0.5

nSmoothSurfaceNor-

mals

Number of smoothing iterations of surface nor-
mals

1

nSmoothThickness Smooth layer thickness over surface patches 10

minMedialAxisAngle Angle used to pick up medial axis points 90

maxThicknessTo-

MedialRatio

Reduce layer growth where ratio thickness to me-
dial distance is large

0.3

maxThicknessTo-

MedialRatio

Reduce layer growth where ratio thickness to me-
dial distance is large

0.3

nSmoothNormals Number of smoothing iterations of interior mesh
movement direction

3

nRelaxIter Maximum number of snapping relaxation itera-
tions

5

nBufferCellsNo-

Extrude

Create buffer region for new layer terminations 0

nLayerIter Overall max number of layer addition iterations 50

nRelaxedIter Max number of iterations after which the
controls in the relaxed sub dictionary of
meshQuality are used

20

Table 4.8: Keywords in the addLayersControls sub-dictionary of snappyHexMeshDict.
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Keyword Description Example
maxNonOrtho Maximum non-orthogonality allowed; 180 dis-

ables
65

maxBoundarySkewness Max boundary face skewness allowed; <0 dis-
ables

20

maxInternalSkewness Max internal face skewness allowed; <0 disables 4

maxConcave Max concaveness allowed; 180 disables 80

minFlatness Ratio of minimum projected area to actual area;
-1 disables

0.5

minVol Minimum pyramid volume; large negative num-
ber, e.g.-1e30 disables

1e-13

minTetQuality Minimum quality of the tetrahedron formed by
the face-centre and variable base point mini-
mum decomposition triangles and the cell cen-
tre; set to very negative number, e.g.-1e30 to
disable

1e-13

minArea Minimum face area; <0 disables -1

minTwist Minimum face twist; <-1 disables 0.05

minDeterminant Minimum normalised cell determinant; 1 = hex;
≤ 0 illegal cell

0.001

minFaceWeight 0→0.5 0.05

minVolRatio 0→1.0 0.01

minTriangleTwist >0 for Fluent compatability -1

nSmoothScale Number of error distribution iterations 4

errorReduction Amount to scale back displacement at error
points

0.75

relaxed Sub-dictionary that can include modified values
for the above keyword entries to be used when
nRelaxedIter is exceeded in the layer addition
process

relaxed

{
...

}

Table 4.9: Keywords in the meshQualityControls sub-dictionary of snappyHexMeshDict.
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Chapter 5

Models and physical properties

OpenFOAM includes a large range of solvers each designed for a specific class of problem.
The equations and algorithms differ from one solver to another so that the selection of
a solver involves the user making some initial choices on the modelling for their partic-
ular case. The choice of solver typically involves scanning through their descriptions in
Table A.1 to find the one suitable for the case. It ultimately determines many of the pa-
rameters and physical properties required to define the case but leaves the user with some
modelling options that can be specified at runtime through the entries in dictionary files
in the constant directory of a case. This chapter deals with many of the more common
models and associated properties that may be specified at runtime.

5.1 Boundary Conditions

Setting appropriate boundary conditions is vital for a successful simulation. Ill-posed
boundary conditions will lead to physically incorrect predictions, and in many cases solver
failure. Users must specify the boundary conditions for each solved field. The tutorials
provided with OpenFOAM show examples of good practice in terms of selection and
application for various cases.

Boundary conditions are organised into categories for easier navigation, comprising:

basic basic types

• fixedValue

• fixedGradient

• mixed

• . . .

constraint geometrical constraints

• symmetry

• wedge

• empty

• cyclic

• . . .

derived specialised conditions

• fixedProfile: to specify a profile of a variable



U-66 Models and physical properties

• swirlFlowRateInletVelocity: to specify velocity inlet for a swirling flow
providing flow rate

• inletOutlet: outlet condition with handling of reverse flow

• codedFixedValue: fixed value set by user coding

• . . .

In all there are more than 70 boundary conditions. The list of all available boundary
conditions divided into categories based of the use can be found in section A.4

An example pressure field file is shown below

17 dimensions [1 -1 -2 0 0 0 0];
18

19 internalField uniform 1;
20

21 boundaryField
22 {
23 inlet
24 {
25 type fixedValue;
26 value uniform 1;
27 }
28

29 outlet
30 {
31 type waveTransmissive;
32 field p;
33 phi phi;
34 rho rho;
35 psi thermo:psi;
36 gamma 1.4;
37 fieldInf 1;
38 lInf 3;
39 value uniform 1;
40 }
41

42 bottom
43 {
44 type symmetryPlane;
45 }
46

47 top
48 {
49 type symmetryPlane;
50 }
51

52 obstacle
53 {
54 type zeroGradient;
55 }
56

57 defaultFaces
58 {
59 type empty;
60 }
61 }
62

63 // ************************************************************************* //

5.2 Thermophysical models

Thermophysical models are used to describe cases where the thermal energy, compress-
ibility or mass transfer is important.

OpenFOAM allows thermophysical properties to be constant, or functions of temper-
ature, pressure and composition. Thermal energy can be described in form of enthalpy or
internal energy. The p− v − T relation can be described with various equations of state
or as isobaric system.

The thermophysicalProperties dictionary is read by any solver that uses the thermo-
physical model library. A thermophysical model is constructed in OpenFOAM as a
pressure-temperature p − T system from which other properties are computed. There
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is one compulsory dictionary entry called thermoType which specifies the complete ther-
mophysical model that is used in the simulation. The thermophysical modelling starts
with a layer that defines the basic equation of state and then adds further layers for the
thermodynamic, transport and mixture modelling, as listed in Table 5.1.

Equation of State — equationOfState
icoPolynomial Incompressible polynomial equation of state, e.g. for liquids
perfectGas Perfect gas equation of state

Basic thermophysical properties — thermo
eConstThermo Constant specific heat cp model with evaluation of internal

energy e and entropy s
hConstThermo Constant specific heat cp model with evaluation of enthalpy

h and entropy s
hPolynomialThermo cp evaluated by a function with coefficients from polynomi-

als, from which h, s are evaluated
janafThermo cp evaluated by a function with coefficients from JANAF

thermodynamic tables, from which h, s are evaluated

Derived thermophysical properties — specieThermo
specieThermo Thermophysical properties of species, derived from cp, h

and/or s

Transport properties — transport
constTransport Constant transport properties
polynomialTransport Polynomial based temperature-dependent transport prop-

erties
sutherlandTransport Sutherland’s formula for temperature-dependent transport

properties

Mixture properties — mixture
pureMixture General thermophysical model calculation for passive gas

mixtures
homogeneousMixture Combustion mixture based on normalised fuel mass frac-

tion b
inhomogeneousMixture Combustion mixture based on b and total fuel mass fraction

ft
veryInhomogeneousMixture Combustion mixture based on b, ft and unburnt fuel mass

fraction fu
dieselMixture Combustion mixture based on ft and fu
basicMultiComponent-
Mixture

Basic mixture based on multiple components

multiComponentMixture Derived mixture based on multiple components
reactingMixture Combustion mixture using thermodynamics and reaction

schemes
egrMixture Exhaust gas recirculation mixture

Thermophysical model — thermoModel
hePsiThermo General thermophysical model calculation based on en-

thalpy h or internal energy e, and compressibility ψ
Continued on next page
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Continued from previous page

heRhoThermo General thermophysical model calculation based on en-
thalpy h or internal energy e, and density ρ

hePsiMixtureThermo Calculates enthalpy for combustion mixture based on en-
thalpy h or internal energy e, and ψ

heRhoMixtureThermo Calculates enthalpy for combustion mixture based on en-
thalpy h or internal energy e, and ρ

heheuMixtureThermo Calculates enthalpy h or internal energy e for unburnt u
gas and combustion mixture

Table 5.1: Layers of thermophysical modelling.

Various combinations are available as ‘packages’, specified using, e.g.

17

18 thermoType
19 {
20 type heRhoThermo;
21 mixture pureMixture;
22 transport const;
23 thermo hConst;
24 equationOfState perfectGas;
25 specie specie;
26 energy sensibleEnthalpy;
27 }
28

29 mixture
30 {
31 specie
32 {
33 nMoles 1;
34 molWeight 28.96;
35 }
36 thermodynamics
37 {
38 Cp 1004.4;
39 Hf 0;
40 }
41 transport
42 {
43 mu 1.831e-05;
44 Pr 0.705;
45 }
46 }
47

48

49 // ************************************************************************* //

Only certain combinations are predefined. One method to identify the possible combi-
nations from Table 5.1 is to use a nonexistent setting for one of the entries, e.g.banana
and execute the solver. OpenFOAM will issue an error message and list all possible
combinations to the terminal.

5.2.1 Thermophysical property data

The basic thermophysical properties are specified for each species from input data. Data
entries must contain the name of the specie as the keyword, e.g. O2, H2O, mixture, followed
by sub-dictionaries of coefficients, including:

specie containing i.e. number of moles, nMoles, of the specie, and molecular weight,
molWeight in units of g/mol;

thermo containing coefficients for the chosen thermodynamic model (see below);

transport containing coefficients for the chosen transport model (see below).
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The thermodynamic coefficients are ostensibly concerned with evaluating the specific
heat cp from which other properties are derived. The current thermo models are described
as follows:

hConstThermo assumes a constant cp and a heat of fusion Hf which is simply specified
by a two values cp Hf , given by keywords Cp and Hf.

eConstThermo assumes a constant cv and a heat of fusion Hf which is simply specified
by a two values cv Hf , given by keywords Cv and Hf.

janafThermo calculates cp as a function of temperature T from a set of coefficients taken
from JANAF tables of thermodynamics. The ordered list of coefficients is given in
Table 5.2. The function is valid between a lower and upper limit in temperature Tl

and Th respectively. Two sets of coefficients are specified, the first set for tempera-
tures above a common temperature Tc (and below Th, the second for temperatures
below Tc (and above Tl). The function relating cp to temperature is:

cp = R((((a4T + a3)T + a2)T + a1)T + a0) (5.1)

In addition, there are constants of integration, a5 and a6, both at high and low
temperature, used to evaluating h and s respectively.

hPolynomialThermo calculates Cp as a function of temperature by a polynomial of any
order. The following case provides an example of its use: $FOAM TUTORIALS/-
lagrangian/porousExplicitSourceReactingParcelFoam/filter

Description Entry Keyword
Lower temperature limit Tl (K) Tlow

Upper temperature limit Th (K) Thigh

Common temperature Tc (K) Tcommon

High temperature coefficients a0 . . . a4 highCpCoeffs (a0 a1 a2 a3 a4...

High temperature enthalpy offset a5 a5...

High temperature entropy offset a6 a6)

Low temperature coefficients a0 . . . a4 lowCpCoeffs (a0 a1 a2 a3 a4...

Low temperature enthalpy offset a5 a5...

Low temperature entropy offset a6 a6)

Table 5.2: JANAF thermodynamics coefficients.

The transport coefficients are used to to evaluate dynamic viscosity µ, thermal con-
ductivity κ and laminar thermal conductivity (for enthalpy equation) α. The current
transport models are described as follows:

constTransport assumes a constant µ and Prandtl number Pr = cpµ/κ which is simply
specified by a two keywords, mu and Pr, respectively.

sutherlandTransport calculates µ as a function of temperature T from a Sutherland coef-
ficient As and Sutherland temperature Ts, specified by keywords As and Ts; µ is
calculated according to:

µ =
As

√
T

1 + Ts/T
(5.2)
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polynomialTransport calculates µ and κ as a function of temperature T from a polynomial
of any order.

The following is an example entry for a specie named fuel modelled using sutherland-
Transport and janafThermo:

fuel

{
specie

{
nMoles 1;

molWeight 16.0428;

}
thermodynamics

{
Tlow 200;

Thigh 6000;

Tcommon 1000;

highCpCoeffs (1.63543 0.0100844 -3.36924e-06 5.34973e-10

-3.15528e-14 -10005.6 9.9937);

lowCpCoeffs (5.14988 -0.013671 4.91801e-05 -4.84744e-08

1.66694e-11 -10246.6 -4.64132);

}
transport

{
As 1.67212e-06;

Ts 170.672;

}
}

The following is an example entry for a specie named air modelled using constTransport
and hConstThermo:

air

{
specie

{
nMoles 1;

molWeight 28.96;

}
thermodynamics

{
Cp 1004.5;

Hf 2.544e+06;

}
transport

{
mu 1.8e-05;

Pr 0.7;

}
}
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5.3 Turbulence models

The turbulenceProperties dictionary is read by any solver that includes turbulence mod-
elling. Within that file is the simulationType keyword that controls the type of turbu-
lence modelling to be used, either:

laminar uses no turbulence models;

RAS uses Reynolds-averaged stress (RAS) modelling;

LES uses large-eddy simulation (LES) or detached-eddy simulation (DES) modelling.

If RAS is selected, the choice of RAS modelling is specified in a RAS subdictionary.
The RAS turbulence model is selected by the RASModel entry from a long list of available
models that are listed in Table A.5. Similarly, if LES is selected, the choice of LES
modelling is specified in a LES subdictionary and the LES turbulence model is selected
by the LESModel entry. Note that DES models are defined as a subset of the available
LES models.

The entries required in the RAS subdictionary are listed in Table 5.3 and those for
the LES subdictionary are listed in Table 5.4.

RASModel Name of RAS turbulence model
turbulence Switch to turn turbulence modelling on/off
printCoeffs Switch to print model coeffs to terminal at simulation startup
<RASModel>Coeffs Optional dictionary of coefficients for the respective RASModel

Table 5.3: Keyword entries in the RAS dictionary.

LESModel Name of LES model
delta Name of delta δ model
<LESModel>Coeffs Dictionary of coefficients for the respective LESModel
<delta>Coeffs Dictionary of coefficients for each delta model

Table 5.4: Keyword entries in the LES dictionary.

The incompressible and compressible RAS turbulence models, isochoric and aniso-
choric LES models and delta models are all named and described in Table A.5. Examples
of their use can be found in the $FOAM TUTORIALS.

5.3.1 Model coefficients

The coefficients for the RAS turbulence models are given default values in their respective
source code. If the user wishes to override these default values, then they can do so by
adding a sub-dictionary entry to the RAS dictionary, whose keyword name is that of
the model with Coeffs appended, e.g. kEpsilonCoeffs for the kEpsilon model. If the
printCoeffs switch is on an example of the relevant ...Coeffs dictionary is printed
to standard output when the model is created at the beginning of a run. The user can
simply copy this into the RAS dictionary and edit the entries as required.
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5.3.2 Wall functions

A range of wall function models is available in OpenFOAM that are applied as boundary
conditions on individual patches. This enables different wall function models to be applied
to different wall regions. The choice of wall function model is specified through νt in the
0/nut file. For example, a 0/nut file:

17

18 dimensions [0 2 -1 0 0 0 0];
19

20 internalField uniform 0;
21

22 boundaryField
23 {
24 movingWall
25 {
26 type nutkWallFunction;
27 value uniform 0;
28 }
29 fixedWalls
30 {
31 type nutkWallFunction;
32 value uniform 0;
33 }
34 frontAndBack
35 {
36 type empty;
37 }
38 }
39

40

41 // ************************************************************************* //

There are a number of wall function models available in the release, e.g. nutkWall-

Function, nutUWallFunction, nutUSpaldingWallFunction. The user can consult the
relevant directories for a full list of wall function models:

find $FOAM SRC/TurbulenceModels -name wallFunctions

Within each wall function boundary condition the user can over-ride default settings for
E, κ and Cµ through optional E, kappa and Cmu keyword entries.

Having selected the particular wall functions on various patches in the nut/mut file,
the user should select epsilonWallFunction on corresponding patches in the epsilon field
and kqRwallFunction on corresponding patches in the turbulent fields k, q and R.
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Chapter 6

Solving

This chapter describes how to solve and manage OpenFOAM cases, including options to
control the time and output behaviour, numerical schemes, solvers, and how to monitor
solution progress.

6.1 Time and data input/output control

The OpenFOAM solvers begin all runs by setting up a database. The database controls
I/O and, since output of data is usually requested at intervals of time during the run, time
is an inextricable part of the database. The controlDict dictionary sets input parameters
essential for the creation of the database. The keyword entries in controlDict are listed in
Table 6.1. Only the time control and writeInterval entries are truly compulsory, with
the database taking default values indicated by † in Table 6.1 for any of the optional
entries that are omitted.

Time control
startFrom Controls the start time of the simulation.
- firstTime Earliest time step from the set of time directories.
- startTime Time specified by the startTime keyword entry.
- latestTime Most recent time step from the set of time directories.

startTime Start time for the simulation with startFrom startTime;

stopAt Controls the end time of the simulation.
- endTime Time specified by the endTime keyword entry.
- writeNow Stops simulation on completion of current time step and writes

data.
- noWriteNow Stops simulation on completion of current time step and does not

write out data.
- nextWrite Stops simulation on completion of next scheduled write time, spec-

ified by writeControl.
endTime End time for the simulation when stopAt endTime; is specified.

deltaT Time step of the simulation.

Time step control
Continued on next page
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Continued from previous page

adjustTimeStep yes/no† to adjust time step according to maximum Courant num-
ber in transient simulation.

maxCo Maximum Courant number allowed.

maxDeltaT Maximum time step allowed in transient simulation.

Data writing
writeControl Controls the timing of write output to file.
- timeStep† Writes data every writeInterval time steps.
- runTime Writes data every writeInterval seconds of simulated time.
- adjustableRunTime Writes data every writeInterval seconds of simulated time,

adjusting the time steps to coincide with the writeInterval if
necessary — used in cases with automatic time step adjustment.

- cpuTime Writes data every writeInterval seconds of CPU time.
- clockTime Writes data out every writeInterval seconds of real time.

writeInterval Scalar used in conjunction with writeControl described above.

purgeWrite Integer representing a limit on the number of time directories that
are stored by overwriting time directories on a cyclic basis. Exam-
ple of t0 = 5s, ∆t = 1s and purgeWrite 2;: data written into 2
directories, 6 and 7, before returning to write the data at 8 s in 6,
data at 9 s into 7, etc.
To disable the time directory limit, specify purgeWrite 0;†
For steady-state solutions, results from previous iterations can be
continuously overwritten by specifying purgeWrite 1;

writeFormat Specifies the format of the data files.
- ascii† ASCII format, written to writePrecision significant figures.
- binary Binary format.

writePrecision Integer used in conjunction with writeFormat described above, 6†
by default

writeCompression Specifies the compression of the data files.
- uncompressed No compression.†
- compressed gzip compression.

timeFormat Choice of format of the naming of the time directories.
- fixed ±m.dddddd where the number of ds is set by timePrecision.
- scientific ±m.dddddde±xx where the number of ds is set by timePrecision.
- general† Specifies scientific format if the exponent is less than -4 or

greater than or equal to that specified by timePrecision.

timePrecision Integer used in conjunction with timeFormat described above, 6†
by default

graphFormat Format for graph data written by an application.
Continued on next page
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Continued from previous page

- raw† Raw ASCII format in columns.
- gnuplot Data in gnuplot format.
- xmgr Data in Grace/xmgr format.
- jplot Data in jPlot format.

Data reading
runTimeModifiable yes†/no switch for whether dictionaries, e.g.controlDict, are re-

read by OpenFOAM at the beginning of each time step.

Run-time loadable functionality
libs List of additional libraries (on $LD LIBRARY PATH) to be loaded

at run-time, e.g.( "libUser1.so" "libUser2.so" )

functions List of functions, e.g. probes to be loaded at run-time; see examples
in $FOAM TUTORIALS

† denotes default entry if associated keyword is omitted.

Table 6.1: Keyword entries in the controlDict dictionary.

Example entries from a controlDict dictionary are given below:
17

18 application icoFoam;
19

20 startFrom startTime;
21

22 startTime 0;
23

24 stopAt endTime;
25

26 endTime 0.5;
27

28 deltaT 0.005;
29

30 writeControl timeStep;
31

32 writeInterval 20;
33

34 purgeWrite 0;
35

36 writeFormat ascii;
37

38 writePrecision 6;
39

40 writeCompression off;
41

42 timeFormat general;
43

44 timePrecision 6;
45

46 runTimeModifiable true;
47

48

49 // ************************************************************************* //

6.2 Numerical schemes

The fvSchemes dictionary in the system directory sets the numerical schemes for terms,
such as derivatives in equations, that appear in applications being run. This section
describes how to specify the schemes in the fvSchemes dictionary.

The terms that must typically be assigned a numerical scheme in fvSchemes range from
derivatives, e.g. gradient ∇, and interpolations of values from one set of points to another.
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The aim in OpenFOAM is to offer an unrestricted choice to the user. For example, while
linear interpolation is effective in many cases, OpenFOAM offers complete freedom to
choose from a wide selection of interpolation schemes for all interpolation terms.

The derivative terms further exemplify this freedom of choice. The user first has a
choice of discretisation practice where standard Gaussian finite volume integration is the
common choice. Gaussian integration is based on summing values on cell faces, which
must be interpolated from cell centres. The user again has a completely free choice
of interpolation scheme, with certain schemes being specifically designed for particular
derivative terms, especially the convection divergence ∇ • terms.

The set of terms, for which numerical schemes must be specified, are subdivided within
the fvSchemes dictionary into the categories listed in Table 6.2. Each keyword in Table 6.2
is the name of a sub-dictionary which contains terms of a particular type, e.g.gradSchemes
contains all the gradient derivative terms such as grad(p) (which represents ∇p). Further
examples can be seen in the extract from an fvSchemes dictionary below:

Keyword Category of mathematical terms
interpolationSchemes Point-to-point interpolations of values
snGradSchemes Component of gradient normal to a cell face
gradSchemes Gradient ∇
divSchemes Divergence ∇ •

laplacianSchemes Laplacian ∇2

timeScheme First and second time derivatives ∂/∂t, ∂2/∂2t

Table 6.2: Main keywords used in fvSchemes.

17

18 ddtSchemes
19 {
20 default Euler;
21 }
22

23 gradSchemes
24 {
25 default Gauss linear;
26 grad(p) Gauss linear;
27 }
28

29 divSchemes
30 {
31 default none;
32 div(phi,U) Gauss linear;
33 }
34

35 laplacianSchemes
36 {
37 default Gauss linear orthogonal;
38 }
39

40 interpolationSchemes
41 {
42 default linear;
43 }
44

45 snGradSchemes
46 {
47 default orthogonal;
48 }
49

50

51 // ************************************************************************* //

The example shows that the fvSchemes dictionary comprises . . . Schemes sub-dictionaries
containing keyword entries for each term specified within, including: a default entry;
other entries whose names correspond to a word identifier for the particular term specified,
e.g.grad(p) for ∇p
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If a default scheme is specified in a particular . . . Schemes sub-dictionary, it is as-
signed to all of the terms to which the sub-dictionary refers, e.g. specifying a default

in gradSchemes sets the scheme for all gradient terms in the application, e.g. ∇p, ∇U.
When a default is specified, it is not necessary to specify each specific term itself in that
sub-dictionary, i.e. the entries for grad(p), grad(U) in this example. However, if any
of these terms are included, the specified scheme overrides the default scheme for that
term.

Alternatively the user may insist on no default scheme by the none entry. In this
instance the user is obliged to specify all terms in that sub-dictionary individually. Setting
default to none may appear superfluous since default can be overridden. However,
specifying none forces the user to specify all terms individually which can be useful to
remind the user which terms are actually present in the application.

The following sections describe the choice of schemes for each of the categories of
terms in Table 6.2.

6.2.1 Interpolation schemes

The interpolationSchemes sub-dictionary contains terms that are interpolations of val-
ues typically from cell centres to face centres. A selection of interpolation schemes in
OpenFOAM are listed in Table 6.3, being divided into 4 categories: 1 category of gen-
eral schemes; and, 3 categories of schemes used primarily in conjunction with Gaussian
discretisation of convection (divergence) terms in fluid flow, described in section 6.2.5.
It is highly unlikely that the user would adopt any of the convection-specific schemes
for general field interpolations in the interpolationSchemes sub-dictionary, but, as valid
interpolation schemes, they are described here rather than in section 6.2.5. Note that
additional schemes such as UMIST are available in OpenFOAM but only those schemes
that are generally recommended are listed in Table 6.3.

A general scheme is simply specified by quoting the keyword and entry, e.g. a linear

scheme is specified as default by:

default linear;

The convection-specific schemes calculate the interpolation based on the flux of the
flow velocity. The specification of these schemes requires the name of the flux field
on which the interpolation is based; in most OpenFOAM applications this is phi, the
name commonly adopted for the surfaceScalarField velocity flux φ. The 3 categories of
convection-specific schemes are referred to in this text as: general convection; normalised
variable (NV); and, total variation diminishing (TVD). With the exception of the blended
scheme, the general convection and TVD schemes are specified by the scheme and flux,
e.g. an upwind scheme based on a flux phi is specified as default by:

default upwind phi;

Some TVD/NVD schemes require a coefficient ψ, 0 ≤ ψ ≤ 1 where ψ = 1 corresponds
to TVD conformance, usually giving best convergence and ψ = 0 corresponds to best
accuracy. Running with ψ = 1 is generally recommended. A limitedLinear scheme
based on a flux phi with ψ = 1.0 is specified as default by:

default limitedLinear 1.0 phi;
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6.2.1.1 Schemes for strictly bounded scalar fields

There are enhanced versions of some of the limited schemes for scalars that need to be
strictly bounded. To bound between user-specified limits, the scheme name should be
prepended by the word limited and followed by the lower and upper limits respectively.
For example, to bound the vanLeer scheme strictly between -2 and 3, the user would
specify:

default limitedVanLeer -2.0 3.0;

There are specialised versions of these schemes for scalar fields that are commonly bounded
between 0 and 1. These are selected by adding 01 to the name of the scheme. For example,
to bound the vanLeer scheme strictly between 0 and 1, the user would specify:

default vanLeer01;

Strictly bounded versions are available for the following schemes: limitedLinear, vanLeer,
Gamma, limitedCubic, MUSCL and SuperBee.

6.2.1.2 Schemes for vector fields

There are improved versions of some of the limited schemes for vector fields in which
the limiter is formulated to take into account the direction of the field. These schemes
are selected by adding V to the name of the general scheme, e.g.limitedLinearV for
limitedLinear. ‘V’ versions are available for the following schemes: limitedLinearV,
vanLeerV, GammaV, limitedCubicV and SFCDV.

Centred schemes
linear Linear interpolation (central differencing)
cubicCorrection Cubic scheme
midPoint Linear interpolation with symmetric weighting

Upwinded convection schemes
upwind Upwind differencing
linearUpwind Linear upwind differencing
skewLinear Linear with skewness correction
filteredLinear2 Linear with filtering for high-frequency ringing

TVD schemes
limitedLinear limited linear differencing
vanLeer van Leer limiter
MUSCL MUSCL limiter
limitedCubic Cubic limiter

NVD schemes
SFCD Self-filtered central differencing
Gamma ψ Gamma differencing

Table 6.3: Interpolation schemes.
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6.2.2 Surface normal gradient schemes

The snGradSchemes sub-dictionary contains surface normal gradient terms. A surface
normal gradient is evaluated at a cell face; it is the component, normal to the face, of the
gradient of values at the centres of the 2 cells that the face connects. A surface normal
gradient may be specified in its own right and is also required to evaluate a Laplacian
term using Gaussian integration.

The available schemes are listed in Table 6.4 and are specified by simply quoting the
keyword and entry, with the exception of limited which requires a coefficient ψ, 0 ≤ ψ ≤
1 where

ψ =



















0 corresponds to uncorrected,

0.333 non-orthogonal correction ≤ 0.5× orthogonal part,

0.5 non-orthogonal correction ≤ orthogonal part,

1 corresponds to corrected.

(6.1)

A limited scheme with ψ = 0.5 is therefore specified as default by:

default limited 0.5;

Scheme Description
corrected Explicit non-orthogonal correction
uncorrected No non-orthogonal correction
limited ψ Limited non-orthogonal correction
bounded Bounded correction for positive scalars
fourth Fourth order

Table 6.4: Surface normal gradient schemes.

6.2.3 Gradient schemes

The gradSchemes sub-dictionary contains gradient terms. The discretisation scheme for
each term can be selected from those listed in Table 6.5.

Discretisation scheme Description
Gauss <interpolationScheme> Second order, Gaussian integration
leastSquares Second order, least squares
fourth Fourth order, least squares
cellLimited <gradScheme> Cell limited version of one of the above schemes
faceLimited <gradScheme> Face limited version of one of the above schemes

Table 6.5: Discretisation schemes available in gradSchemes.

The discretisation scheme is sufficient to specify the scheme completely in the cases
of leastSquares and fourth, e.g.

grad(p) leastSquares;
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The Gauss keyword specifies the standard finite volume discretisation of Gaussian
integration which requires the interpolation of values from cell centres to face centres.
Therefore, the Gauss entry must be followed by the choice of interpolation scheme from
Table 6.3. It would be extremely unusual to select anything other than general interpo-
lation schemes and in most cases the linear scheme is an effective choice, e.g.

grad(p) Gauss linear;

Limited versions of any of the 3 base gradient schemes — Gauss, leastSquares and
fourth — can be selected by preceding the discretisation scheme by cellLimited (or
faceLimited), e.g. a cell limited Gauss scheme

grad(p) cellLimited Gauss linear 1;

6.2.4 Laplacian schemes

The laplacianSchemes sub-dictionary contains Laplacian terms. Let us discuss the syntax
of the entry in reference to a typical Laplacian term found in fluid dynamics, ∇ • (ν∇U),
given the word identifier laplacian(nu,U). The Gauss scheme is the only choice of dis-
cretisation and requires a selection of both an interpolation scheme for the diffusion
coefficient, i.e. ν in our example, and a surface normal gradient scheme, i.e. ∇U. To
summarise, the entries required are:

Gauss <interpolationScheme> <snGradScheme>

The interpolation scheme is selected from Table 6.3, the typical choices being from the
general schemes and, in most cases, linear. The surface normal gradient scheme is
selected from Table 6.4; the choice of scheme determines numerical behaviour as described
in Table 6.6. A typical entry for our example Laplacian term would be:

laplacian(nu,U) Gauss linear corrected;

Scheme Numerical behaviour
corrected Unbounded, second order, conservative
uncorrected Bounded, first order, non-conservative
limited ψ Blend of corrected and uncorrected

bounded First order for bounded scalars
fourth Unbounded, fourth order, conservative

Table 6.6: Behaviour of surface normal schemes used in laplacianSchemes.

6.2.5 Divergence schemes

The divSchemes sub-dictionary contains divergence terms. Let us discuss the syntax of
the entry in reference to a typical convection term found in fluid dynamics ∇ • (ρUU),
which in OpenFOAM applications is commonly given the identifier div(phi,U), where
phi refers to the flux φ = ρU.

The Gauss scheme is the only choice of discretisation and requires a selection of the
interpolation scheme for the dependent field, i.e. U in our example. To summarise, the
entries required are:
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Gauss <interpolationScheme>

The interpolation scheme is selected from the full range of schemes in Table 6.3, both
general and convection-specific. The choice critically determines numerical behaviour as
described in Table 6.7. The syntax here for specifying convection-specific interpolation
schemes does not include the flux as it is already known for the particular term, i.e. for
div(phi,U), we know the flux is phi so specifying it in the interpolation scheme would
only invite an inconsistency. Specification of upwind interpolation in our example would
therefore be:

div(phi,U) Gauss upwind;

Scheme Numerical behaviour
linear Second order, unbounded
skewLinear Second order, (more) unbounded, skewness correction
cubicCorrected Fourth order, unbounded
upwind First order, bounded
linearUpwind First/second order, bounded
QUICK First/second order, bounded
TVD schemes First/second order, bounded
SFCD Second order, bounded
NVD schemes First/second order, bounded

Table 6.7: Behaviour of interpolation schemes used in divSchemes.

6.2.6 Time schemes

The first time derivative (∂/∂t) terms are specified in the ddtSchemes sub-dictionary. The
discretisation scheme for each term can be selected from those listed in Table 6.8.

There is an off-centering coefficient ψ with the CrankNicholson scheme that blends
it with the Euler scheme. A coefficient of ψ = 1 corresponds to pure CrankNicholson

and and ψ = 0 corresponds to pure Euler. The blending coefficient can help to improve
stability in cases where pure CrankNicholson are unstable.

Scheme Description
Euler First order, bounded, implicit
localEuler Local-time step, first order, bounded, implicit
CrankNicholson ψ Second order, bounded, implicit
backward Second order, implicit
steadyState Does not solve for time derivatives

Table 6.8: Discretisation schemes available in ddtSchemes.

When specifying a time scheme it must be noted that an application designed for
transient problems will not necessarily run as steady-state and visa versa. For example
the solution will not converge if steadyState is specified when running icoFoam, the
transient, laminar incompressible flow code; rather, simpleFoam should be used for steady-
state, incompressible flow.
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Any second time derivative (∂2/∂t2) terms are specified in the d2dt2Schemes sub-
dictionary. Only the Euler scheme is available for d2dt2Schemes.

6.3 Solution and algorithm control

The equation solvers, tolerances and algorithms are controlled from the fvSolution dic-
tionary in the system directory. Below is an example set of entries from the fvSolution
dictionary required for the icoFoam solver.

17

18 solvers
19 {
20 p
21 {
22 solver PCG;
23 preconditioner DIC;
24 tolerance 1e-06;
25 relTol 0.05;
26 }
27

28 pFinal
29 {
30 $p;
31 relTol 0;
32 }
33

34 U
35 {
36 solver smoothSolver;
37 smoother symGaussSeidel;
38 tolerance 1e-05;
39 relTol 0;
40 }
41 }
42

43 PISO
44 {
45 nCorrectors 2;
46 nNonOrthogonalCorrectors 0;
47 pRefCell 0;
48 pRefValue 0;
49 }
50

51

52 // ************************************************************************* //

fvSolution contains a set of subdictionaries that are specific to the solver being run. How-
ever, there is a small set of standard subdictionaries that cover most of those used by
the standard solvers. These subdictionaries include solvers, relaxationFactors, PISO and
SIMPLE which are described in the remainder of this section.

6.3.1 Linear solver control

The first sub-dictionary in our example, and one that appears in all solver applications,
is solvers. It specifies each linear-solver that is used for each discretised equation; it
is emphasised that the term linear-solver refers to the method of number-crunching to
solve the set of linear equations, as opposed to application solver which describes the set
of equations and algorithms to solve a particular problem. The term ‘linear-solver’ is
abbreviated to ‘solver’ in much of the following discussion; we hope the context of the
term avoids any ambiguity.

The syntax for each entry within solvers uses a keyword that is the word relating to the
variable being solved in the particular equation. For example, icoFoam solves equations
for velocity U and pressure p, hence the entries for U and p. The keyword is followed
by a dictionary containing the type of solver and the parameters that the solver uses.
The solver is selected through the solver keyword from the choice in OpenFOAM, listed
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in Table 6.9. The parameters, including tolerance, relTol, preconditioner, etc. are
described in following sections.

Solver Keyword
Preconditioned (bi-)conjugate gradient PCG/PBiCG†
Solver using a smoother smoothSolver

Generalised geometric-algebraic multi-grid GAMG

Diagonal solver for explicit systems diagonal

†PCG for symmetric matrices, PBiCG for asymmetric

Table 6.9: Linear solvers.

The solvers distinguish between symmetric matrices and asymmetric matrices. The
symmetry of the matrix depends on the structure of the equation being solved and, while
the user may be able to determine this, it is not essential since OpenFOAM will produce
an error message to advise the user if an inappropriate solver has been selected, e.g.

--> FOAM FATAL IO ERROR : Unknown asymmetric matrix solver PCG

Valid asymmetric matrix solvers are :

3

(

PBiCG

smoothSolver

GAMG

)

6.3.1.1 Solution tolerances

The sparse matrix solvers are iterative, i.e. they are based on reducing the equation
residual over a succession of solutions. The residual is ostensibly a measure of the error
in the solution so that the smaller it is, the more accurate the solution. More precisely,
the residual is evaluated by substituting the current solution into the equation and taking
the magnitude of the difference between the left and right hand sides; it is also normalised
in to make it independent of the scale of problem being analysed.

Before solving an equation for a particular field, the initial residual is evaluated based
on the current values of the field. After each solver iteration the residual is re-evaluated.
The solver stops if either of the following conditions are reached:

• the residual falls below the solver tolerance, tolerance;

• the ratio of current to initial residuals falls below the solver relative tolerance,
relTol;

• the number of iterations exceeds a maximum number of iterations , maxIter;

The solver tolerance should represent the level at which the residual is small enough
that the solution can be deemed sufficiently accurate. The solver relative tolerance limits
the relative improvement from initial to final solution. In transient simulations, it is usual
to set the solver relative tolerance to 0 to force the solution to converge to the solver
tolerance in each time step. The tolerances, tolerance and relTol must be specified in
the dictionaries for all solvers; maxIter is optional.
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6.3.1.2 Preconditioned conjugate gradient solvers

There are a range of options for preconditioning of matrices in the conjugate gradient
solvers, represented by the preconditioner keyword in the solver dictionary. The pre-
conditioners are listed in Table 6.10.

Preconditioner Keyword
Diagonal incomplete-Cholesky (symmetric) DIC

Faster diagonal incomplete-Cholesky (DIC with caching) FDIC

Diagonal incomplete-LU (asymmetric) DILU

Diagonal diagonal

Geometric-algebraic multi-grid GAMG

No preconditioning none

Table 6.10: Preconditioner options.

6.3.1.3 Smooth solvers

The solvers that use a smoother require the smoother to be specified. The smoother
options are listed in Table 6.11. Generally GaussSeidel is the most reliable option, but for
bad matrices DIC can offer better convergence. In some cases, additional post-smoothing
using GaussSeidel is further beneficial, i.e. the method denoted as DICGaussSeidel

Smoother Keyword
Gauss-Seidel GaussSeidel

Diagonal incomplete-Cholesky (symmetric) DIC

Diagonal incomplete-Cholesky with Gauss-Seidel (symmetric) DICGaussSeidel

Table 6.11: Smoother options.

The user must also specify the number of sweeps, by the nSweeps keyword, before the
residual is recalculated, following the tolerance parameters.

6.3.1.4 Geometric-algebraic multi-grid solvers

The generalised method of geometric-algebraic multi-grid (GAMG) uses the principle of:
generating a quick solution on a mesh with a small number of cells; mapping this solution
onto a finer mesh; using it as an initial guess to obtain an accurate solution on the fine
mesh. GAMG is faster than standard methods when the increase in speed by solving first
on coarser meshes outweighs the additional costs of mesh refinement and mapping of field
data. In practice, GAMG starts with the mesh specified by the user and coarsens/refines
the mesh in stages. The user is only required to specify an approximate mesh size at the
most coarse level in terms of the number of cells nCoarsestCells.

The agglomeration of cells is performed by the algorithm specified by the agglomerator
keyword. Presently we recommend the faceAreaPair method. It is worth noting there is
an MGridGen option that requires an additional entry specifying the shared object library
for MGridGen:

geometricGamgAgglomerationLibs ("libMGridGenGamgAgglomeration.so");
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In the experience of OpenCFD, the MGridGen method offers no obvious benefit over the
faceAreaPair method. For all methods, agglomeration can be optionally cached by the
cacheAgglomeration switch.

Smoothing is specified by the smoother as described in section 6.3.1.3. The number
of sweeps used by the smoother at different levels of mesh density are specified by the
nPreSweeps, nPostSweeps and nFinestSweeps keywords. The nPreSweeps entry is used
as the algorithm is coarsening the mesh, nPostSweeps is used as the algorithm is refining,
and nFinestSweeps is used when the solution is at its finest level.

The mergeLevels keyword controls the speed at which coarsening or refinement levels
is performed. It is often best to do so only at one level at a time, i.e. set mergeLevels
1. In some cases, particularly for simple meshes, the solution can be safely speeded up
by coarsening/refining two levels at a time, i.e. setting mergeLevels 2.

6.3.2 Solution under-relaxation

A second sub-dictionary of fvSolution that is often used in OpenFOAM is relaxationFactors
which controls under-relaxation, a technique used for improving stability of a computa-
tion, particularly in solving steady-state problems. Under-relaxation works by limiting
the amount which a variable changes from one iteration to the next, either by modifying
the solution matrix and source prior to solving for a field or by modifying the field di-
rectly. An under-relaxation factor α, 0 < α ≤ 1 specifies the amount of under-relaxation,
ranging from none at all for α = 1 and increasing in strength as α → 0. The limiting case
where α = 0 represents a solution which does not change at all with successive iterations.
An optimum choice of α is one that is small enough to ensure stable computation but
large enough to move the iterative process forward quickly; values of α as high as 0.9
can ensure stability in some cases and anything much below, say, 0.2 are prohibitively
restrictive in slowing the iterative process.

OpenFOAM includes two variants of the SIMPLE algorithm, standard SIMPLE and
its consistent formulation, SIMPLEC. By default SIMPLE is used. To use SIMPLEC,
the switch

consistent yes;

must be set in the SIMPLE subdirectory of the fvSolution dictionary The SIMPLEC for-
mulation for the pressure-velocity coupling method needs only a small amount of under-
relaxation for velocity and other transport equations. There is no need to use any relax-
ation on pressure. This results typically in more robust solution and faster convergence.

The user can specify the relaxation factor for a particular field by specifying first the
word associated with the field, then the factor. The user can view the relaxation factors
used in a tutorial example of simpleFoam for incompressible, laminar, steady-state flows.

17

18 solvers
19 {
20 p
21 {
22 solver GAMG;
23 tolerance 1e-06;
24 relTol 0.1;
25 smoother GaussSeidel;
26 nPreSweeps 0;
27 nPostSweeps 2;
28 cacheAgglomeration on;
29 agglomerator faceAreaPair;
30 nCellsInCoarsestLevel 10;
31 mergeLevels 1;
32 }
33
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34 "(U|k|epsilon|omega|f|v2)"
35 {
36 solver smoothSolver;
37 smoother symGaussSeidel;
38 tolerance 1e-05;
39 relTol 0.1;
40 }
41 }
42

43 SIMPLE
44 {
45 nNonOrthogonalCorrectors 0;
46 consistent yes;
47

48 residualControl
49 {
50 p 1e-2;
51 U 1e-3;
52 "(k|epsilon|omega|f|v2)" 1e-3;
53 }
54 }
55

56 relaxationFactors
57 {
58 equations
59 {
60 U 0.9; // 0.9 is more stable but 0.95 more convergent
61 ".*" 0.9; // 0.9 is more stable but 0.95 more convergent
62 }
63 }
64

65

66 // ************************************************************************* //

6.3.3 PISO and SIMPLE algorithms

Most fluid dynamics solver applications in OpenFOAM use the pressure-implicit split-
operator (PISO) or semi-implicit method for pressure-linked equations (SIMPLE) algo-
rithms. These algorithms are iterative procedures for solving equations for velocity and
pressure, PISO being used for transient problems and SIMPLE for steady-state.

Both algorithms are based on evaluating some initial solutions and then correcting
them. SIMPLE only makes 1 correction whereas PISO requires more than 1, but typically
not more than 4. The user must therefore specify the number of correctors in the PISO
dictionary by the nCorrectors keyword as shown in the example on page U-82.

An additional correction to account for mesh non-orthogonality is available in both
SIMPLE and PISO in the standard OpenFOAM solver applications. A mesh is orthogonal
if, for each face within it, the face normal is parallel to the vector between the centres of
the cells that the face connects, e.g. a mesh of hexahedral cells whose faces are aligned
with a Cartesian coordinate system. The number of non-orthogonal correctors is specified
by the nNonOrthogonalCorrectors keyword as shown in the examples above and on
page U-82. The number of non-orthogonal correctors should correspond to the mesh for
the case being solved, i.e. 0 for an orthogonal mesh and increasing with the degree of
non-orthogonality up to, say, 20 for the most non-orthogonal meshes.

6.3.3.1 Pressure referencing

In a closed incompressible system, pressure is relative: it is the pressure range that matters
not the absolute values. In these cases, the solver sets a reference level of pRefValue in
cell pRefCell where p is the name of the pressure solution variable. Where the pressure
is p rgh, the names are p rhgRefValue and p rhgRefCell respectively. These entries are
generally stored in the PISO/SIMPLE sub-dictionary and are used by those solvers that
require them when the case demands it. If omitted, the solver will not run, but give a
message to alert the user to the problem.
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6.3.4 Other parameters

The fvSolutions dictionaries in the majority of standard OpenFOAM solver applications
contain no other entries than those described so far in this section. However, in general
the fvSolution dictionary may contain any parameters to control the solvers, algorithms,
or in fact anything. For a given solver, the user can look at the source code to find the
parameters required. Ultimately, if any parameter or sub-dictionary is missing when an
solver is run, it will terminate, printing a detailed error message. The user can then add
missing parameters accordingly.

6.4 Monitoring and managing jobs

This section is concerned primarily with successful running of OpenFOAM jobs and ex-
tends on the basic execution of solvers described in section 3.1. When a solver is executed,
it reports the status of equation solution to standard output, i.e. the screen, if the level
debug switch is set to 1 or 2 (default) in DebugSwitches in the $WM PROJECT DIR/etc/-
controlDict file. An example from the beginning of the solution of the cavity tutorial is
shown below where it can be seen that, for each equation that is solved, a report line is
written with the solver name, the variable that is solved, its initial and final residuals and
number of iterations.

Starting time loop

Time = 0.005

Max Courant Number = 0

BICCG: Solving for Ux, Initial residual = 1, Final residual = 2.96338e-06, No Iterations 8

ICCG: Solving for p, Initial residual = 1, Final residual = 4.9336e-07, No Iterations 35

time step continuity errors : sum local = 3.29376e-09, global = -6.41065e-20, cumulative = -6.41065e-20

ICCG: Solving for p, Initial residual = 0.47484, Final residual = 5.41068e-07, No Iterations 34

time step continuity errors : sum local = 6.60947e-09, global = -6.22619e-19, cumulative = -6.86725e-19

ExecutionTime = 0.14 s

Time = 0.01

Max Courant Number = 0.585722

BICCG: Solving for Ux, Initial residual = 0.148584, Final residual = 7.15711e-06, No Iterations 6

BICCG: Solving for Uy, Initial residual = 0.256618, Final residual = 8.94127e-06, No Iterations 6

ICCG: Solving for p, Initial residual = 0.37146, Final residual = 6.67464e-07, No Iterations 33

time step continuity errors : sum local = 6.34431e-09, global = 1.20603e-19, cumulative = -5.66122e-19

ICCG: Solving for p, Initial residual = 0.271556, Final residual = 3.69316e-07, No Iterations 33

time step continuity errors : sum local = 3.96176e-09, global = 6.9814e-20, cumulative = -4.96308e-19

ExecutionTime = 0.16 s

Time = 0.015

Max Courant Number = 0.758267

BICCG: Solving for Ux, Initial residual = 0.0448679, Final residual = 2.42301e-06, No Iterations 6

BICCG: Solving for Uy, Initial residual = 0.0782042, Final residual = 1.47009e-06, No Iterations 7

ICCG: Solving for p, Initial residual = 0.107474, Final residual = 4.8362e-07, No Iterations 32

time step continuity errors : sum local = 3.99028e-09, global = -5.69762e-19, cumulative = -1.06607e-18

ICCG: Solving for p, Initial residual = 0.0806771, Final residual = 9.47171e-07, No Iterations 31

time step continuity errors : sum local = 7.92176e-09, global = 1.07533e-19, cumulative = -9.58537e-19

ExecutionTime = 0.19 s

6.4.1 The foamJob script for running jobs

The user may be happy to monitor the residuals, iterations, Courant number etc. as
report data passes across the screen. Alternatively, the user can redirect the report to a
log file which will improve the speed of the computation. The foamJob script provides
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useful options for this purpose with the following executing the specified <solver> as a
background process and redirecting the output to a file named log:

foamJob <solver>

For further options the user should execute foamJob -help. The user may monitor the
log file whenever they wish, using the UNIXtail command, typically with the -f ‘follow’
option which appends the new data as the log file grows:

tail -f log

6.4.2 The foamLog script for monitoring jobs

There are limitations to monitoring a job by reading the log file, in particular it is difficult
to extract trends over a long period of time. The foamLog script is therefore provided to
extract data of residuals, iterations, Courant number etc. from a log file and present it in
a set of files that can be plotted graphically. The script is executed by:

foamLog <logFile>

The files are stored in a subdirectory of the case directory named logs. Each file has
the name <var> <subIter> where <var> is the name of the variable specified in the log
file and <subIter> is the iteration number within the time step. Those variables that
are solved for, the initial residual takes the variable name <var> and final residual takes
<var>FinalRes. By default, the files are presented in two-column format of time and the
extracted values.

For example, in the cavity tutorial we may wish to observe the initial residual of the
Ux equation to see whether the solution is converging to a steady-state. In that case, we
would plot the data from the logs/Ux 0 file as shown in Figure 6.1. It can be seen here
that the residual falls monotonically until it reaches the convergence tolerance of 10−5.

Time [s]

U
x
0

0.180.160.140.120.100.080.060.040.020.00

1e+00

1e-01

1e-02

1e-03

1e-04

1e-05

Figure 6.1: Initial residual of Ux in the cavity tutorial

foamLog generates files for everything it feasibly can from the log file. In the cavity
tutorial example, this includes:
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• the Courant number, Courant 0;

• Ux equation initial and final residuals, Ux 0 and UxFinalRes 0, and iterations,
UxIters 0 (and equivalent Uy data);

• cumulative, global and local continuity errors after each of the 2 p equations,
contCumulative 0, contGlobal 0, contLocal 0 and contCumulative 1, contGlobal 1,
contLocal 1;

• residuals and iterations from the 2 p equations p 0, pFinalRes 0, pIters 0 and
p 1, pFinalRes 1, pIters 1;

• and execution time, executionTime.
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Chapter 7

Post-processing

This chapter describes options for post-processing with OpenFOAM. OpenFOAM is sup-
plied with a post-processing utility paraFoam that uses ParaView, an open source visuali-
sation application described in section 7.1.

Other methods of post-processing using third party products are offered, including
EnSight, Fieldview and the post-processing supplied with Fluent.

7.1 paraFoam

The main post-processing tool provided with OpenFOAM is a reader module to run
with ParaView, an open-source, visualization application. The module is compiled into 2
libraries, PV4FoamReader and vtkPV4Foam using version 4.4.0 of ParaView supplied with
the OpenFOAM release (PV3FoamReader and vtkPV3Foam in ParaView version 3.x). It
is recommended that this version of ParaView is used, although it is possible that the
latest binary release of the software will run adequately. Further details about ParaView
can be found at http://www.paraview.org and further documentation is available at
http://www.kitware.com/products/books/paraview.html.

ParaView uses the Visualisation Toolkit (VTK) as its data processing and rendering
engine and can therefore read any data in VTK format. OpenFOAM includes the foam-
ToVTK utility to convert data from its native format to VTK format, which means that
any VTK-based graphics tools can be used to post-process OpenFOAM cases. This pro-
vides an alternative means for using ParaView with OpenFOAM. For users who wish
to experiment with advanced, parallel visualisation, there is also the free VisIt software,
available at http://www.llnl.gov/visit.

In summary, we recommend the reader module for ParaView as the primary post-
processing tool for OpenFOAM. Alternatively OpenFOAM data can be converted into
VTK format to be read by ParaView or any other VTK -based graphics tools.

7.1.1 Overview of paraFoam

paraFoam is strictly a script that launches ParaView using the reader module supplied
with OpenFOAM. It is executed like any of the OpenFOAM utilities either by the single
command from within the case directory or with the -case option with the case path as
an argument, e.g.:

paraFoam -case <caseDir>

ParaView is launched and opens the window shown in Figure 7.1. The case is controlled
from the left panel, which contains the following:

http://www.paraview.org
http://www.kitware.com/products/books/paraview.html
http://www.llnl.gov/visit
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Figure 7.1: The paraFoam window

Pipeline Browser lists the modules opened in ParaView, where the selected modules are
highlighted in blue and the graphics for the given module can be enabled/disabled
by clicking the eye button alongside;

Properties panel contains the input selections for the case, such as times, regions and
fields;

Display panel controls the visual representation of the selected module, e.g. colours;

Information panel gives case statistics such as mesh geometry and size.

ParaView operates a tree-based structure in which data can be filtered from the top-
level case module to create sets of sub-modules. For example, a contour plot of, say,
pressure could be a sub-module of the case module which contains all the pressure data.
The strength of ParaView is that the user can create a number of sub-modules and display
whichever ones they feel to create the desired image or animation. For example, they
may add some solid geometry, mesh and velocity vectors, to a contour plot of pressure,
switching any of the items on and off as necessary.

The general operation of the system is based on the user making a selection and then
clicking the green Apply button in the Properties panel. The additional buttons are: the
Reset button which is used to reset the GUI if necessary; and, the Delete button that will
delete the active module.

7.1.2 The Properties panel

The Properties panel for the case module contains the settings for time step, regions and
fields. The controls are described in Figure 7.2. It is particularly worth noting that

Open∇FOAM-v1606+



7.1 paraFoam U-93

The user can select internalMesh

region and/or individual patches

read into the case module

The user can select the fields

Figure 7.2: The Properties panel for the case module

in the current reader module, data in all time directories are loaded into ParaView (in
the reader module for ParaView 4.4.0, a set of check boxes controlled the time that were
displayed). In the current reader module, the buttons in the Current Time Controls

and VCR Controls toolbars select the time data to be displayed, as shown is section 7.1.4.

As with any operation in paraFoam, the user must click Apply after making any changes
to any selections. The Apply button is highlighted in green to alert the user if changes have
been made but not accepted. This method of operation has the advantage of allowing the
user to make a number of selections before accepting them, which is particularly useful
in large cases where data processing is best kept to a minimum.

There are occasions when the case data changes on file and ParaView needs to load the
changes, e.g. when field data is written into new time directories. To load the changes,
the user should check the Update GUI button at the top of the Properties panel and then
apply the changes.

7.1.3 The Display panel

The Display panel contains the settings for visualising the data for a given case module.
The following points are particularly important:

• the data range may not be automatically updated to the max/min limits of a field,
so the user should take care to select Rescale to Data Range at appropriate intervals,
in particular after loading the initial case module;

• clicking the Edit Color Map button, brings up a window in which there are two
panels:
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Outline, surface, wireframe or points

Data interpolation method

Change image opacity

e.g. to make transluscent

View case data

Colour geometry/entity by...
Set colour map range/appearance

Geometry manipulation tools

Figure 7.3: The Display panel

1. The Color Scale panel in which the colours within the scale can be chosen. The
standard blue to red colour scale for CFD can be selected by clicking Choose
Preset and selecting Blue to Red Rainbox HSV.

2. The Color Legend panel has a toggle switch for a colour bar legend and contains
settings for the layout of the legend, e.g. font.

• the underlying mesh can be represented by selecting Wireframe in the Represent-
ation menu of the Style panel;

• the geometry, e.g. a mesh (if Wireframe is selected), can be visualised as a single
colour by selecting Solid Color from the Color By menu and specifying the colour
in the Set Ambient Color window;
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• the image can be made translucent by editing the value in the Opacity text box (1
= solid, 0 = invisible) in the Style panel.

7.1.4 The button toolbars

ParaView duplicates functionality from pull-down menus at the top of the main window
and the major panels, within the toolbars below the main pull-down menus. The displayed
toolbars can be selected from Toolbars in the main View menu. The default layout with
all toolbars is shown in Figure 7.4 with each toolbar labelled. The function of many of
the buttons is clear from their icon and, with tooltips enabled in the Help menu, the user
is given a concise description of the function of any button.

Selection Controls VCR Controls

Common Filters Camera Controls

Centre Axes Controls

Undo/Redo ControlsMain controls Current Time Controls

Active Variable Controls | Representation

Figure 7.4: Toolbars in ParaView

7.1.5 Manipulating the view

This section describes operations for setting and manipulating the view of objects in
paraFoam.

7.1.5.1 View settings

The View Settings are selected from the Editmenu, which opens a View Settings (Render
View) window with a table of 3 items: General, Lights and Annotation. The General panel
includes the following items which are often worth setting at startup:

• the background colour, where white is often a preferred choice for printed material,
is set by choosing background from the down-arrow button next to Choose Color
button, then selecting the color by clicking on the Choose Color button;

• Use parallel projection which is the usual choice for CFD, especially for 2D cases.

The Lights panel contains detailed lighting controls within the Light Kit panel. A
separate Headlight panel controls the direct lighting of the image. Checking the Headlight
button with white light colour of strength 1 seems to help produce images with strong
bright colours, e.g. with an isosurface.

The Annotation panel includes options for including annotations in the image. The
Orientation Axes feature controls an axes icon in the image window, e.g. to set the colour
of the axes labels x, y and z.
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7.1.5.2 General settings

The general Settings are selected from the Edit menu, which opens a general Options
window with General, Colors, Animations, Charts and Render View menu items.

The General panel controls some default behaviour of ParaView. In particular, there
is an Auto Accept button that enables ParaView to accept changes automatically without
clicking the green Apply button in the Properties window. For larger cases, this option is
generally not recommended: the user does not generally want the image to be re-rendered
between each of a number of changes he/she selects, but be able to apply a number of
changes to be re-rendered in their entirety once.

The Render View panel contains 3 sub-items: General, Camera and Server. The General
panel includes the level of detail (LOD) which controls the rendering of the image while it
is being manipulated, e.g. translated, resized, rotated; lowering the levels set by the sliders,
allows cases with large numbers of cells to be re-rendered quickly during manipulation.

The Camera panel includes control settings for 3D and 2D movements. This presents
the user with a map of rotation, translate and zoom controls using the mouse in combi-
nation with Shift- and Control-keys. The map can be edited to suit by the user.

7.1.6 Contour plots

A contour plot is created by selecting Contour from the Filter menu at the top menu
bar. The filter acts on a given module so that, if the module is the 3D case module itself,
the contours will be a set of 2D surfaces that represent a constant value, i.e. isosurfaces.
The Properties panel for contours contains an Isosurfaces list that the user can edit, most
conveniently by the New Range window. The chosen scalar field is selected from a pull
down menu.

7.1.6.1 Introducing a cutting plane

Very often a user will wish to create a contour plot across a plane rather than producing
isosurfaces. To do so, the user must first use the Slice filter to create the cutting plane,
on which the contours can be plotted. The Slice filter allows the user to specify a cutting
Plane, Box or Sphere in the Slice Type menu by a center and normal/radius respectively.
The user can manipulate the cutting plane like any other using the mouse.

The user can then run the Contour filter on the cut plane to generate contour lines.

7.1.7 Vector plots

Vector plots are created using the Glyph filter. The filter reads the field selected in
Vectors and offers a range of Glyph Types for which the Arrow provides a clear vector
plot images. Each glyph has a selection of graphical controls in a panel which the user
can manipulate to best effect.

The remainder of the Properties panel contains mainly the Scale Mode menu for the
glyphs. The most common options are Scale Mode are: Vector, where the glyph length
is proportional to the vector magnitude; and, Off where each glyph is the same length.
The Set Scale Factor parameter controls the base length of the glyphs.

7.1.7.1 Plotting at cell centres

Vectors are by default plotted on cell vertices but, very often, we wish to plot data at cell
centres. This is done by first applying the Cell Centers filter to the case module, and
then applying the Glyph filter to the resulting cell centre data.
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7.1.8 Streamlines

Streamlines are created by first creating tracer lines using the Stream Tracer filter. The
tracer Seed panel specifies a distribution of tracer points over a Line Source or Point
Cloud. The user can view the tracer source, e.g. the line, but it is displayed in white, so
they may need to change the background colour in order to see it.

The distance the tracer travels and the length of steps the tracer takes are specified in
the text boxes in the main Stream Tracer panel. The process of achieving desired tracer
lines is largely one of trial and error in which the tracer lines obviously appear smoother
as the step length is reduced but with the penalty of a longer calculation time.

Once the tracer lines have been created, the Tubes filter can be applied to the Tracer
module to produce high quality images. The tubes follow each tracer line and are not
strictly cylindrical but have a fixed number of sides and given radius. When the number
of sides is set above, say, 10, the tubes do however appear cylindrical, but again this adds
a computational cost.

7.1.9 Image output

The simplest way to output an image to file from ParaView is to select Save Screenshot

from the File menu. On selection, a window appears in which the user can select the
resolution for the image to save. There is a button that, when clicked, locks the aspect
ratio, so if the user changes the resolution in one direction, the resolution is adjusted in
the other direction automatically. After selecting the pixel resolution, the image can be
saved. To achieve high quality output, the user might try setting the pixel resolution to
1000 or more in the x-direction so that when the image is scaled to a typical size of a
figure in an A4 or US letter document, perhaps in a PDF document, the resolution is
sharp.

7.1.10 Animation output

To create an animation, the user should first select Save Animation from the File menu.
A dialogue window appears in which the user can specify a number of things including
the image resolution. The user should specify the resolution as required. The other
noteworthy setting is number of frames per timestep. While this would intuitively be
set to 1, it can be set to a larger number in order to introduce more frames into the
animation artificially. This technique can be particularly useful to produce a slower
animation because some movie players have limited speed control, particularly over mpeg
movies.

On clicking the Save Animation button, another window appears in which the user spec-
ifies a file name root and file format for a set of images. On clicking OK, the set of files will
be saved according to the naming convention “<fileRoot> <imageNo>.<fileExt>”,
e.g. the third image of a series with the file root “animation”, saved in jpg format would
be named “animation 0002.jpg” (<imageNo> starts at 0000).

Once the set of images are saved the user can convert them into a movie using their
software of choice. The convert utility in the ImageMagick package can do this from the
command line, e.g. by

convert animation*jpg movie.mpg

When creating an mpg movie it can be worth increasing the default quality setting, e.g.
with -quality 90%, to reduce the graininess that can occur with the default setting.
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7.2 Post-processing with Fluent

It is possible to use Fluent as a post-processor for the cases run in OpenFOAM. Two con-
verters are supplied for the purpose: foamMeshToFluent which converts the OpenFOAM
mesh into Fluent format and writes it out as a .msh file; and, foamDataToFluent con-
verts the OpenFOAM results data into a .dat file readable by Fluent. foamMeshToFluent
is executed in the usual manner. The resulting mesh is written out in a fluentInterface
subdirectory of the case directory, i.e.<caseName>/fluentInterface/<caseName>.msh

foamDataToFluent converts the OpenFOAM data results into the Fluent format. The
conversion is controlled by two files. First, the controlDict dictionary specifies startTime,
giving the set of results to be converted. If you want to convert the latest result,
startFrom can be set to latestTime. The second file which specifies the translation
is the foamDataToFluentDict dictionary, located in the constant directory. An example
foamDataToFluentDict dictionary is given below:

1 /*--------------------------------*- C++ -*----------------------------------*\
2 | ========= | |
3 | \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O peration | Version: v1606+ |
5 | \\ / A nd | Web: www.OpenFOAM.com |
6 | \\/ M anipulation | |
7 \*---------------------------------------------------------------------------*/
8 FoamFile
9 {

10 version 2.0;
11 format ascii;
12 class dictionary;
13 location "system";
14 object foamDataToFluentDict;
15 }
16 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
17

18 p 1;
19

20 U 2;
21

22 T 3;
23

24 h 4;
25

26 k 5;
27

28 epsilon 6;
29

30 alpha1 150;
31

32

33 // ************************************************************************* //

The dictionary contains entries of the form

<fieldName> <fluentUnitNumber>

The <fluentUnitNumber> is a label used by the Fluent post-processor that only recog-
nises a fixed set of fields. The basic set of <fluentUnitNumber> numbers are quoted in
Table 7.1. The dictionary must contain all the entries the user requires to post-process,
e.g. in our example we have entries for pressure p and velocity U. The list of default entries
described in Table 7.1. The user can run foamDataToFluent like any utility.

To view the results using Fluent, go to the fluentInterface subdirectory of the case
directory and start a 3 dimensional version of Fluent with

fluent 3d

The mesh and data files can be loaded in and the results visualised. The mesh is read
by selecting Read Case from the File menu. Support items should be selected to read

Open∇FOAM-v1606+



7.3 Post-processing with Fieldview U-99

Fluent name Unit number Common OpenFOAM name
PRESSURE 1 p

MOMENTUM 2 U

TEMPERATURE 3 T

ENTHALPY 4 h

TKE 5 k

TED 6 epsilon

SPECIES 7 —
G 8 —
XF RF DATA VOF 150 gamma

TOTAL PRESSURE 192 —
TOTAL TEMPERATURE 193 —

Table 7.1: Fluent unit numbers for post-processing.

certain data types, e.g. to read turbulence data for k and epsilon, the user would select
k-epsilon from the Define->Models->Viscous menu. The data can then be read by
selecting Read Data from the File menu.

A note of caution: users MUST NOT try to use an original Fluent mesh file that has
been converted to OpenFOAM format in conjunction with the OpenFOAM solution that
has been converted to Fluent format since the alignment of zone numbering cannot be
guaranteed.

7.3 Post-processing with Fieldview

OpenFOAM offers the capability for post-processing OpenFOAM cases with Fieldview.
The method involves running a post-processing utility foamToFieldview to convert case
data from OpenFOAM to Fieldview.uns file format. For a given case, foamToFieldview is
executed like any normal application. foamToFieldview creates a directory named Fieldview
in the case directory, deleting any existing Fieldview directory in the process. By default
the converter reads the data in all time directories and writes into a set of files of the
form <case> nn.uns, where nn is an incremental counter starting from 1 for the first time
directory, 2 for the second and so on. The user may specify the conversion of a single time
directory with the option -time <time>, where <time> is a time in general, scientific
or fixed format.

Fieldview provides certain functions that require information about boundary condi-
tions, e.g. drawing streamlines that uses information about wall boundaries. The con-
verter tries, wherever possible, to include this information in the converted files by default.
The user can disable the inclusion of this information by using the -noWall option in the
execution command.

The data files for Fieldview have the .uns extension as mentioned already. If the original
OpenFOAM case includes a dot ‘.’, Fieldview may have problems interpreting a set of data
files as a single case with multiple time steps.

7.4 Post-processing with EnSight

OpenFOAM offers the capability for post-processing OpenFOAM cases with EnSight,
with a choice of 2 options:
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• converting the OpenFOAM data to EnSight format with the foamToEnsight utility;

• reading the OpenFOAM data directly into EnSight using the ensight74FoamExec
module.

7.4.1 Converting data to EnSight format

The foamToEnsight utility converts data from OpenFOAM to EnSight file format. For a
given case, foamToEnsight is executed like any normal application. foamToEnsight creates
a directory named Ensight in the case directory, deleting any existing Ensight directory in

the process. The converter reads the data in all time directories and writes into a case
file and a set of data files. The case file is named EnSight Case and contains details of
the data file names. Each data file has a name of the form EnSight nn.ext, where nn is an
incremental counter starting from 1 for the first time directory, 2 for the second and so
on and ext is a file extension of the name of the field that the data refers to, as described
in the case file, e.g.T for temperature, mesh for the mesh. Once converted, the data can
be read into EnSight by the normal means:

1. from the EnSight GUI, the user should select Data (Reader) from the File menu;

2. the appropriate EnSight Case file should be highlighted in the Files box;

3. the Format selector should be set to Case, the EnSight default setting;

4. the user should click (Set) Case and Okay.

7.4.2 The ensight74FoamExec reader module

EnSight provides the capability of using a user-defined module to read data from a format
other than the standard EnSight format. OpenFOAM includes its own reader module
ensight74FoamExec that is compiled into a library named libuserd-foam. It is this library
that EnSight needs to use which means that it must be able to locate it on the filing
system as described in the following section.

7.4.2.1 Configuration of EnSight for the reader module

In order to run the EnSight reader, it is necessary to set some environment variables cor-
rectly. The settings are made in the bashrc (or cshrc) file in the $WM PROJECT DIR/etc/-
apps/ensightFoam directory. The environment variables associated with EnSight are pre-
fixed by $CEI or $ENSIGHT7 and listed in Table 7.2. With a standard user setup, only
$CEI HOME may need to be set manually, to the path of the EnSight installation.

7.4.2.2 Using the reader module

The principal difficulty in using the EnSight reader lies in the fact that EnSight expects
that a case to be defined by the contents of a particular file, rather than a directory as it
is in OpenFOAM. Therefore in following the instructions for the using the reader below,
the user should pay particular attention to the details of case selection, since EnSight does
not permit selection of a directory name.

1. from the EnSight GUI, the user should select Data (Reader) from the File menu;

2. The user should now be able to select the OpenFOAM from the Format menu; if not,
there is a problem with the configuration described above.
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Environment variable Description and options
$CEI HOME Path where EnSight is installed, eg /usr/local/ensight, added

to the system path by default
$CEI ARCH Machine architecture, from a choice of names cor-

responding to the machine directory names in
$CEI HOME/ensight74/machines; default settings include
linux 2.4 and sgi 6.5 n32

$ENSIGHT7 READER Path that EnSight searches for the user defined libuserd-foam
reader library, set by default to $FOAM LIBBIN

$ENSIGHT7 INPUT Set by default to dummy

Table 7.2: Environment variable settings for EnSight.

3. The user should find their case directory from the File Selection window, highlight
one of top 2 entries in the Directories box ending in /. or /.. and click (Set)
Geometry.

4. The path field should now contain an entry for the case. The (Set) Geometry text
box should contain a ‘/’.

5. The user may now click Okay and EnSight will begin reading the data.

6. When the data is read, a new Data Part Loader window will appear, asking which
part(s) are to be read. The user should select Load all.

7. When the mesh is displayed in the EnSight window the user should close the Data
Part Loader window, since some features of EnSight will not work with this window
open.

7.5 Sampling data

OpenFOAM provides the sample utility to sample field data, either through a 1D line
for plotting on graphs or a 2D plane for displaying as isosurface images. The sampling
locations are specified for a case through a sampleDict dictionary in the case system
directory. The data can be written in a range of formats including well-known graphing
packages such as Grace/xmgr, gnuplot and jPlot.

The sampleDict dictionary can be generated by copying an example sampleDict from
the sample source code directory at $FOAM UTILITIES/postProcessing/sampling/sample.
The plateHole tutorial case in the $FOAM TUTORIALS/solidDisplacementFoam directory
also contains an example for 1D line sampling:

17

18 interpolationScheme cellPoint;
19

20 setFormat raw;
21

22 sets
23 (
24 leftPatch
25 {
26 type uniform;
27 axis y;
28 start (0 0.5 0.25);
29 end (0 2 0.25);
30 nPoints 100;
31 }
32 );
33
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34 fields (sigmaEq);
35

36

37 // ************************************************************************* //

Keyword Options Description
interpolation-

Scheme

cell

cellPoint

cellPointFace

pointMVC

cellPatchConstrained

Cell-centre value assumed constant over cell
Linear weighted interpolation using cell values
Mixed linear weighted / cell-face interpolation
Point values only (Mean Value Coordinates)
As cell but uses face value on boundary faces

setFormat raw

gnuplot

xmgr

jplot

vtk

ensight

csv

Raw ASCII data in columns
Data in gnuplot format
Data in Grace/xmgr format
Data in jPlot format
Data in VTK format
Data in EnSight format
Data in CSV format

surfaceFormat null

foamFile

dx

vtk

raw

stl

ensight

boundaryData

starcd

nastran

Suppresses output
points, faces, values file
DX scalar or vector format
VTK ASCII format
xyz values for use with e.g.gnuplotsplot
ASCII STL; just surface, no values
EnSight surface format
A form that can be used with timeVaryingMapped boundary
Nastran surface format

fields List of fields to be sampled, e.g. for velocity U:
U Writes all components of U

sets List of 1D sets subdictionaries — see Table 7.4
surfaces List of 2D surfaces subdictionaries — see Table 7.5 and Table 7.6

Table 7.3: keyword entries for sampleDict.

The dictionary contains the following entries:

interpolationScheme the scheme of data interpolation;

sets the locations within the domain that the fields are line-sampled (1D).

surfaces the locations within the domain that the fields are surface-sampled (2D).

setFormat the format of line data output;

surfaceFormat the format of surface data output;

fields the fields to be sampled;

The interpolationScheme includes cellPoint and cellPointFace options in which
each polyhedral cell is decomposed into tetrahedra and the sample values are interpolated
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from values at the tetrahedra vertices. With cellPoint, the tetrahedra vertices include
the polyhedron cell centre and 3 face vertices. The vertex coincident with the cell centre
inherits the cell centre field value and the other vertices take values interpolated from cell
centres. With cellPointFace, one of the tetrahedra vertices is also coincident with a
face centre, which inherits field values by conventional interpolation schemes using values
at the centres of cells that the face intersects.

The setFormat entry for line sampling includes a raw data format and formats for
gnuplot, Grace/xmgr and jPlot graph drawing packages. The data are written into a sets
directory within the case directory. The directory is split into a set of time directories and
the data files are contained therein. Each data file is given a name containing the field
name, the sample set name, and an extension relating to the output format, including
.xy for raw data, .agr for Grace/xmgr and .dat for jPlot. The gnuplot format has the data
in raw form with an additional commands file, with .gplt extension, for generating the
graph. Note that any existing sets directory is deleted when sample is run.

The surfaceFormat entry for surface sampling includes a raw data format and formats
for gnuplot, Grace/xmgr and jPlot graph drawing packages. The data are written into a
surfaces directory within the case directory. The directory is split into time directories
and files are written much as with line sampling.

The fields list contains the fields that the user wishes to sample. The sample utility
can parse the following restricted set of functions to enable the user to manipulate vector
and tensor fields, e.g. for U:

U.component(n) writes the nth component of the vector/tensor, n = 0, 1 . . .;

mag(U) writes the magnitude of the vector/tensor.

The sets list contains sub-dictionaries of locations where the data is to be sampled.
The sub-dictionary is named according to the name of the set and contains a set of entries,
also listed in Table 7.4, that describes the locations where the data is to be sampled. For
example, a uniform sampling provides a uniform distribution of nPoints sample locations
along a line specified by a start and end point. All sample sets are also given: a type;
and, means of specifying the length ordinate on a graph by the axis keyword.

The surfaces list contains sub-dictionaries of locations where the data is to be sam-
pled. The sub-dictionary is named according to the name of the surface and contains a set
of entries beginning with the type: either a plane, defined by point and normal direction,
with additional sub-dictionary entries specified in Table 7.5; or, a patch, coinciding with
an existing boundary patch, with additional sub-dictionary entries specified in Table 7.6.
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Required entries

Sampling type Sample locations n
a
m
e

a
x
i
s

s
t
a
r
t

e
n
d

n
P
o
i
n
t
s

p
o
i
n
t
s

uniform Uniformly distributed points on a line • • • • •
face Intersection of specified line and cell faces • • • •
midPoint Midpoint between line-face intersections • • • •
midPointAndFace Combination of midPoint and face • • • •
cloud Specified points • • •
patchCloud Sample nearest points on selected patches • • •
patchSeed Randomly sample on selected patches • • •
polyLine Specified points (uses particle tracking) • • •
triSurfaceMeshPointSet Sample points on a triangulated surface • • •

Entries Description Options
type Sampling type see list above
axis Output of sample location x x ordinate

y y ordinate
z z ordinate
xyz xyz coordinates
distance distance from point 0

start Start point of sample line e.g.(0.0 0.0 0.0)

end End point of sample line e.g.(0.0 2.0 0.0)

nPoints Number of sampling points e.g.200

points List of sampling points

Table 7.4: Entries within sets sub-dictionaries.

Keyword Description Options
basePoint Point on plane e.g.(0 0 0)

normalVector Normal vector to plane e.g.(1 0 0)

interpolate Interpolate data? true/false
triangulate Triangulate surface? (optional) true/false

Table 7.5: Entries for a plane in surfaces sub-dictionaries.

Keyword Description Options
patchName Name of patch e.g.movingWall

interpolate Interpolate data? true/false
triangulate Triangulate surface? (optional) true/false

Table 7.6: Entries for a patch in surfaces sub-dictionaries.
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Reference

A.1 Standard solvers

OpenFOAM does not have a generic solver applicable to all cases. Instead, users must
choose a specific solver for a class of problems to solve. The solvers with the OpenFOAM
distribution are in the $FOAM SOLVERS directory, reached quickly by typing app at the
command line. This directory is further subdivided into several directories by category
of continuum mechanics, e.g. incompressible flow, heat transfer, multiphase, lagrangian,
combustion. Each solver is given a name that is descriptive. For some, mainly incom-
pressible solvers, it reflects the algorithm, e.g.simpleFoam using the SIMPLE algorithm,
pimpleFoam using the PIMPLE algorithm. More often the name reflects the physical
models or type of problem it is designed to solve, e.g.shallowWaterFoam, sonicFoam, cavi-
tatingFoam. The current list of solvers distributed with OpenFOAM is given in Table A.1.

‘Basic’ CFD codes
laplacianFoam Laplace equation solver for a scalar quantity

potentialFoam Potential flow solver

scalarTransportFoam Passive scalar transport equation solver

Incompressible flow
adjointShape-
OptimizationFoam

Steady-state solver for incompressible, turbulent flow of non-
Newtonian fluids with optimisation of duct shape by applying
”blockage” in regions causing pressure loss as estimated using
an adjoint formulation

boundaryFoam Steady-state solver for incompressible, 1D turbulent flow, typ-
ically to generate boundary layer conditions at an inlet

icoFoam Transient solver for incompressible, laminar flow of Newtonian
fluids

nonNewtonianIcoFoam Transient solver for incompressible, laminar flow of non-
Newtonian fluids
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pimpleFoam Large time-step transient solver for incompressible, flow using
the PIMPLE (merged PISO-SIMPLE) algorithm

pimpleDyMFoam Transient solver for incompressible, flow of Newtonian flu-
ids on a moving mesh using the PIMPLE (merged PISO-
SIMPLE) algorithm

SRFPimpleFoam Large time-step transient solver for incompressible, flow in
a single rotating frame using the PIMPLE (merged PISO-
SIMPLE) algorithm

pisoFoam Transient solver for incompressible flow

shallowWaterFoam Transient solver for inviscid shallow-water equations with ro-
tation

simpleFoam Steady-state solver for incompressible flows with turbulence
modelling

porousSimpleFoam Steady-state solver for incompressible, turbulent flow with im-
plicit or explicit porosity treatment and support for multiple
reference frames (MRF)

SRFSimpleFoam Steady-state solver for incompressible, turbulent flow of non-
Newtonian fluids in a single rotating frame

Compressible flow
rhoCentralFoam Density-based compressible flow solver based on central-

upwind schemes of Kurganov and Tadmor

rhoCentralDyMFoam Density-based compressible flow solver based on central-
upwind schemes of Kurganov and Tadmor with support for
mesh-motion and topology changes

rhoPimpleFoam Transient solver for laminar or turbulent flow of compressible
fluids for HVAC and similar applications

rhoPimpleDyMFoam Transient solver for laminar or turbulent flow of compressible
fluids for HVAC and similar applications

rhoSimpleFoam Steady-state SIMPLE solver for laminar or turbulent RANS
flow of compressible fluids

rhoPorousSimpleFoam Steady-state solver for turbulent flow of compressible fluids
with RANS turbulence modelling, implicit or explicit porosity
treatment and run-time selectable finite volume sources

Continued on next page
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sonicFoam Transient solver for trans-sonic/supersonic, laminar or turbu-
lent flow of a compressible gas

sonicDyMFoam Transient solver for trans-sonic/supersonic, laminar or turbu-
lent flow of a compressible gas with mesh motion

sonicLiquidFoam Transient solver for trans-sonic/supersonic, laminar flow of a
compressible liquid

Multiphase flow
cavitatingFoam Transient cavitation code based on the homogeneous equi-

librium model from which the compressibility of the liq-
uid/vapour ”mixture” is obtained

cavitatingDyMFoam Transient cavitation code based on the homogeneous equi-
librium model from which the compressibility of the liq-
uid/vapour ”mixture” is obtained

compressibleInterFoam Solver for 2 compressible, non-isothermal immiscible fluids
using a VOF (volume of fluid) phase-fraction based interface
capturing approach

compressibleInterDy-
MFoam

Solver for 2 compressible, non-isothermal immiscible fluids us-
ing a VOF (volume of fluid) phase-fraction based interface
capturing approach, with optional mesh motion and mesh
topology changes including adaptive re-meshing

compressible-
MultiphaseInterFoam

Solver for n compressible, non-isothermal immiscible fluids
using a VOF (volume of fluid) phase-fraction based interface
capturing approach

driftFluxFoam Solver for 2 incompressible fluids using the mixture approach
with the drift-flux approximation for relative motion of the
phases

interFoam Solver for 2 incompressible, isothermal immiscible fluids us-
ing a VOF (volume of fluid) phase-fraction based interface
capturing approach

interDyMFoam Solver for 2 incompressible, isothermal immiscible fluids using
a VOF (volume of fluid) phase-fraction based interface captur-
ing approach, with optional mesh motion and mesh topology
changes including adaptive re-meshing

interMixingFoam Solver for 3 incompressible fluids, two of which are miscible,
using a VOF method to capture the interface

Continued on next page
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interPhaseChange-
Foam

Solver for 2 incompressible, isothermal immiscible fluids with
phase-change (e.g. cavitation). Uses a VOF (volume of fluid)
phase-fraction based interface capturing approach

interPhaseChangeDy-
MFoam

Solver for 2 incompressible, isothermal immiscible fluids with
phase-change (e.g. cavitation). Uses a VOF (volume of fluid)
phase-fraction based interface capturing approach, with op-
tional mesh motion and mesh topology changes including
adaptive re-meshing

MPPICInterFoam Solver for 2 incompressible, isothermal immiscible fluids us-
ing a VOF (volume of fluid) phase-fraction based interface
capturing approach. The momentum and other fluid proper-
ties are of the ”mixture” and a single momentum equation is
solved

multiphaseEulerFoam Solver for a system of many compressible fluid phases includ-
ing heat-transfer

multiphaseInterFoam Solver for n incompressible fluids which captures the interfaces
and includes surface-tension and contact-angle effects for each
phase

multiphaseInterDy-
MFoam

Solver for n incompressible fluids which captures the interfaces
and includes surface-tension and contact-angle effects for each
phase

potentialFreeSurface-
Foam

Incompressible Navier-Stokes solver with inclusion of a wave
height field to enable single-phase free-surface approximations

potentialFreeSurface-
DyMFoam

Incompressible Navier-Stokes solver with inclusion of a wave
height field to enable single-phase free-surface approximations

reactingMultiphase-
EulerFoam

Solver for a system of any number of compressible fluid phases
with a common pressure, but otherwise separate properties.
The type of phase model is run time selectable and can option-
ally represent multiple species and in-phase reactions. The
phase system is also run time selectable and can optionally
represent different types of momentun, heat and mass trans-
fer

reactingTwoPhase-
EulerFoam

Solver for a system of 2 compressible fluid phases with a com-
mon pressure, but otherwise separate properties. The type of
phase model is run time selectable and can optionally repre-
sent multiple species and in-phase reactions. The phase sys-
tem is also run time selectable and can optionally represent
different types of momentun, heat and mass transfer

twoLiquidMixingFoam Solver for mixing 2 incompressible fluids
Continued on next page
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twoPhaseEulerFoam Solver for a system of 2 compressible fluid phases with one
phase dispersed, e.g. gas bubbles in a liquid including heat-
transfer

Direct numerical simulation (DNS)
dnsFoam Direct numerical simulation solver for boxes of isotropic tur-

bulence

Combustion
chemFoam Solver for chemistry problems designed for use on single cell

cases to provide comparison against other chemistry solvers

coldEngineFoam Solver for cold-flow in internal combustion engines

engineFoam Solver for internal combustion engines

fireFoam Transient PIMPLE solver for fires and turbulent diffusion
flames with reacting Lagrangian parcels, surface film and py-
rolysis modelling

PDRFoam Solver for compressible premixed/partially-premixed combus-
tion with turbulence modelling

reactingFoam Solver for combustion with chemical reactions

rhoReactingBuoyant-
Foam

Solver for combustion with chemical reactions using density
based thermodynamics package, using enahanced buoyancy
treatment

rhoReactingFoam Solver for combustion with chemical reactions using density
based thermodynamics package

XiFoam Solver for compressible premixed/partially-premixed combus-
tion with turbulence modelling

XiDyMFoam Solver for compressible premixed/partially-premixed combus-
tion with turbulence modelling

Heat transfer and buoyancy-driven flows
buoyantBoussinesq-
PimpleFoam

Transient solver for buoyant, turbulent flow of incompressible
fluids

buoyantBoussinesq-
SimpleFoam

Steady-state solver for buoyant, turbulent flow of incompress-
ible fluids

Continued on next page
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buoyantPimpleFoam Transient solver for buoyant, turbulent flow of compressible
fluids for ventilation and heat-transfer

buoyantSimpleFoam Steady-state solver for buoyant, turbulent flow of compressible
fluids, including radiation, for ventilation and heat-transfer

chtMultiRegionFoam Combination of heatConductionFoam and buoyantFoam for
conjugate heat transfer between solid regions and fluid regions

chtMultiRegionSimple-
Foam

Steady-state version of chtMultiRegionFoam

thermoFoam Evolves the thermodynamics on a frozen flow field

Particle-tracking flows
coalChemistryFoam Transient PIMPLE solver for compressible, laminar or turbu-

lent flow with coal and thermodynamic parcels, and combus-
tion

DPMFoam Transient solver for the coupled transport of a single kinematic
particle cloud including the effect of the volume fraction of
particles on the continuous phase

MPPICFoam Transient solver for the coupled transport of a single kinematic
particle cloud including the effect of the volume fraction of
particles on the continuous phase. Multi-Phase Particle In
Cell (MPPIC) modeling is used to represent collisions without
resolving particle-particle interactions

icoUncoupledKinem-
aticParcelFoam

Transient solver for the passive transport of a single kinematic
particle cloud

icoUncoupledKinem-
aticParcelDyMFoam

Transient solver for the passive transport of a single kinematic
particle cloud

reactingParcelFilm-
Foam

Transient PIMPLE solver for compressible, laminar or turbu-
lent flow with reacting Lagrangian parcels, and surface film
modelling

reactingParcelFoam Transient PIMPLE solver for compressible, laminar or turbu-
lent flow with reacting multiphase Lagrangian parcels

simpleReactingParcel-
Foam

Steady state SIMPLE solver for compressible, laminar or tur-
bulent flow with reacting multiphase Lagrangian parcels, in-
cluding run-time selectable finite volume options, e.g. sources,
constraints

Continued on next page
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simpleCoalParcelFoam Steady state SIMPLE solver for laminar or turbulent flow with
coal Lagrangian parcels

sprayFoam Transient PIMPLE solver for compressible, laminar or turbu-
lent flow with spray parcels

sprayDyMFoam Transient PIMPLE solver for compressible, laminar or turbu-
lent flow with spray parcels and support for moving meshes

sprayEngineFoam Transient PIMPLE solver for compressible, laminar or turbu-
lent engine flow swith spray parcels

uncoupledKinematic-
ParcelFoam

Transient solver for the passive transport of a single kinematic
particle cloud

Molecular dynamics methods
mdEquilibrationFoam Equilibrates and/or preconditions molecular dynamics sys-

tems

mdFoam Molecular dynamics solver for fluid dynamics

Direct simulation Monte Carlo methods
dsmcFoam Direct simulation Monte Carlo (DSMC) solver for 3D, tran-

sient, multi- species flows

Electromagnetics
electrostaticFoam Solver for electrostatics

magneticFoam Solver for the magnetic field generated by permanent magnets

mhdFoam Solver for magnetohydrodynamics (MHD): incompressible,
laminar flow of a conducting fluid under the influence of a
magnetic field

Stress analysis of solids
solidDisplacement-
Foam

Transient segregated finite-volume solver of linear-elastic,
small-strain deformation of a solid body, with optional ther-
mal diffusion and thermal stresses

solidEquilibriumDis-
placementFoam

Steady-state segregated finite-volume solver of linear-elastic,
small-strain deformation of a solid body, with optional ther-
mal diffusion and thermal stresses

Continued on next page
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Finance
financialFoam Solves the Black-Scholes equation to price commodities

Table A.1: Standard library solvers.

A.2 Standard utilities

The utilities with the OpenFOAM distribution are in the $FOAM UTILITIES directory,
reached quickly by typing util at the command line. Again the names are reasonably
descriptive, e.g.ideasToFoam converts mesh data from the format written by I-DEAS to
the OpenFOAM format. The current list of utilities distributed with OpenFOAM is given
in Table A.2.

Pre-processing
applyBoundaryLayer Apply a simplified boundary-layer model to the velocity and

turbulence fields based on the 1/7th power-law

boxTurb Makes a box of turbulence which conforms to a given energy
spectrum and is divergence free

changeDictionary Utility to change dictionary entries, e.g. can be used to change
the patch type in the field and polyMesh/boundary files

createExternalCoupled-
PatchGeometry

Application to generate the patch geometry (points and faces)
for use with the externalCoupled functionObject

createZeroDirectory Creates a zero directory with fields appropriate for the chosen
solver and turbulence model. Operates on both single and
multi-region cases

dsmcInitialise Initialise a case for dsmcFoam by reading the initialisation
dictionary system/dsmcInitialise

engineSwirl Generates a swirling flow for engine calulations

faceAgglomerate Agglomerate boundary faces using the pairPatch-
Agglomeration algorithm

foamUpgradeCyclics Tool to upgrade mesh and fields for split cyclics

mapFields Maps volume fields from one mesh to another, reading and
interpolating all fields present in the time directory of both
cases

Continued on next page
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mapFieldsPar Maps volume fields from one mesh to another, reading and
interpolating all fields present in the time directory of both
cases

mdInitialise Initialises fields for a molecular dynamics (MD) simulation

setFields Set values on a selected set of cells/patchfaces through a dic-
tionary

viewFactorsGen View factors are calculated based on a face agglomeration
array (finalAgglom generated by faceAgglomerate utility)

wallFunctionTable Generates a table suitable for use by tabulated wall functions

Mesh generation
blockMesh A multi-block mesh generator

extrude2DMesh Takes 2D mesh (all faces 2 points only, no front and back
faces) and creates a 3D mesh by extruding with specified
thickness

foamyHexMesh Conformal Voronoi automatic mesh generator

foamyHexMesh-
BackgroundMesh

Writes out background mesh as constructed by foamyHex-
Mesh and constructs distanceSurface

foamyHexMesh-
SurfaceSimplify

Simplifies surfaces by resampling

foamyQuadMesh Conformal-Voronoi 2D extruding automatic mesher with grid
or read initial points and point position relaxation with op-
tional ”squarification”

snappyHexMesh Automatic split hex mesher. Refines and snaps to surface

Mesh conversion
ansysToFoam Converts an ANSYS input mesh file, exported from I-DEAS,

to OpenFOAM format

cfx4ToFoam Converts a CFX 4 mesh to OpenFOAM format

datToFoam Reads in a datToFoam mesh file and outputs a points file.
Used in conjunction with blockMesh

fluent3DMeshToFoam Converts a Fluent mesh to OpenFOAM format

Continued on next page
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fluentMeshToFoam Converts a Fluent mesh to OpenFOAM format including mul-
tiple region and region boundary handling

foamMeshToFluent Writes out the OpenFOAM mesh in Fluent mesh format

foamToStarMesh Reads an OpenFOAM mesh and writes a PROSTAR (v4)
bnd/cel/vrt format

foamToSurface Reads an OpenFOAM mesh and writes the boundaries in a
surface format

gambitToFoam Converts a GAMBIT mesh to OpenFOAM format

gmshToFoam Reads .msh file as written by Gmsh

ideasUnvToFoam I-Deas unv format mesh conversion

kivaToFoam Converts a KIVA grid to OpenFOAM format

mshToFoam Converts .msh file generated by the Adventure system

netgenNeutralToFoam Converts neutral file format as written by Netgen v4.4

ccm26ToFoam Reads CCM files as written by Prostar/ccm using ccm 2.6
(not 2.4)

plot3dToFoam Plot3d mesh (ascii/formatted format) converter

sammToFoam Converts a STAR-CD (v3) SAMMmesh to OpenFOAM format

star3ToFoam Converts a STAR-CD (v3) PROSTAR mesh into OpenFOAM
format

star4ToFoam Converts a STAR-CD (v4) PROSTAR mesh into OpenFOAM
format

tetgenToFoam Converts .ele and .node and .face files, written by tetgen

vtkUnstructuredTo-
Foam

Converts ascii .vtk (legacy format) file generated by
vtk/paraview

writeMeshObj For mesh debugging: writes mesh as three separate OBJ files
which can be viewed with e.g. javaview

Mesh manipulation
attachMesh Attach topologically detached mesh using prescribed mesh

modifiers

Continued on next page
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autoPatch Divides external faces into patches based on (user supplied)
feature angle

checkMesh Checks validity of a mesh

createBaffles Makes internal faces into boundary faces. Does not duplicate
points, unlike mergeOrSplitBaffles

createPatch Utility to create patches out of selected boundary faces. Faces
come either from existing patches or from a faceSet

deformedGeom Deforms a polyMesh using a displacement field U and a scaling
factor supplied as an argument

flattenMesh Flattens the front and back planes of a 2D cartesian mesh

insideCells Picks up cells with cell centre ’inside’ of surface. Requires
surface to be closed and singly connected

mergeMeshes Merges two meshes

mergeOrSplitBaffles Detects faces that share points (baffles). Either merge them
or duplicate the points

mirrorMesh Mirrors a mesh around a given plane

moveDynamicMesh Mesh motion and topological mesh changes utility

moveEngineMesh Solver for moving meshes for engine calculations

moveMesh Solver for moving meshes

objToVTK Read obj line (not surface!) file and convert into vtk

orientFaceZone Corrects orientation of faceZone

polyDualMesh Calculates the dual of a polyMesh. Adheres to all the feature
and patch edges

refineMesh Utility to refine cells in multiple directions

renumberMesh Renumbers the cell list in order to reduce the bandwidth,
reading and renumbering all fields from all the time directories

rotateMesh Rotates the mesh and fields from the direction n1 to direction
n2

setSet Manipulate a cell/face/point/ set or zone interactively

Continued on next page
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setsToZones Add pointZones/faceZones/cellZones to the mesh from similar
named pointSets/faceSets/cellSets

singleCellMesh Reads all fields and maps them to a mesh with all internal
faces removed (singleCellFvMesh) which gets written to re-
gion ”singleCell”

splitMesh Splits mesh by making internal faces external. Uses attach-
Detach

splitMeshRegions Splits mesh into multiple regions

stitchMesh ’Stitches’ a mesh

subsetMesh Selects a section of mesh based on a cellSet

topoSet Operates on cellSets/faceSets/pointSets through a dictionary

transformPoints Transforms the mesh points in the polyMesh directory accord-
ing to the translate, rotate and scale options

zipUpMesh Reads in a mesh with hanging vertices and zips up the cells
to guarantee that all polyhedral cells of valid shape are closed

Other mesh tools
collapseEdges Collapses short edges and combines edges that are in line

combinePatchFaces Checks for multiple patch faces on same cell and combines
them. Multiple patch faces can result from e.g. removal of
refined neighbouring cells, leaving 4 exposed faces with same
owner

modifyMesh Manipulates mesh elements

PDRMesh Mesh and field preparation utility for PDR type simulations

refineHexMesh Refines a hex mesh by 2x2x2 cell splitting

refinementLevel Tries to figure out what the refinement level is on refined
cartesian meshes. Run before snapping

refineWallLayer Utility to refine cells next to patches

removeFaces Utility to remove faces (combines cells on both sides)

selectCells Select cells in relation to surface

snappyRefineMesh Utility to refine cells near to a surface
Continued on next page
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splitCells Utility to split cells with flat faces

Post-processing
foamCalc Generic wrapper for calculating a quantity at each time

noise Utility to perform noise analysis of pressure data

Post-processing graphics
ensightFoamReader EnSight reader module

PV3FoamReader ParaView 3 reader module

PVFoamReader ParaView reader module

vtkPVReaders Misc helper methods and utilities

Post-processing data converters
foamDataToFluent Translates OpenFOAM data to Fluent format

foamToEnsight Translates OpenFOAM data to EnSight format

foamToEnsightParts Translates OpenFOAM data to Ensight format. An Ensight
part is created for each cellZone and patch

foamToGMV Translates foam output to GMV readable files

foamToTecplot360 Tecplot binary file format writer

foamToTetDualMesh Converts polyMesh results to tetDualMesh

foamToVTK Legacy VTK file format writer

smapToFoam Translates a STAR-CD SMAP data file into OpenFOAM field
format

Post-processing velocity fields
Co Configurable graph drawing program

enstrophy Calculates and writes the enstrophy of the velocity field U

flowType Calculates and writes the flowType of velocity field U

Continued on next page
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Lambda2 Calculates and writes the second largest eigenvalue of the sum
of the square of the symmetrical and anti-symmetrical parts
of the velocity gradient tensor

Mach Calculates and optionally writes the local Mach number from
the velocity field U at each time

Pe Calculates the Peclet number Pe from the flux phi and writes
the maximum value, the surfaceScalarField Pef and vol-

ScalarField Pe

Q Calculates and writes the second invariant of the velocity gra-
dient tensor

streamFunction Calculates and writes the stream function of velocity field U

at each time

uprime Calculates and writes the scalar field of uprime (
√

2k/3)

vorticity Calculates and writes the vorticity of velocity field U

Post-processing stress fields
stressComponents Calculates and writes the scalar fields of the six components

of the stress tensor sigma for each time

Post-processing scalar fields
pPrime2 Calculates and writes the scalar field of pPrime2 ([p− p]2) at

each time

Post-processing at walls
wallGradU Calculates and writes the gradient of U at the wall

wallHeatFlux Calculates and writes the heat flux for all patches as the
boundary field of a volScalarField and also prints the inte-
grated flux for all wall patches

wallShearStress Calculates and reports the turbulent wall shear stress for all
patches, for the specified times

yPlus Calculates and reports yPlus for the near-wall cells of all wall
patches, for the specified times for laminar, LES and RAS

Post-processing turbulence
createTurbulenceFields Creates a full set of turbulence fields

Continued on next page
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R Calculates and writes the Reynolds stress R for the current
time step

Post-processing patch data
patchAverage Calculates the average of the specified field over the specified

patch

patchIntegrate Calculates the integral of the specified field over the specified
patch

Post-processing Lagrangian simulation
particleTracks Generates a VTK file of particle tracks for cases that were

computed using a tracked-parcel-type cloud

steadyParticleTracks Generates a VTK file of particle tracks for cases that were
computed using a steady-state cloud

Sampling post-processing
probeLocations Probe locations

sample Sample field data with a choice of interpolation schemes, sam-
pling options and write formats

Generic field post-processing
foamCalc Generic wrapper for calculating a quantity at each time

Miscellaneous post-processing
dsmcFieldsCalc Calculate intensive fields (U and T) from averaged extensive

fields from a DSMC calculation

engineCompRatio Calculate the geometric compression ratio

execFlowFunction-
Objects

Execute the set of functionObjects specified in the selected
dictionary (which defaults to system/controlDict) for the se-
lected set of times. Alternative dictionaries should be placed
in the system/ directory

foamListTimes List times using timeSelector

pdfPlot Generates a graph of a probability distribution function

postChannel Post-processes data from channel flow calculations

Continued on next page
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ptot For each time: calculate the total pressure

temporalInterpolate Interpolate fields between time-steps e.g. for animation

wdot Calculates and writes wdot for each time

writeCellCentres Write the three components of the cell centres as volScalar-
Fields so they can be used in postprocessing in thresholding

Surface mesh (e.g. STL) tools
surfaceAdd Add two surfaces. Does geometric merge on points. Does not

check for overlapping/intersecting triangles

surfaceBoolean-
Features

Generates the extendedFeatureEdgeMesh for the interface be-
tween a boolean operation on two surfaces

surfaceCheck Checks geometric and topological quality of a surface

surfaceClean Utility to clean surfaces

surfaceCoarsen Surface coarsening using ‘bunnylod’

surfaceConvert Converts from one surface mesh format to another

surfaceFeatureConvert Convert between edgeMesh formats

surfaceFeatureExtract Extracts and writes surface features to file. All but the basic
feature extraction is WIP

surfaceFind Finds nearest face and vertex

surfaceHookUp Find close open edges and stitches the surface along them

surfaceInertia Calculates the inertia tensor, principal axes and moments of
a command line specified triSurface

surfaceInflate Inflates surface. WIP. Checks for overlaps and locally lowers
inflation distance

surfaceLambdaMu-
Smooth

Smooths a surface using lambda/mu smoothing

surfaceMeshConvert Converts between surface formats with optional scaling or
transformations (rotate/translate) on a coordinateSystem

surfaceMeshConvert-
Testing

Converts from one surface mesh format to another, but pri-
marily used for testing functionality

Continued on next page
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surfaceMeshExport Export from surfMesh to various third-party surface formats
with optional scaling or transformations (rotate/translate) on
a coordinateSystem

surfaceMeshImport Import from various third-party surface formats into surfMesh
with optional scaling or transformations (rotate/translate) on
a coordinateSystem

surfaceMeshInfo Miscellaneous information about surface meshes

surfaceMesh-
Triangulate

Extracts surface from a polyMesh. Depending on output sur-
face format triangulates faces

surfaceOrient Set normal consistent with respect to a user provided ’outside’
point. If the -inside option is used the point is considered
inside

surfacePatch Patches (regionises) a surface using a user-selectable method

surfacePointMerge Merges points on surface if they are within absolute distance.
Since absolute distance use with care!

surfaceRedistributePar (Re)distribution of triSurface. Either takes an undecomposed
surface or an already decomposed surface and redistributes it
so that each processor has all triangles that overlap its mesh

surfaceRefineRedGreen Refine by splitting all three edges of triangle (’red’ refinement)

surfaceSplitByPatch Writes regions of triSurface to separate files

surfaceSplitBy-
Topology

Strips any baffle parts of a surface

surfaceSplitNon-
Manifolds

Takes multiply connected surface and tries to split surface at
multiply connected edges by duplicating points

surfaceSubset A surface analysis tool which sub-sets the triSurface to choose
only a part of interest. Based on subsetMesh

surfaceToPatch Reads surface and applies surface regioning to a mesh. Uses
boundaryMesh to do the hard work

surfaceTransform-
Points

Transform (scale/rotate) a surface. Like transformPoints but
for surfaces

Parallel processing
decomposePar Automatically decomposes a mesh and fields of a case for

parallel execution of OpenFOAM
Continued on next page
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reconstructPar Reconstructs fields of a case that is decomposed for parallel
execution of OpenFOAM

reconstructParMesh Reconstructs a mesh using geometric information only

redistributePar Redistributes existing decomposed mesh and fields according
to the current settings in the decomposeParDict file

Thermophysical-related utilities
adiabaticFlameT Calculates the adiabatic flame temperature for a given fuel

over a range of unburnt temperatures and equivalence ratios

chemkinToFoam Converts CHEMKIN 3 thermodynamics and reaction data files
into OpenFOAM format

equilibriumCO Calculates the equilibrium level of carbon monoxide

equilibriumFlameT Calculates the equilibrium flame temperature for a given fuel
and pressure for a range of unburnt gas temperatures and
equivalence ratios; the effects of dissociation on O2, H2O and
CO2 are included

mixtureAdiabatic-
FlameT

Calculates the adiabatic flame temperature for a given mix-
ture at a given temperature

Miscellaneous utilities
expandDictionary Read the dictionary provided as an argument, expand the

macros etc. and write the resulting dictionary to standard
output

foamDebugSwitches Write out all library debug switches

foamFormatConvert Converts all IOobjects associated with a case into the format
specified in the controlDict

foamHelp Top level wrapper utility around foam help utilities

foamInfoExec Interrogates a case and prints information to stdout

patchSummary Writes fields and boundary condition info for each patch at
each requested time instance

Table A.2: Standard library utilities.
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A.3 Standard libraries

The libraries with the OpenFOAM distribution are in the $FOAM LIB/$WM OPTIONS
directory, reached quickly by typing lib at the command line. Again, the names are
prefixed by lib and reasonably descriptive, e.g. incompressibleTransportModels contains
the library of incompressible transport models. The library source code is typically located
in the $FOAM SRC directory, easily reached by typing src in the command line. Other
libraries devoted to specific physical models for specific solvers may be located separately
with the solver source code. For ease of presentation, the libraries are separated into two
types:

General libraries those that provide general classes and associated functions listed in
Table A.3;

Model libraries those that specify models used in computational continuum mechanics,
listed in Table A.4, Table A.5 and Table A.6.

Library of basic OpenFOAM tools — OpenFOAM
algorithms Algorithms
containers Container classes
db Database classes
dimensionedTypes dimensioned<Type> class and derivatives
dimensionSet dimensionSet class
fields Field classes
global Global settings
graph graph class
interpolations Interpolation schemes
matrices Matrix classes
memory Memory management tools
meshes Mesh classes
primitives Primitive classes

Finite volume method library — finiteVolume
cfdTools CFD tools
fields Volume, surface and patch field classes; includes boundary

conditions
finiteVolume Finite volume discretisation
fvMatrices Matrices for finite volume solution
fvMesh Meshes for finite volume discretisation
interpolation Field interpolation and mapping
surfaceMesh Mesh surface data for finite volume discretisation
volMesh Mesh volume (cell) data for finite volume discretisation

Post-processing libraries
fieldFunctionObjects Field function objects including field averaging, min/max, etc.
foamCalcFunctions Functions for the foamCalc utility
forces Tools for post-processing force/lift/drag data with function

objects
jobControl Tools for controlling job running with a function object
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postCalc For using functionality of a function object as a post-
processing activity

sampling Tools for sampling field data at prescribed locations in a do-
main

systemCall General function object for making system calls while running
a case

utilityFunctionObjects Utility function objects

Solution and mesh manipulation libraries
autoMesh Library of functionality for the snappyHexMesh utility
blockMesh Library of functionality for the blockMesh utility
dynamicMesh For solving systems with moving meshes
dynamicFvMesh Library for a finite volume mesh that can move and undergo

topological changes
edgeMesh For handling edge-based mesh descriptions
fvMotionSolvers Finite volume mesh motion solvers
ODE Solvers for ordinary differential equations
meshTools Tools for handling a OpenFOAM mesh
surfMesh Library for handling surface meshes of different formats
triSurface For handling standard triangulated surface-based mesh de-

scriptions
topoChangerFvMesh Topological changes functionality (largely redundant)

Lagrangian particle tracking libraries
basic Basic Lagrangian, or particle-tracking, solution scheme
coalCombustion Coal dust combustion modelling
distributionModels Particle distribution function modelling
dsmc Direct simulation Monte Carlo method modelling
intermediate Particle-tracking kinematics, thermodynamics, multispecies

reactions, particle forces, etc.
molecule Molecule classes for molecular dynamics
molecularMeasurements For making measurements in molecular dynamics
potential Intermolecular potentials for molecular dynamics
solidParticle Solid particle implementation
spray Liquid spray and injection modelling

Miscellaneous libraries
conversion Tools for mesh and data conversions
decompositionMethods Tools for domain decomposition
engine Tools for engine calculations
fileFormats Core routines for reading/writing data in some third-party

formats
genericFvPatchField A generic patch field
MGridGenGAMG-
Agglomeration

Library for cell agglomeration using the MGridGen algorithm

pairPatchAgglom-
eration

Primitive pair patch agglomeration method

OSspecific Operating system specific functions
randomProcesses Tools for analysing and generating random processes
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Parallel libraries
distributed Tools for searching and IO on distributed surfaces
reconstruct Mesh/field reconstruction library
scotchDecomp Scotch domain decomposition library
ptsotchDecomp PTScotch domain decomposition library

Table A.3: Shared object libraries for general use.

Basic thermophysical models — basicThermophysicalModels
hePsiThermo General thermophysical model calculation based on en-

thalpy h or internal energy e, and compressibility ψ
heRhoThermo General thermophysical model calculation based on en-

thalpy h or internal energy e, and density ρ

pureMixture General thermophysical model calculation for passive gas
mixtures

Reaction models — reactionThermophysicalModels
hePsiMixtureThermo Calculates enthalpy for combustion mixture based on en-

thalpy h or internal energy e, and ψ
heRhoMixtureThermo Calculates enthalpy for combustion mixture based on en-

thalpy h or internal energy e, and ρ
heheuMixtureThermo Calculates enthalpy h or internal energy e for unburnt u

gas and combustion mixture

homogeneousMixture Combustion mixture based on normalised fuel mass frac-
tion b

inhomogeneousMixture Combustion mixture based on b and total fuel mass fraction
ft

veryInhomogeneousMixture Combustion mixture based on b, ft and unburnt fuel mass
fraction fu

dieselMixture Combustion mixture based on ft and fu
basicMultiComponent-
Mixture

Basic mixture based on multiple components

multiComponentMixture Derived mixture based on multiple components
reactingMixture Combustion mixture using thermodynamics and reaction

schemes
egrMixture Exhaust gas recirculation mixture

Radiation models — radiationModels
fvDOM Finite volume discrete ordinate method
P1 P1 model
solarLoad Solar load radiation model
viewFactor View factor radiation model
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Laminar flame speed models — laminarFlameSpeedModels
constLaminarFlameSpeed Constant laminar flame speed
GuldersLaminarFlameSpeed Gulder’s laminar flame speed model
GuldersEGRLaminar-
FlameSpeed

Gulder’s laminar flame speed model with exhaust gas re-
circulation modelling

Barotropic compressibility models — barotropicCompressibilityModels
linear Linear compressibility model
Chung Chung compressibility model
Wallis Wallis compressibility model

Thermophysical properties of gaseous species — specie
icoPolynomial Incompressible polynomial equation of state, e.g. for liquids
perfectGas Perfect gas equation of state
eConstThermo Constant specific heat cp model with evaluation of internal

energy e and entropy s
hConstThermo Constant specific heat cp model with evaluation of enthalpy

h and entropy s
hPolynomialThermo cp evaluated by a function with coefficients from polynomi-

als, from which h, s are evaluated
janafThermo cp evaluated by a function with coefficients from JANAF

thermodynamic tables, from which h, s are evaluated
specieThermo Thermophysical properties of species, derived from cp, h

and/or s
constTransport Constant transport properties
polynomialTransport Polynomial based temperature-dependent transport prop-

erties
sutherlandTransport Sutherland’s formula for temperature-dependent transport

properties

Functions/tables of thermophysical properties — thermophysicalFunctions
NSRDSfunctions National Standard Reference Data System (NSRDS) -

American Institute of Chemical Engineers (AICHE) data
compilation tables

APIfunctions American Petroleum Institute (API) function for vapour
mass diffusivity

Chemistry model — chemistryModel
chemistryModel Chemical reaction model
chemistrySolver Chemical reaction solver

Other libraries
liquidProperties Thermophysical properties of liquids
liquidMixtureProperties Thermophysical properties of liquid mixtures
basicSolidThermo Thermophysical models of solids
solid Thermodynamics of solid species
SLGThermo Thermodynamic package for solids, liquids and gases
solidProperties Thermophysical properties of solids
solidMixtureProperties Thermophysical properties of solid mixtures
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thermalPorousZone Porous zone definition based on cell zones that includes
terms for energy equations

Table A.4: Libraries of thermophysical models.

RAS turbulence models — RASModels
laminar Dummy turbulence model for laminar flow
kEpsilon Standard k − ε model
kOmega k − ω model
kOmegaSST k − ω − SST model
kOmegaSSTSAS k − ω − SST − SAS model
LaunderSharmaKE Launder-Sharma low-Re k − ε model
LRR Launder-Reece-Rodi RSTM
realizableKE Realizable k − ε model
RNGkEpsilon RNG− k − ε model
SpalartAllmaras Spalart-Allmaras 1-eqn mixing-length model
SSG Speziale, Sarkar and Gatski Reynolds-stress model
v2f v2− f model

Large-eddy simulation (LES) filters — LESfilters
laplaceFilter Laplace filters
simpleFilter Simple filter
anisotropicFilter Anisotropic filter

Large-eddy simulation deltas — LESdeltas
PrandtlDelta Prandtl delta
cubeRootVolDelta Cube root of cell volume delta
maxDeltaxyz Maximum of x, y and z; for structured hex cells only
smoothDelta Smoothing of delta

LES turbulence models — LESModels
DeardorffDiffStress Differential SGS Stress model
dynamicKEqn Dynamic one equation eddy-viscosity
dynamicLagrangian Dynamic SGS model with Lagrangian averaging
kEqn One equation eddy-viscosity model
Smagorinsky Smagorinsky SGS model
WALE Wall-adapting local eddy-viscosity (WALE) model

DES turbulence models — DESModels
kOmegaSSTDES k − omega− SST delayed eddy simulation (DES) model
kOmegaSSTDDES k − omega − SST delayed detached eddy simulation

(DDES) model
kOmegaSSTIDDES k − omega − SST improved delayed detached eddy simu-

lation (DDES) model
SpalartAllmarasDES Spalart-Allmaras delayed eddy simulation (DES) model
SpalartAllmarasDDES Spalart-Allmaras delayed detached eddy simulation

(DDES) model
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SpalartAllmarasIDDES Spalart-Allmaras improved delayed detached eddy simula-
tion (DDES) model

Table A.5: Libraries of RAS and LES turbulence models.

Transport models for incompressible fluids — incompressibleTransportModels
Newtonian Linear viscous fluid model
CrossPowerLaw Cross Power law nonlinear viscous model
BirdCarreau Bird-Carreau nonlinear viscous model
HerschelBulkley Herschel-Bulkley nonlinear viscous model
powerLaw Power-law nonlinear viscous model
interfaceProperties Models for the interface, e.g. contact angle, in multiphase

simulations

Miscellaneous transport modelling libraries
interfaceProperties Calculation of interface properties
twoPhaseInterfacePropertiesTwo phase interface properties models, including boundary

conditions
surfaceFilmModels Surface film models

Table A.6: Shared object libraries of transport models.

A.4 Standard boundary conditions

basic
fixedValue This boundary condition supplies a fixed value constraint, and

is the base class for a number of other boundary conditions

fixedGradient This boundary condition supplies a fixed gradient condition,
such that the patch values are calculated using:

zeroGradient This boundary condition applies a zero-gradient condition
from the patch internal field onto the patch faces

fixedValue This boundary condition supplies a fixed value constraint, and
is the base class for a number of other boundary conditions

fixedGradient This boundary condition supplies a fixed gradient condition,
such that the patch values are calculated using:

zeroGradient This boundary condition applies a zero-gradient condition
from the patch internal field onto the patch faces
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fixedValue This boundary condition supplies a fixed value constraint, and
is the base class for a number of other boundary conditions

fixedGradient This boundary condition supplies a fixed gradient condition,
such that the patch values are calculated using:

zeroGradient This boundary condition applies a zero-gradient condition
from the patch internal field onto the patch faces

Table A.7: basic boundary conditions.

constraint
cyclic This boundary condition enforces a cyclic condition between

a pair of boundaries

cyclicACMI This boundary condition enforces a cyclic condition between
a pair of boundaries, whereby communication between the
patches is performed using an arbitrarily coupled mesh inter-
face (ACMI) interpolation

cyclicAMI This boundary condition enforces a cyclic condition between
a pair of boundaries, whereby communication between the
patches is performed using an arbitrary mesh interface (AMI)
interpolation

cyclicSlip This boundary condition is a light wrapper around the cyclic-
FvPatchField condition, providing no new functionality

empty This boundary condition provides an ’empty’ condition for
reduced dimensions cases, i.e. 1- and 2-D geometries. Apply
this condition to patches whose normal is aligned to geometric
directions that do not constitue solution directions

jumpCyclic This boundary condition provides a base class for coupled-
cyclic conditions with a specified ’jump’ (or offset) between
the values

jumpCyclicAMI This boundary condition provides a base class that enforces
a cyclic condition with a specified ’jump’ (or offset) between
a pair of boundaries, whereby communication between the
patches is performed using an arbitrary mesh interface (AMI)
interpolation

nonuniformTransform-
Cyclic

This boundary condition enforces a cyclic condition between
a pair of boundaries, incorporating a non-uniform transfor-
mation
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processor This boundary condition enables processor communication
across patches

processorCyclic This boundary condition enables processor communication
across cyclic patches

symmetry This boundary condition enforces a symmetry constraint

symmetryPlane This boundary condition enforces a symmetryPlane con-
straint

wedge This boundary condition is similar to the cyclic condition,
except that it is applied to 2-D geometries

cyclic This boundary condition enforces a cyclic condition between
a pair of boundaries

cyclicACMI This boundary condition enforces a cyclic condition between
a pair of boundaries, whereby communication between the
patches is performed using an arbitrarily coupled mesh inter-
face (ACMI) interpolation

cyclicAMI This boundary condition enforces a cyclic condition between
a pair of boundaries, whereby communication between the
patches is performed using an arbitrary mesh interface (AMI)
interpolation

cyclicSlip This boundary condition is a light wrapper around the cyclic-
FvPatchField condition, providing no new functionality

empty This boundary condition provides an ’empty’ condition for
reduced dimensions cases, i.e. 1- and 2-D geometries. Apply
this condition to patches whose normal is aligned to geometric
directions that do not constitue solution directions

jumpCyclic This boundary condition provides a base class for coupled-
cyclic conditions with a specified ’jump’ (or offset) between
the values

jumpCyclicAMI This boundary condition provides a base class that enforces
a cyclic condition with a specified ’jump’ (or offset) between
a pair of boundaries, whereby communication between the
patches is performed using an arbitrary mesh interface (AMI)
interpolation

nonuniformTransform-
Cyclic

This boundary condition enforces a cyclic condition between
a pair of boundaries, incorporating a non-uniform transfor-
mation
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processor This boundary condition enables processor communication
across patches

processorCyclic This boundary condition enables processor communication
across cyclic patches

symmetry This boundary condition enforces a symmetry constraint

symmetryPlane This boundary condition enforces a symmetryPlane con-
straint

wedge This boundary condition is similar to the cyclic condition,
except that it is applied to 2-D geometries

cyclic This boundary condition enforces a cyclic condition between
a pair of boundaries

cyclicACMI This boundary condition enforces a cyclic condition between
a pair of boundaries, whereby communication between the
patches is performed using an arbitrarily coupled mesh inter-
face (ACMI) interpolation

cyclicAMI This boundary condition enforces a cyclic condition between
a pair of boundaries, whereby communication between the
patches is performed using an arbitrary mesh interface (AMI)
interpolation

cyclicSlip This boundary condition is a light wrapper around the cyclic-
FvPatchField condition, providing no new functionality

empty This boundary condition provides an ’empty’ condition for
reduced dimensions cases, i.e. 1- and 2-D geometries. Apply
this condition to patches whose normal is aligned to geometric
directions that do not constitue solution directions

jumpCyclic This boundary condition provides a base class for coupled-
cyclic conditions with a specified ’jump’ (or offset) between
the values

jumpCyclicAMI This boundary condition provides a base class that enforces
a cyclic condition with a specified ’jump’ (or offset) between
a pair of boundaries, whereby communication between the
patches is performed using an arbitrary mesh interface (AMI)
interpolation

nonuniformTransform-
Cyclic

This boundary condition enforces a cyclic condition between
a pair of boundaries, incorporating a non-uniform transfor-
mation
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processor This boundary condition enables processor communication
across patches

processorCyclic This boundary condition enables processor communication
across cyclic patches

symmetry This boundary condition enforces a symmetry constraint

symmetryPlane This boundary condition enforces a symmetryPlane con-
straint

wedge This boundary condition is similar to the cyclic condition,
except that it is applied to 2-D geometries

Table A.8: constraint boundary conditions.

Inlet
cylindricalInletVelocity This boundary condition describes an inlet vector boundary

condition in cylindrical co-ordinates given a central axis, cen-
tral point, rpm, axial and radial velocity

fanPressure This boundary condition can be applied to assign either a
pressure inlet or outlet total pressure condition for a fan

fixedFluxPressure This boundary condition sets the pressure gradient to the pro-
vided value such that the flux on the boundary is that speci-
fied by the velocity boundary condition

fixedNormalInlet-
OutletVelocity

(Currently no description)

fixedPressure-
CompressibleDensity

This boundary condition calculates a (liquid) compressible
density as a function of pressure and fluid properties:

flowRateInletVelocity This boundary condition provides a velocity boundary condi-
tion, derived from the flux (volumetric or mass-based), whose
direction is assumed to be normal to the patch

freestream This boundary condition provides a free-stream condition. It
is a ’mixed’ condition derived from the i̧nletOutlet condition,
whereby the mode of operation switches between fixed (free
stream) value and zero gradient based on the sign of the flux
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freestreamPressure This boundary condition provides a free-stream condition for
pressure. It is a zero-gradient condition that constrains the
flux across the patch based on the free-stream velocity

mappedFlowRate Describes a volumetric/mass flow normal vector boundary
condition by its magnitude as an integral over its area

mappedVelocityFlux-
FixedValue

This boundary condition maps the velocity and flux from a
neighbour patch to this patch

outletInlet This boundary condition provides a generic inflow condition,
with specified outflow for the case of reverse flow

outletMappedUniform-
Inlet

This boundary conditon averages the field over the ”outlet”
patch specified by name ”outletPatchName” and applies this
as the uniform value of the field over this patch

pressureDirectedInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condtion is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the flux with
the specified inlet direction

pressureDirectedInlet-
Velocity

This velocity inlet boundary condition is applied to patches
where the pressure is specified. The inflow velocity is obtained
from the flux with the specified inlet direction” direction

pressureInletOutletPar-
SlipVelocity

This velocity inlet/outlet boundary condition for pressure
boundary where the pressure is specified. A zero-gradient
is applied for outflow (as defined by the flux); for inflow, the
velocity is obtained from the flux with the specified inlet di-
rection

pressureInletOutlet-
Velocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condition is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the patch-face
normal component of the internal-cell value

pressureInletUniform-
Velocity

This velocity inlet boundary condition is applied to patches
where the pressure is specified. The uniform inflow velocity
is obtained by averaging the flux over the patch, and then
applying it in the direction normal to the patch faces

pressureInletVelocity This velocity inlet boundary condition is applied to patches
where the pressure is specified. The inflow velocity is obtained
from the flux with a direction normal to the patch faces
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pressureNormalInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches where the pressure is specified. A zero-gradient con-
dition is applied for outflow (as defined by the flux); for inflow,
the velocity is obtained from the flux with a direction normal
to the patch faces

pressurePIDControl-
InletVelocity

This boundary condition tries to generate an inlet veloc-
ity that maintains a specified pressure drop between two
face zones downstream. The zones should fully span a duct
through which all the inlet flow passes

rotatingPressureInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches in a rotating frame where the pressure is specified. A
zero-gradient is applied for outflow (as defined by the flux); for
inflow, the velocity is obtained from the flux with a direction
normal to the patch faces

rotatingTotalPressure This boundary condition provides a total pressure condition
for patches in a rotating frame

supersonicFreestream This boundary condition provides a supersonic free-stream
condition

surfaceNormalFixed-
Value

This boundary condition provides a surface-normal vector
boundary condition by its magnitude

swirlFlowRateInlet-
Velocity

This boundary condition provides a volumetric- OR mass-
flow normal vector boundary condition by its magnitude as
an integral over its area with a swirl component determined
by the angular speed, given in revolutions per minute (RPM)

syringePressure This boundary condition provides a pressure condition, ob-
tained from a zero-D model of the cylinder of a syringe

timeVaryingMapped-
FixedValue

This boundary conditions interpolates the values from a set
of supplied points in space and time. Supplied data should
be specified in constant/boundaryData/patchname where: -
points : pointField with locations - ddd : supplied values at
time ddd The default mode of operation (mapMethod planar-
Interpolation) is to project the points onto a plane (con-
structed from the first threee points) and construct a 2D tri-
angulation and finds for the face centres the triangle it is in
and the weights to the 3 vertices. A primitive field + average
with IO

totalPressure This boundary condition provides a total pressure condition.
Four variants are possible:
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totalTemperature This boundary condition provides a total temperature condi-
tion

turbulentInlet This boundary condition generates a fluctuating inlet condi-
tion by adding a random component to a reference (mean)
field

turbulentIntensity-
KineticEnergyInlet

This boundary condition provides a turbulent kinetic energy
condition, based on user-supplied turbulence intensity, defined
as a fraction of the mean velocity:

uniformTotalPressure This boundary condition provides a time-varying form of the
uniform total pressure boundary condition

variableHeightFlow-
RateInletVelocity

This boundary condition provides a velocity boundary condi-
tion for multphase flow based on a user-specified volumetric
flow rate

variableHeightFlow-
Rate

This boundary condition provides a phase fraction condition
based on the local flow conditions, whereby the values are con-
strained to lay between user-specified upper and lower bounds.
The behaviour is described by:

waveSurfacePressure This is a pressure boundary condition, whose value is calcu-
lated as the hydrostatic pressure based on a given displace-
ment:

cylindricalInletVelocity This boundary condition describes an inlet vector boundary
condition in cylindrical co-ordinates given a central axis, cen-
tral point, rpm, axial and radial velocity

fanPressure This boundary condition can be applied to assign either a
pressure inlet or outlet total pressure condition for a fan

fixedFluxPressure This boundary condition sets the pressure gradient to the pro-
vided value such that the flux on the boundary is that speci-
fied by the velocity boundary condition

fixedNormalInlet-
OutletVelocity

(Currently no description)

fixedPressure-
CompressibleDensity

This boundary condition calculates a (liquid) compressible
density as a function of pressure and fluid properties:

flowRateInletVelocity This boundary condition provides a velocity boundary condi-
tion, derived from the flux (volumetric or mass-based), whose
direction is assumed to be normal to the patch
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freestream This boundary condition provides a free-stream condition. It
is a ’mixed’ condition derived from the i̧nletOutlet condition,
whereby the mode of operation switches between fixed (free
stream) value and zero gradient based on the sign of the flux

freestreamPressure This boundary condition provides a free-stream condition for
pressure. It is a zero-gradient condition that constrains the
flux across the patch based on the free-stream velocity

mappedFlowRate Describes a volumetric/mass flow normal vector boundary
condition by its magnitude as an integral over its area

mappedVelocityFlux-
FixedValue

This boundary condition maps the velocity and flux from a
neighbour patch to this patch

outletInlet This boundary condition provides a generic inflow condition,
with specified outflow for the case of reverse flow

outletMappedUniform-
Inlet

This boundary conditon averages the field over the ”outlet”
patch specified by name ”outletPatchName” and applies this
as the uniform value of the field over this patch

pressureDirectedInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condtion is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the flux with
the specified inlet direction

pressureDirectedInlet-
Velocity

This velocity inlet boundary condition is applied to patches
where the pressure is specified. The inflow velocity is obtained
from the flux with the specified inlet direction” direction

pressureInletOutletPar-
SlipVelocity

This velocity inlet/outlet boundary condition for pressure
boundary where the pressure is specified. A zero-gradient
is applied for outflow (as defined by the flux); for inflow, the
velocity is obtained from the flux with the specified inlet di-
rection

pressureInletOutlet-
Velocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condition is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the patch-face
normal component of the internal-cell value

pressureInletUniform-
Velocity

This velocity inlet boundary condition is applied to patches
where the pressure is specified. The uniform inflow velocity
is obtained by averaging the flux over the patch, and then
applying it in the direction normal to the patch faces
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pressureInletVelocity This velocity inlet boundary condition is applied to patches
where the pressure is specified. The inflow velocity is obtained
from the flux with a direction normal to the patch faces

pressureNormalInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches where the pressure is specified. A zero-gradient con-
dition is applied for outflow (as defined by the flux); for inflow,
the velocity is obtained from the flux with a direction normal
to the patch faces

pressurePIDControl-
InletVelocity

This boundary condition tries to generate an inlet veloc-
ity that maintains a specified pressure drop between two
face zones downstream. The zones should fully span a duct
through which all the inlet flow passes

rotatingPressureInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches in a rotating frame where the pressure is specified. A
zero-gradient is applied for outflow (as defined by the flux); for
inflow, the velocity is obtained from the flux with a direction
normal to the patch faces

rotatingTotalPressure This boundary condition provides a total pressure condition
for patches in a rotating frame

supersonicFreestream This boundary condition provides a supersonic free-stream
condition

surfaceNormalFixed-
Value

This boundary condition provides a surface-normal vector
boundary condition by its magnitude

swirlFlowRateInlet-
Velocity

This boundary condition provides a volumetric- OR mass-
flow normal vector boundary condition by its magnitude as
an integral over its area with a swirl component determined
by the angular speed, given in revolutions per minute (RPM)

syringePressure This boundary condition provides a pressure condition, ob-
tained from a zero-D model of the cylinder of a syringe

timeVaryingMapped-
FixedValue

This boundary conditions interpolates the values from a set
of supplied points in space and time. Supplied data should
be specified in constant/boundaryData/patchname where: -
points : pointField with locations - ddd : supplied values at
time ddd The default mode of operation (mapMethod planar-
Interpolation) is to project the points onto a plane (con-
structed from the first threee points) and construct a 2D tri-
angulation and finds for the face centres the triangle it is in
and the weights to the 3 vertices. A primitive field + average
with IO

Continued on next page

Open∇FOAM-v1606+



U-138 Reference

Continued from previous page

totalPressure This boundary condition provides a total pressure condition.
Four variants are possible:

totalTemperature This boundary condition provides a total temperature condi-
tion

turbulentInlet This boundary condition generates a fluctuating inlet condi-
tion by adding a random component to a reference (mean)
field

turbulentIntensity-
KineticEnergyInlet

This boundary condition provides a turbulent kinetic energy
condition, based on user-supplied turbulence intensity, defined
as a fraction of the mean velocity:

uniformTotalPressure This boundary condition provides a time-varying form of the
uniform total pressure boundary condition

variableHeightFlow-
RateInletVelocity

This boundary condition provides a velocity boundary condi-
tion for multphase flow based on a user-specified volumetric
flow rate

variableHeightFlow-
Rate

This boundary condition provides a phase fraction condition
based on the local flow conditions, whereby the values are con-
strained to lay between user-specified upper and lower bounds.
The behaviour is described by:

waveSurfacePressure This is a pressure boundary condition, whose value is calcu-
lated as the hydrostatic pressure based on a given displace-
ment:

cylindricalInletVelocity This boundary condition describes an inlet vector boundary
condition in cylindrical co-ordinates given a central axis, cen-
tral point, rpm, axial and radial velocity

fanPressure This boundary condition can be applied to assign either a
pressure inlet or outlet total pressure condition for a fan

fixedFluxExtrapolated-
Pressure

This boundary condition sets the pressure gradient to the pro-
vided value such that the flux on the boundary is that speci-
fied by the velocity boundary condition

fixedFluxPressure This boundary condition sets the pressure gradient to the pro-
vided value such that the flux on the boundary is that speci-
fied by the velocity boundary condition

fixedMean This boundary condition extrapolates field to the patch using
the near-cell values and adjusts the distribution to match the
specified, optionally time-varying, mean value
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fixedNormalInlet-
OutletVelocity

This velocity inlet/outlet boundary condition combines a
fixed normal component obtained from the ”normalVelocity”
patchField supplied with a fixed or zero-gradiented tangential
component

fixedPressure-
CompressibleDensity

This boundary condition calculates a (liquid) compressible
density as a function of pressure and fluid properties:

flowRateInletVelocity This boundary condition provides a velocity boundary condi-
tion, derived from the flux (volumetric or mass-based), whose
direction is assumed to be normal to the patch

freestream This boundary condition provides a free-stream condition. It
is a ’mixed’ condition derived from the i̧nletOutlet condition,
whereby the mode of operation switches between fixed (free
stream) value and zero gradient based on the sign of the flux

freestreamPressure This boundary condition provides a free-stream condition for
pressure. It is a zero-gradient condition that constrains the
flux across the patch based on the free-stream velocity

mappedFlowRate Describes a volumetric/mass flow normal vector boundary
condition by its magnitude as an integral over its area

mappedVelocityFlux-
FixedValue

This boundary condition maps the velocity and flux from a
neighbour patch to this patch

outletInlet This boundary condition provides a generic inflow condition,
with specified outflow for the case of reverse flow

outletMappedUniform-
Inlet

This boundary conditon averages the field over the ”outlet”
patch specified by name ”outletPatchName” and applies this
as the uniform value of the field over this patch

pressureDirectedInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condtion is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the flux with
the specified inlet direction

pressureDirectedInlet-
Velocity

This velocity inlet boundary condition is applied to patches
where the pressure is specified. The inflow velocity is obtained
from the flux with the specified inlet direction” direction

pressureInletOutletPar-
SlipVelocity

This velocity inlet/outlet boundary condition for pressure
boundary where the pressure is specified. A zero-gradient
is applied for outflow (as defined by the flux); for inflow, the
velocity is obtained from the flux with the specified inlet di-
rection
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pressureInletOutlet-
Velocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condition is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the patch-face
normal component of the internal-cell value

pressureInletUniform-
Velocity

This velocity inlet boundary condition is applied to patches
where the pressure is specified. The uniform inflow velocity
is obtained by averaging the flux over the patch, and then
applying it in the direction normal to the patch faces

pressureInletVelocity This velocity inlet boundary condition is applied to patches
where the pressure is specified. The inflow velocity is obtained
from the flux with a direction normal to the patch faces

pressureNormalInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches where the pressure is specified. A zero-gradient con-
dition is applied for outflow (as defined by the flux); for inflow,
the velocity is obtained from the flux with a direction normal
to the patch faces

pressurePIDControl-
InletVelocity

This boundary condition tries to generate an inlet veloc-
ity that maintains a specified pressure drop between two
face zones downstream. The zones should fully span a duct
through which all the inlet flow passes

rotatingPressureInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches in a rotating frame where the pressure is specified. A
zero-gradient is applied for outflow (as defined by the flux); for
inflow, the velocity is obtained from the flux with a direction
normal to the patch faces

rotatingTotalPressure This boundary condition provides a total pressure condition
for patches in a rotating frame

supersonicFreestream This boundary condition provides a supersonic free-stream
condition

surfaceNormalFixed-
Value

This boundary condition provides a surface-normal vector
boundary condition by its magnitude

swirlFlowRateInlet-
Velocity

This boundary condition provides a volumetric- OR mass-
flow normal vector boundary condition by its magnitude as
an integral over its area with a swirl component determined
by the angular speed, given in revolutions per minute (RPM)

syringePressure This boundary condition provides a pressure condition, ob-
tained from a zero-D model of the cylinder of a syringe
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timeVaryingMapped-
FixedValue

This boundary conditions interpolates the values from a set
of supplied points in space and time. Supplied data should
be specified in constant/boundaryData/patchname where: -
points : pointField with locations - ddd : supplied values at
time ddd The default mode of operation (mapMethod planar-
Interpolation) is to project the points onto a plane (con-
structed from the first threee points) and construct a 2D tri-
angulation and finds for the face centres the triangle it is in
and the weights to the 3 vertices. A primitive field + average
with IO

totalPressure This boundary condition provides a total pressure condition.
Four variants are possible:

totalTemperature This boundary condition provides a total temperature condi-
tion

turbulentDFSEMInlet Velocity boundary condition including synthesised eddies for
use with LES and DES turbulent flows

turbulentInlet This boundary condition generates a fluctuating inlet condi-
tion by adding a random component to a reference (mean)
field

turbulentIntensity-
KineticEnergyInlet

This boundary condition provides a turbulent kinetic energy
condition, based on user-supplied turbulence intensity, defined
as a fraction of the mean velocity:

uniformTotalPressure This boundary condition provides a time-varying form of the
uniform total pressure boundary condition

variableHeightFlow-
RateInletVelocity

This boundary condition provides a velocity boundary condi-
tion for multphase flow based on a user-specified volumetric
flow rate

variableHeightFlow-
Rate

This boundary condition provides a phase fraction condition
based on the local flow conditions, whereby the values are con-
strained to lay between user-specified upper and lower bounds.
The behaviour is described by:

waveSurfacePressure This is a pressure boundary condition, whose value is calcu-
lated as the hydrostatic pressure based on a given displace-
ment:

Table A.9: Inlet boundary conditions.
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Outlet
advective This boundary condition provides an advective outflow con-

dition, based on solving DDt(psi, U) = 0 at the boundary

fanPressure This boundary condition can be applied to assign either a
pressure inlet or outlet total pressure condition for a fan

fixedNormalInlet-
OutletVelocity

(Currently no description)

fluxCorrectedVelocity This boundary condition provides a velocity outlet boundary
condition for patches where the pressure is specified. The out-
flow velocity is obtained by ”zeroGradient” and then corrected
from the flux:

freestream This boundary condition provides a free-stream condition. It
is a ’mixed’ condition derived from the i̧nletOutlet condition,
whereby the mode of operation switches between fixed (free
stream) value and zero gradient based on the sign of the flux

freestreamPressure This boundary condition provides a free-stream condition for
pressure. It is a zero-gradient condition that constrains the
flux across the patch based on the free-stream velocity

inletOutlet This boundary condition provides a generic outflow condition,
with specified inflow for the case of return flow

inletOutletTotal-
Temperature

This boundary condition provides an outflow condition for
total temperature for use with supersonic cases, where a user-
specified value is applied in the case of reverse flow

outletPhaseMean-
Velocity

This boundary condition adjusts the velocity for the given
phase to achieve the specified mean thus causing the phase-
fraction to adjust according to the mass flow rate

pressureDirectedInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condtion is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the flux with
the specified inlet direction

pressureInletOutletPar-
SlipVelocity

This velocity inlet/outlet boundary condition for pressure
boundary where the pressure is specified. A zero-gradient
is applied for outflow (as defined by the flux); for inflow, the
velocity is obtained from the flux with the specified inlet di-
rection

Continued on next page
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pressureInletOutlet-
Velocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condition is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the patch-face
normal component of the internal-cell value

pressureNormalInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches where the pressure is specified. A zero-gradient con-
dition is applied for outflow (as defined by the flux); for inflow,
the velocity is obtained from the flux with a direction normal
to the patch faces

rotatingPressureInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches in a rotating frame where the pressure is specified. A
zero-gradient is applied for outflow (as defined by the flux); for
inflow, the velocity is obtained from the flux with a direction
normal to the patch faces

rotatingTotalPressure This boundary condition provides a total pressure condition
for patches in a rotating frame

supersonicFreestream This boundary condition provides a supersonic free-stream
condition

totalPressure This boundary condition provides a total pressure condition.
Four variants are possible:

totalTemperature This boundary condition provides a total temperature condi-
tion

uniformInletOutlet Variant of inletOutlet boundary condition with uniform inlet-
Value

uniformTotalPressure This boundary condition provides a time-varying form of the
uniform total pressure boundary condition

waveTransmissive This boundary condition provides a wave transmissive outflow
condition, based onsolving DDt(psi, U) = 0 at the boundary

advective This boundary condition provides an advective outflow con-
dition, based on solving DDt(psi, U) = 0 at the boundary

fanPressure This boundary condition can be applied to assign either a
pressure inlet or outlet total pressure condition for a fan

fixedNormalInlet-
OutletVelocity

(Currently no description)
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fluxCorrectedVelocity This boundary condition provides a velocity outlet boundary
condition for patches where the pressure is specified. The out-
flow velocity is obtained by ”zeroGradient” and then corrected
from the flux:

freestream This boundary condition provides a free-stream condition. It
is a ’mixed’ condition derived from the i̧nletOutlet condition,
whereby the mode of operation switches between fixed (free
stream) value and zero gradient based on the sign of the flux

freestreamPressure This boundary condition provides a free-stream condition for
pressure. It is a zero-gradient condition that constrains the
flux across the patch based on the free-stream velocity

inletOutlet This boundary condition provides a generic outflow condition,
with specified inflow for the case of return flow

inletOutletTotal-
Temperature

This boundary condition provides an outflow condition for
total temperature for use with supersonic cases, where a user-
specified value is applied in the case of reverse flow

outletPhaseMean-
Velocity

This boundary condition adjusts the velocity for the given
phase to achieve the specified mean thus causing the phase-
fraction to adjust according to the mass flow rate

pressureDirectedInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condtion is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the flux with
the specified inlet direction

pressureInletOutletPar-
SlipVelocity

This velocity inlet/outlet boundary condition for pressure
boundary where the pressure is specified. A zero-gradient
is applied for outflow (as defined by the flux); for inflow, the
velocity is obtained from the flux with the specified inlet di-
rection

pressureInletOutlet-
Velocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condition is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the patch-face
normal component of the internal-cell value

pressureNormalInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches where the pressure is specified. A zero-gradient con-
dition is applied for outflow (as defined by the flux); for inflow,
the velocity is obtained from the flux with a direction normal
to the patch faces

Continued on next page
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rotatingPressureInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches in a rotating frame where the pressure is specified. A
zero-gradient is applied for outflow (as defined by the flux); for
inflow, the velocity is obtained from the flux with a direction
normal to the patch faces

rotatingTotalPressure This boundary condition provides a total pressure condition
for patches in a rotating frame

supersonicFreestream This boundary condition provides a supersonic free-stream
condition

totalPressure This boundary condition provides a total pressure condition.
Four variants are possible:

totalTemperature This boundary condition provides a total temperature condi-
tion

uniformInletOutlet Variant of inletOutlet boundary condition with uniform inlet-
Value

uniformTotalPressure This boundary condition provides a time-varying form of the
uniform total pressure boundary condition

waveTransmissive This boundary condition provides a wave transmissive outflow
condition, based onsolving DDt(psi, U) = 0 at the boundary

advective This boundary condition provides an advective outflow con-
dition, based on solving DDt(psi, U) = 0 at the boundary

fanPressure This boundary condition can be applied to assign either a
pressure inlet or outlet total pressure condition for a fan

fixedNormalInlet-
OutletVelocity

This velocity inlet/outlet boundary condition combines a
fixed normal component obtained from the ”normalVelocity”
patchField supplied with a fixed or zero-gradiented tangential
component

fluxCorrectedVelocity This boundary condition provides a velocity outlet boundary
condition for patches where the pressure is specified. The out-
flow velocity is obtained by ”zeroGradient” and then corrected
from the flux:

freestream This boundary condition provides a free-stream condition. It
is a ’mixed’ condition derived from the i̧nletOutlet condition,
whereby the mode of operation switches between fixed (free
stream) value and zero gradient based on the sign of the flux

Continued on next page
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freestreamPressure This boundary condition provides a free-stream condition for
pressure. It is a zero-gradient condition that constrains the
flux across the patch based on the free-stream velocity

inletOutlet This boundary condition provides a generic outflow condition,
with specified inflow for the case of return flow

inletOutletTotal-
Temperature

This boundary condition provides an outflow condition for
total temperature for use with supersonic cases, where a user-
specified value is applied in the case of reverse flow

outletPhaseMean-
Velocity

This boundary condition adjusts the velocity for the given
phase to achieve the specified mean thus causing the phase-
fraction to adjust according to the mass flow rate

pressureDirectedInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condtion is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the flux with
the specified inlet direction

pressureInletOutletPar-
SlipVelocity

This velocity inlet/outlet boundary condition for pressure
boundary where the pressure is specified. A zero-gradient
is applied for outflow (as defined by the flux); for inflow, the
velocity is obtained from the flux with the specified inlet di-
rection

pressureInletOutlet-
Velocity

This velocity inlet/outlet boundary condition is applied to
pressure boundaries where the pressure is specified. A zero-
gradient condition is applied for outflow (as defined by the
flux); for inflow, the velocity is obtained from the patch-face
normal component of the internal-cell value

pressureNormalInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches where the pressure is specified. A zero-gradient con-
dition is applied for outflow (as defined by the flux); for inflow,
the velocity is obtained from the flux with a direction normal
to the patch faces

rotatingPressureInlet-
OutletVelocity

This velocity inlet/outlet boundary condition is applied to
patches in a rotating frame where the pressure is specified. A
zero-gradient is applied for outflow (as defined by the flux); for
inflow, the velocity is obtained from the flux with a direction
normal to the patch faces

rotatingTotalPressure This boundary condition provides a total pressure condition
for patches in a rotating frame
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supersonicFreestream This boundary condition provides a supersonic free-stream
condition

totalPressure This boundary condition provides a total pressure condition.
Four variants are possible:

totalTemperature This boundary condition provides a total temperature condi-
tion

uniformInletOutlet Variant of inletOutlet boundary condition with uniform inlet-
Value

uniformTotalPressure This boundary condition provides a time-varying form of the
uniform total pressure boundary condition

waveTransmissive This boundary condition provides a wave transmissive outflow
condition, based onsolving DDt(psi, U) = 0 at the boundary

Table A.10: Outlet boundary conditions.

Wall
fixedFluxPressure This boundary condition sets the pressure gradient to the pro-

vided value such that the flux on the boundary is that speci-
fied by the velocity boundary condition

fixedNormalSlip This boundary condition sets the patch-normal component to
a fixed value

movingWallVelocity This boundary condition provides a velocity condition for
cases with moving walls. In addition, it should also be ap-
plied to ’moving’ walls for moving reference frame (MRF)
calculations

partialSlip This boundary condition provides a partial slip condition.
The amount of slip is controlled by a user-supplied field

rotatingWallVelocity This boundary condition provides a rotational velocity condi-
tion

slip This boundary condition provides a slip constraint

translatingWallVelocity This boundary condition provides a velocity condition for
translational motion on walls
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fixedFluxPressure This boundary condition sets the pressure gradient to the pro-
vided value such that the flux on the boundary is that speci-
fied by the velocity boundary condition

fixedNormalSlip This boundary condition sets the patch-normal component to
a fixed value

movingWallVelocity This boundary condition provides a velocity condition for
cases with moving walls. In addition, it should also be ap-
plied to ’moving’ walls for moving reference frame (MRF)
calculations

partialSlip This boundary condition provides a partial slip condition.
The amount of slip is controlled by a user-supplied field

rotatingWallVelocity This boundary condition provides a rotational velocity condi-
tion

slip This boundary condition provides a slip constraint

translatingWallVelocity This boundary condition provides a velocity condition for
translational motion on walls

fixedFluxExtrapolated-
Pressure

This boundary condition sets the pressure gradient to the pro-
vided value such that the flux on the boundary is that speci-
fied by the velocity boundary condition

fixedFluxPressure This boundary condition sets the pressure gradient to the pro-
vided value such that the flux on the boundary is that speci-
fied by the velocity boundary condition

fixedNormalSlip This boundary condition sets the patch-normal component to
a fixed value

movingWallVelocity This boundary condition provides a velocity condition for
cases with moving walls. In addition, it should also be ap-
plied to ’moving’ walls for moving reference frame (MRF)
calculations

noSlip This boundary condition fixes the velocity to zero at walls

partialSlip This boundary condition provides a partial slip condition.
The amount of slip is controlled by a user-supplied field

rotatingWallVelocity This boundary condition provides a rotational velocity condi-
tion

slip This boundary condition provides a slip constraint
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translatingWallVelocity This boundary condition provides a velocity condition for
translational motion on walls

Table A.11: Wall boundary conditions.

Coupled
activeBaffleVelocity This velocity boundary condition simulates the opening of a

baffle due to local flow conditions, by merging the behaviours
of wall and cyclic conditions. The baffle joins two mesh re-
gions, where the open fraction determines the interpolation
weights applied to each cyclic- and neighbour-patch contribu-
tion

activePressureForce-
BaffleVelocity

This boundary condition is applied to the flow velocity, to
simulate the opening or closure of a baffle due to local pressure
or force changes, by merging the behaviours of wall and cyclic
conditions

fan This boundary condition provides a jump condition, using the
çyclic condition as a base

fixedJumpAMI This boundary condition provides a jump condition, across
non-conformal cyclic path-pairs, employing an arbitraryMesh-
Interface (AMI)

fixedJump This boundary condition provides a jump condition, using the
çyclic condition as a base

mappedField This boundary condition provides a self-contained version of
the m̧apped condition. It does not use information on the
patch; instead it holds thr data locally

mappedFixedInternal-
Value

This boundary condition maps the boundary and internal val-
ues of a neighbour patch field to the boundary and internal
values of *this

mappedFixedPushed-
InternalValue

This boundary condition maps the boundary values of a neigh-
bour patch field to the boundary and internal cell values of
*this

mappedFixedValue This boundary condition maps the value at a set of cells or
patch faces back to *this

mappedFlowRate Describes a volumetric/mass flow normal vector boundary
condition by its magnitude as an integral over its area
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mappedVelocityFlux-
FixedValue

This boundary condition maps the velocity and flux from a
neighbour patch to this patch

timeVaryingMapped-
FixedValue

This boundary conditions interpolates the values from a set
of supplied points in space and time. Supplied data should
be specified in constant/boundaryData/patchname where: -
points : pointField with locations - ddd : supplied values at
time ddd The default mode of operation (mapMethod planar-
Interpolation) is to project the points onto a plane (con-
structed from the first threee points) and construct a 2D tri-
angulation and finds for the face centres the triangle it is in
and the weights to the 3 vertices. A primitive field + average
with IO

uniformJumpAMI This boundary condition provides a jump condition, using
the çyclicAMI condition as a base. The jump is specified as a
time-varying uniform value across the patch

uniformJump This boundary condition provides a jump condition, using the
çyclic condition as a base. The jump is specified as a time-
varying uniform value across the patch

activeBaffleVelocity This velocity boundary condition simulates the opening of a
baffle due to local flow conditions, by merging the behaviours
of wall and cyclic conditions. The baffle joins two mesh re-
gions, where the open fraction determines the interpolation
weights applied to each cyclic- and neighbour-patch contribu-
tion

activePressureForce-
BaffleVelocity

This boundary condition is applied to the flow velocity, to
simulate the opening or closure of a baffle due to local pressure
or force changes, by merging the behaviours of wall and cyclic
conditions

fan This boundary condition provides a jump condition, using the
çyclic condition as a base

fixedJumpAMI This boundary condition provides a jump condition, across
non-conformal cyclic path-pairs, employing an arbitraryMesh-
Interface (AMI)

fixedJump This boundary condition provides a jump condition, using the
çyclic condition as a base

mappedField This boundary condition provides a self-contained version of
the m̧apped condition. It does not use information on the
patch; instead it holds thr data locally
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mappedFixedInternal-
Value

This boundary condition maps the boundary and internal val-
ues of a neighbour patch field to the boundary and internal
values of *this

mappedFixedPushed-
InternalValue

This boundary condition maps the boundary values of a neigh-
bour patch field to the boundary and internal cell values of
*this

mappedFixedValue This boundary condition maps the value at a set of cells or
patch faces back to *this

mappedFlowRate Describes a volumetric/mass flow normal vector boundary
condition by its magnitude as an integral over its area

mappedVelocityFlux-
FixedValue

This boundary condition maps the velocity and flux from a
neighbour patch to this patch

timeVaryingMapped-
FixedValue

This boundary conditions interpolates the values from a set
of supplied points in space and time. Supplied data should
be specified in constant/boundaryData/patchname where: -
points : pointField with locations - ddd : supplied values at
time ddd The default mode of operation (mapMethod planar-
Interpolation) is to project the points onto a plane (con-
structed from the first threee points) and construct a 2D tri-
angulation and finds for the face centres the triangle it is in
and the weights to the 3 vertices. A primitive field + average
with IO

uniformJumpAMI This boundary condition provides a jump condition, using
the çyclicAMI condition as a base. The jump is specified as a
time-varying uniform value across the patch

uniformJump This boundary condition provides a jump condition, using the
çyclic condition as a base. The jump is specified as a time-
varying uniform value across the patch

activeBaffleVelocity This velocity boundary condition simulates the opening of a
baffle due to local flow conditions, by merging the behaviours
of wall and cyclic conditions. The baffle joins two mesh re-
gions, where the open fraction determines the interpolation
weights applied to each cyclic- and neighbour-patch contribu-
tion

activePressureForce-
BaffleVelocity

This boundary condition is applied to the flow velocity, to
simulate the opening or closure of a baffle due to area averaged
pressure or force delta, between both sides of the baffle. This
is achieved by merging the behaviours of wall and cyclic baffles
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fan This boundary condition provides a jump condition, using the
çyclic condition as a base

fixedJumpAMI This boundary condition provides a jump condition, across
non-conformal cyclic path-pairs, employing an arbitraryMesh-
Interface (AMI)

fixedJump This boundary condition provides a jump condition, using the
çyclic condition as a base

mappedField This boundary condition provides a self-contained version of
the m̧apped condition. It does not use information on the
patch; instead it holds thr data locally

mappedFixedInternal-
Value

This boundary condition maps the boundary and internal val-
ues of a neighbour patch field to the boundary and internal
values of *this

mappedFixedPushed-
InternalValue

This boundary condition maps the boundary values of a neigh-
bour patch field to the boundary and internal cell values of
*this

mappedFixedValue This boundary condition maps the value at a set of cells or
patch faces back to *this

mappedFlowRate Describes a volumetric/mass flow normal vector boundary
condition by its magnitude as an integral over its area

mappedVelocityFlux-
FixedValue

This boundary condition maps the velocity and flux from a
neighbour patch to this patch

timeVaryingMapped-
FixedValue

This boundary conditions interpolates the values from a set
of supplied points in space and time. Supplied data should
be specified in constant/boundaryData/patchname where: -
points : pointField with locations - ddd : supplied values at
time ddd The default mode of operation (mapMethod planar-
Interpolation) is to project the points onto a plane (con-
structed from the first threee points) and construct a 2D tri-
angulation and finds for the face centres the triangle it is in
and the weights to the 3 vertices. A primitive field + average
with IO

uniformJumpAMI This boundary condition provides a jump condition, using
the çyclicAMI condition as a base. The jump is specified as a
time-varying uniform value across the patch

uniformJump This boundary condition provides a jump condition, using the
çyclic condition as a base. The jump is specified as a time-
varying uniform value across the patch
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Table A.12: Coupled boundary conditions.

Generic
codedFixedValue Constructs on-the-fly a new boundary condition (derived from

fixedValueFvPatchField) which is then used to evaluate

codedMixed Constructs on-the-fly a new boundary condition (derived from
mixedFvPatchField) which is then used to evaluate

fixedInternalValueFv-
PatchField

This boundary condition provides a mechanism to set bound-
ary (cell) values directly into a matrix, i.e. to set a constraint
condition. Default behaviour is to act as a zero gradient con-
dition

fixedMean This boundary condition extrapolates field to the patch using
the near-cell values and adjusts the distribution to match the
specified mean value

fixedNormalSlip This boundary condition sets the patch-normal component to
a fixed value

fixedProfile This boundary condition provides a fixed value profile condi-
tion

mappedField This boundary condition provides a self-contained version of
the m̧apped condition. It does not use information on the
patch; instead it holds thr data locally

mappedFixedInternal-
Value

This boundary condition maps the boundary and internal val-
ues of a neighbour patch field to the boundary and internal
values of *this

mappedFixedPushed-
InternalValue

This boundary condition maps the boundary values of a neigh-
bour patch field to the boundary and internal cell values of
*this

mappedFixedValue This boundary condition maps the value at a set of cells or
patch faces back to *this

oscillatingFixedValue This boundary condition provides an oscillating condition in
terms of amplitude and frequency

partialSlip This boundary condition provides a partial slip condition.
The amount of slip is controlled by a user-supplied field
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phaseHydrostatic-
Pressure

This boundary condition provides a phase-based hydrostatic
pressure condition, calculated as:

prghPressure This boundary condition provides static pressure condition
for p rgh, calculated as:

prghTotalPressure This boundary condition provides static pressure condition
for p rgh, calculated as:

rotatingWallVelocity This boundary condition provides a rotational velocity condi-
tion

slip This boundary condition provides a slip constraint

surfaceNormalFixed-
Value

This boundary condition provides a surface-normal vector
boundary condition by its magnitude

translatingWallVelocity This boundary condition provides a velocity condition for
translational motion on walls

uniformDensity-
HydrostaticPressure

This boundary condition provides a hydrostatic pressure con-
dition, calculated as:

uniformFixedGradient This boundary condition provides a uniform fixed gradient
condition

uniformFixedValue This boundary condition provides a uniform fixed value con-
dition

codedFixedValue Constructs on-the-fly a new boundary condition (derived from
fixedValueFvPatchField) which is then used to evaluate

codedMixed Constructs on-the-fly a new boundary condition (derived from
mixedFvPatchField) which is then used to evaluate

fixedInternalValueFv-
PatchField

This boundary condition provides a mechanism to set bound-
ary (cell) values directly into a matrix, i.e. to set a constraint
condition. Default behaviour is to act as a zero gradient con-
dition

fixedMean This boundary condition extrapolates field to the patch using
the near-cell values and adjusts the distribution to match the
specified mean value

fixedNormalSlip This boundary condition sets the patch-normal component to
a fixed value

fixedProfile This boundary condition provides a fixed value profile condi-
tion
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mappedField This boundary condition provides a self-contained version of
the m̧apped condition. It does not use information on the
patch; instead it holds thr data locally

mappedFixedInternal-
Value

This boundary condition maps the boundary and internal val-
ues of a neighbour patch field to the boundary and internal
values of *this

mappedFixedPushed-
InternalValue

This boundary condition maps the boundary values of a neigh-
bour patch field to the boundary and internal cell values of
*this

mappedFixedValue This boundary condition maps the value at a set of cells or
patch faces back to *this

oscillatingFixedValue This boundary condition provides an oscillating condition in
terms of amplitude and frequency

partialSlip This boundary condition provides a partial slip condition.
The amount of slip is controlled by a user-supplied field

phaseHydrostatic-
Pressure

This boundary condition provides a phase-based hydrostatic
pressure condition, calculated as:

prghPressure This boundary condition provides static pressure condition
for p rgh, calculated as:

prghTotalPressure This boundary condition provides static pressure condition
for p rgh, calculated as:

rotatingWallVelocity This boundary condition provides a rotational velocity condi-
tion

slip This boundary condition provides a slip constraint

surfaceNormalFixed-
Value

This boundary condition provides a surface-normal vector
boundary condition by its magnitude

translatingWallVelocity This boundary condition provides a velocity condition for
translational motion on walls

uniformDensity-
HydrostaticPressure

This boundary condition provides a hydrostatic pressure con-
dition, calculated as:

uniformFixedGradient This boundary condition provides a uniform fixed gradient
condition

Continued on next page
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Continued from previous page

uniformFixedValue This boundary condition provides a uniform fixed value con-
dition

codedFixedValue Constructs on-the-fly a new boundary condition (derived from
fixedValueFvPatchField) which is then used to evaluate

codedMixed Constructs on-the-fly a new boundary condition (derived from
mixedFvPatchField) which is then used to evaluate

fixedInternalValueFv-
PatchField

This boundary condition provides a mechanism to set bound-
ary (cell) values directly into a matrix, i.e. to set a constraint
condition. Default behaviour is to act as a zero gradient con-
dition

fixedNormalSlip This boundary condition sets the patch-normal component to
a fixed value

fixedProfile This boundary condition provides a fixed value profile condi-
tion

mappedField This boundary condition provides a self-contained version of
the m̧apped condition. It does not use information on the
patch; instead it holds thr data locally

mappedFixedInternal-
Value

This boundary condition maps the boundary and internal val-
ues of a neighbour patch field to the boundary and internal
values of *this

mappedFixedPushed-
InternalValue

This boundary condition maps the boundary values of a neigh-
bour patch field to the boundary and internal cell values of
*this

mappedFixedValue This boundary condition maps the value at a set of cells or
patch faces back to *this

partialSlip This boundary condition provides a partial slip condition.
The amount of slip is controlled by a user-supplied field

phaseHydrostatic-
Pressure

This boundary condition provides a phase-based hydrostatic
pressure condition, calculated as:

prghPressure This boundary condition provides static pressure condition
for p rgh, calculated as:

prghTotalPressure This boundary condition provides static pressure condition
for p rgh, calculated as:

rotatingWallVelocity This boundary condition provides a rotational velocity condi-
tion

Continued on next page
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Continued from previous page

slip This boundary condition provides a slip constraint

surfaceNormalFixed-
Value

This boundary condition provides a surface-normal vector
boundary condition by its magnitude

translatingWallVelocity This boundary condition provides a velocity condition for
translational motion on walls

uniformDensity-
HydrostaticPressure

This boundary condition provides a hydrostatic pressure con-
dition, calculated as:

uniformFixedGradient This boundary condition provides a uniform fixed gradient
condition

uniformFixedValue This boundary condition provides a uniform fixed value con-
dition

Table A.13: Generic boundary conditions.
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Index

Symbols Numbers A B C D E F G H I J K L M N O P Q R S T U V W X Z

Symbols
//

OpenFOAM file syntax, U-16

<LESModel>Coeffs keyword, U-71

<RASModel>Coeffs keyword, U-71

<delta>Coeffs keyword, U-71

DPMFoam solver, U-110

MPPICFoam solver, U-110

MPPICInterFoam solver, U-108

PDRFoam solver, U-109

SRFPimpleFoam solver, U-106

SRFSimpleFoam solver, U-106

XiDyMFoam solver, U-109

XiFoam solver, U-109

adjointShapeOptimizationFoam solver, U-105

boundaryFoam solver, U-105

buoyantBoussinesqPimpleFoam solver, U-109

buoyantBoussinesqSimpleFoam solver, U-109

buoyantPimpleFoam solver, U-110

buoyantSimpleFoam solver, U-110

cavitatingDyMFoam solver, U-107

cavitatingFoam solver, U-107

chemFoam solver, U-109

chtMultiRegionFoam solver, U-110

chtMultiRegionSimpleFoam solver, U-110

coalChemistryFoam solver, U-110

coldEngineFoam solver, U-109

compressibleInterDyMFoam solver, U-107

compressibleInterFoam solver, U-107

compressibleMultiphaseInterFoam solver, U-107

dnsFoam solver, U-109

driftFluxFoam solver, U-107

dsmcFoam solver, U-111

electrostaticFoam solver, U-111

engineFoam solver, U-109

financialFoam solver, U-112

fireFoam solver, U-109

icoFoam solver, U-105

icoUncoupledKinematicParcelDyMFoam solver,
U-110

icoUncoupledKinematicParcelFoam solver, U-110

interDyMFoam solver, U-107

interFoam solver, U-107

interMixingFoam solver, U-107

interPhaseChangeDyMFoam solver, U-108

interPhaseChangeFoam solver, U-108

laplacianFoam solver, U-105

magneticFoam solver, U-111

mdEquilibrationFoam solver, U-111

mdFoam solver, U-111

mhdFoam solver, U-111

multiphaseEulerFoam solver, U-108

multiphaseInterDyMFoam solver, U-108

multiphaseInterFoam solver, U-108

nonNewtonianIcoFoam solver, U-105

pimpleDyMFoam solver, U-106

pimpleFoam solver, U-106

pisoFoam solver, U-106

porousSimpleFoam solver, U-106

potentialFoam solver, U-105

potentialFreeSurfaceDyMFoam solver, U-108

potentialFreeSurfaceFoam solver, U-108

reactingFoam solver, U-109

reactingMultiphaseEulerFoam solver, U-108

reactingParcelFilmFoam solver, U-110

reactingParcelFoam solver, U-110

reactingTwoPhaseEulerFoam solver, U-108

rhoCentralDyMFoam solver, U-106

rhoCentralFoam solver, U-106

rhoPimpleDyMFoam solver, U-106

rhoPimpleFoam solver, U-106

rhoPorousSimpleFoam solver, U-106

rhoReactingBuoyantFoam solver, U-109

rhoReactingFoam solver, U-109

rhoSimpleFoam solver, U-106

scalarTransportFoam solver, U-105

shallowWaterFoam solver, U-106

simpleCoalParcelFoam solver, U-111

simpleFoam solver, U-106

simpleReactingParcelFoam solver, U-110

solidDisplacementFoam solver, U-111

solidEquilibriumDisplacementFoam solver, U-111

sonicDyMFoam solver, U-107

sonicFoam solver, U-107
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sonicLiquidFoam solver, U-107

sprayDyMFoam solver, U-111

sprayEngineFoam solver, U-111

sprayFoam solver, U-111

thermoFoam solver, U-110

twoLiquidMixingFoam solver, U-108

twoPhaseEulerFoam solver, U-109

uncoupledKinematicParcelFoam solver, U-111

0.000000e+00 directory, U-16

1-dimensional mesh, U-34

1D mesh, U-34

2-dimensional mesh, U-34

2D mesh, U-34

Numbers
0 directory, U-16

A
activeBaffleVelocity

boundary condition, U-149–U-151

activePressureForceBaffleVelocity

boundary condition, U-149–U-151

addLayersControls keyword, U-47

adiabaticFlameT utility, U-122

adjustableRunTime

keyword entry, U-74

adjustTimeStep keyword, U-74

advective

boundary condition, U-142, U-143, U-145

agglomerator keyword, U-84

algorithms tools, U-123

allowFreeStandingZoneFaces keyword, U-49

Animations window panel, U-96

anisotropicFilter model, U-127

Annotation window panel, U-95

ansysToFoam utility, U-113

APIfunctions model, U-126

applications, U-25

Apply button, U-92, U-96

applyBoundaryLayer utility, U-112

arc

keyword entry, U-40

arc keyword, U-39

As keyword, U-69

ascii

keyword entry, U-74

attachMesh utility, U-114

Auto Accept button, U-96

autoPatch utility, U-115

autoMesh

library, U-124

axes

right-handed, U-38

axi-symmetric cases, U-37, U-44

axi-symmetric mesh, U-34

B
background

process, U-26

backward

keyword entry, U-81

barotropicCompressibilityModels

library, U-126

basic

library, U-124

basicMultiComponentMixture model, U-67,
U-125

basicSolidThermo

library, U-126

basicThermophysicalModels

library, U-125

binary

keyword entry, U-74

BirdCarreau model, U-128

block

expansion ratio, U-41

block keyword, U-39

blockMesh utility, U-113

blockMesh

library, U-124

blockMesh utility, U-38

blockMesh executable

vertex numbering, U-41

blockMeshDict

dictionary, U-38, U-45

blocks keyword, U-40

boundaries, U-36

boundary, U-36

boundary

dictionary, U-33, U-38

boundary keyword, U-41, U-42

boundary condition

activeBaffleVelocity, U-149–U-151

activePressureForceBaffleVelocity, U-149–U-151

advective, U-142, U-143, U-145

codedFixedValue, U-153, U-154, U-156

codedMixed, U-153, U-154, U-156

cyclic, U-38, U-42, U-129–U-131

cyclicACMI, U-129–U-131

cyclicAMI, U-129–U-131

cyclicSlip, U-129–U-131

cylindricalInletVelocity, U-132, U-135, U-138

empty, U-34, U-37, U-129–U-131

fan, U-149, U-150, U-152

fanPressure, U-132, U-135, U-138, U-142,
U-143, U-145

fixedFluxExtrapolatedPressure, U-138,
U-148
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fixedFluxPressure, U-132, U-135, U-138,
U-147, U-148

fixedGradient, U-128, U-129
fixedInternalValueFvPatchField, U-153,

U-154, U-156
fixedJump, U-149, U-150, U-152
fixedJumpAMI, U-149, U-150, U-152
fixedMean, U-138, U-153, U-154
fixedNormalInletOutletVelocity, U-132,

U-135, U-139, U-142, U-143, U-145
fixedNormalSlip, U-147, U-148, U-153,

U-154, U-156
fixedPressureCompressibleDensity, U-132,

U-135, U-139
fixedProfile, U-153, U-154, U-156
fixedValue, U-128, U-129
flowRateInletVelocity, U-132, U-135, U-139
fluxCorrectedVelocity, U-142, U-144, U-145
freestream, U-132, U-136, U-139, U-142,

U-144, U-145
freestreamPressure, U-133, U-136, U-139,

U-142, U-144, U-146
inletOutlet, U-142, U-144, U-146
inletOutletTotalTemperature, U-142, U-144,

U-146
jumpCyclic, U-129–U-131
jumpCyclicAMI, U-129–U-131
mappedField, U-149, U-150, U-152, U-153,

U-155, U-156
mappedFixedInternalValue, U-149, U-151–U-153,

U-155, U-156
mappedFixedPushedInternalValue, U-149,

U-151–U-153, U-155, U-156
mappedFixedValue, U-149, U-151–U-153,

U-155, U-156
mappedFlowRate, U-133, U-136, U-139,

U-149, U-151, U-152
mappedVelocityFluxFixedValue, U-133,

U-136, U-139, U-150–U-152
movingWallVelocity, U-147, U-148
noSlip, U-148
nonuniformTransformCyclic, U-129–U-131
oscillatingFixedValue, U-153, U-155
outletInlet, U-133, U-136, U-139
outletMappedUniformInlet, U-133, U-136,

U-139
outletPhaseMeanVelocity, U-142, U-144,

U-146
partialSlip, U-147, U-148, U-153, U-155,

U-156
patch, U-37
phaseHydrostaticPressure, U-154–U-156
pressureDirectedInletOutletVelocity, U-133,

U-136, U-139, U-142, U-144, U-146

pressureDirectedInletVelocity, U-133, U-136,
U-139

pressureInletOutletParSlipVelocity, U-133,
U-136, U-139, U-142, U-144, U-146

pressureInletOutletVelocity, U-133, U-136,
U-140, U-143, U-144, U-146

pressureInletUniformVelocity, U-133, U-136,
U-140

pressureInletVelocity, U-133, U-137, U-140

pressureNormalInletOutletVelocity, U-134,
U-137, U-140, U-143, U-144, U-146

pressurePIDControlInletVelocity, U-134,
U-137, U-140

prghPressure, U-154–U-156

prghTotalPressure, U-154–U-156

processor, U-38, U-130–U-132

processorCyclic, U-130–U-132

rotatingPressureInletOutletVelocity, U-134,
U-137, U-140, U-143, U-145, U-146

rotatingTotalPressure, U-134, U-137, U-140,
U-143, U-145, U-146

rotatingWallVelocity, U-147, U-148,
U-154–U-156

slip, U-147, U-148, U-154, U-155, U-157

supersonicFreestream, U-134, U-137, U-140,
U-143, U-145, U-147

surfaceNormalFixedValue, U-134, U-137,
U-140, U-154, U-155, U-157

swirlFlowRateInletVelocity, U-134, U-137,
U-140

symmetry, U-130–U-132

symmetryPlane, U-130–U-132

symmetryPlane, U-37

syringePressure, U-134, U-137, U-140

timeVaryingMappedFixedValue, U-134,
U-137, U-141, U-150–U-152

totalPressure, U-134, U-138, U-141, U-143,
U-145, U-147

totalTemperature, U-135, U-138, U-141,
U-143, U-145, U-147

translatingWallVelocity, U-147–U-149,
U-154, U-155, U-157

turbulentDFSEMInlet, U-141

turbulentInlet, U-135, U-138, U-141

turbulentIntensityKineticEnergyInlet, U-135,
U-138, U-141

uniformDensityHydrostaticPressure, U-154,
U-155, U-157

uniformFixedGradient, U-154, U-155, U-157

uniformFixedValue, U-154, U-156, U-157

uniformInletOutlet, U-143, U-145, U-147

uniformJump, U-150–U-152

uniformJumpAMI, U-150–U-152
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uniformTotalPressure, U-135, U-138, U-141,
U-143, U-145, U-147

variableHeightFlowRate, U-135, U-138,
U-141

variableHeightFlowRateInletVelocity, U-135,
U-138, U-141

wall, U-37

waveSurfacePressure, U-135, U-138, U-141

waveTransmissive, U-143, U-145, U-147

wedge, U-34, U-37, U-44, U-130–U-132

zeroGradient, U-128, U-129

boundarycondition, U-65

boundaryconditions, U-65

boundaryData

keyword entry, U-102

boundaryField keyword, U-20

bounded

keyword entry, U-79, U-80

boxTurb utility, U-112

button

Apply, U-92, U-96

Auto Accept, U-96

Choose Preset, U-94

Delete, U-92

Edit Color Map, U-93

Orientation Axes, U-95

Reset, U-92

Set Ambient Color, U-94

Update GUI, U-93

Use parallel projection, U-95

C
cacheAgglomeration keyword, U-85

cases, U-15

castellatedMesh keyword, U-47

castellatedMeshControls

dictionary, U-48, U-50

castellatedMeshControls keyword, U-47

ccm26ToFoam utility, U-114

CEI ARCH

environment variable, U-101

CEI HOME

environment variable, U-101

cell

expansion ratio, U-41

cell

keyword entry, U-102

cellLimited

keyword entry, U-79

cellPatchConstrained

keyword entry, U-102

cellPoint

keyword entry, U-102

cellPointFace

keyword entry, U-102
cells

dictionary, U-38
cfdTools tools, U-123
cfx4ToFoam utility, U-113
cfx4ToFoam utility, U-53
changeDictionary utility, U-112
Charts window panel, U-96
checkMesh utility, U-115
checkMesh utility, U-55
chemistryModel

library, U-126
chemistryModel model, U-126
chemistrySolver model, U-126
chemkinToFoam utility, U-122
Choose Preset button, U-94
Chung

library, U-126
class

polyMesh, U-31, U-33
vector, U-19

class keyword, U-17
clockTime

keyword entry, U-74
cloud keyword, U-104
Co utility, U-117
coalCombustion

library, U-124
codedFixedValue

boundary condition, U-153, U-154, U-156
codedMixed

boundary condition, U-153, U-154, U-156
collapseEdges utility, U-116
Color By menu, U-94
Color Legend window panel, U-94
Color Scale window panel, U-94
Colors window panel, U-96
combinePatchFaces utility, U-116
compressed

keyword entry, U-74
constant directory, U-15, U-65
constLaminarFlameSpeed model, U-126
constTransport model, U-67, U-126
containers tools, U-123
control

of time, U-73
controlDict

dictionary, U-15, U-60
conversion

library, U-124
convertToMeters keyword, U-39
corrected

keyword entry, U-79, U-80
Cp keyword, U-69
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cpuTime

keyword entry, U-74

CrankNicholson

keyword entry, U-81

createBaffles utility, U-115

createExternalCoupledPatchGeometry utility,
U-112

createPatch utility, U-115

createTurbulenceFields utility, U-118

createZeroDirectory utility, U-112

CrossPowerLaw model, U-128

csv

keyword entry, U-102

cubeRootVolDelta model, U-127

cubicCorrected

keyword entry, U-81

cubicCorrection

keyword entry, U-78

Current Time Controls menu, U-93

Cv keyword, U-69

cyclic

boundary condition, U-38, U-42,
U-129–U-131

cyclic

keyword entry, U-37

cyclicACMI

boundary condition, U-129–U-131

cyclicAMI

boundary condition, U-129–U-131

cyclicSlip

boundary condition, U-129–U-131

cylindricalInletVelocity

boundary condition, U-132, U-135, U-138

D
datToFoam utility, U-113

db tools, U-123

DeardorffDiffStress model, U-127

debug keyword, U-47

decomposePar utility, U-121

decomposePar utility, U-26, U-27

decomposeParDict

dictionary, U-26

decomposition

of field, U-26

of mesh, U-26

decompositionMethods

library, U-124

deformedGeom utility, U-115

Delete button, U-92

delta keyword, U-28, U-71

deltaT keyword, U-73

DESModels

library, U-127

diagonal

keyword entry, U-83, U-84
DIC

keyword entry, U-84
DICGaussSeidel

keyword entry, U-84
dictionary

blockMeshDict, U-38, U-45
boundary, U-33, U-38
castellatedMeshControls, U-48, U-50
cells, U-38
controlDict, U-15, U-60
decomposeParDict, U-26
faces, U-33, U-38
fvSchemes, U-15, U-75, U-76
fvSolution, U-15, U-82
neighbour, U-33
owner, U-33
points, U-33, U-38
thermophysicalProperties, U-66
turbulenceProperties, U-71

dieselMixture model, U-67, U-125
DILU

keyword entry, U-84
dimension

checking in OpenFOAM, U-19
dimensional units, U-19
dimensionedTypes tools, U-123
dimensions keyword, U-20
dimensionSet tools, U-123
directory

0.000000e+00, U-16
0, U-16
constant, U-15, U-65
fluentInterface, U-98
polyMesh, U-15, U-33
processorN , U-27
run, U-15
system, U-15

Display window panel, U-92, U-93
distance

keyword entry, U-50, U-104
distributed model, U-125
distributed keyword, U-28, U-29
distributionModels

library, U-124
divSchemes keyword, U-76
doLayers keyword, U-47
dsmc

library, U-124
dsmcFieldsCalc utility, U-119
dsmcInitialise utility, U-112
dx

keyword entry, U-102
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dynamicFvMesh

library, U-124

dynamicKEqn model, U-127

dynamicLagrangian model, U-127

dynamicMesh

library, U-124

E
eConstThermo model, U-67, U-126

edgeGrading keyword, U-41

edgeMesh

library, U-124

edges keyword, U-39

Edit menu, U-95, U-96

Edit Color Map button, U-93

egrMixture model, U-67, U-125

empty

boundary condition, U-34, U-37,
U-129–U-131

empty

keyword entry, U-37

endTime keyword, U-73

engine

library, U-124

engineCompRatio utility, U-119

engineSwirl utility, U-112

ensight

keyword entry, U-102

ensight74FoamExec utility, U-100

ENSIGHT7 INPUT

environment variable, U-101

ENSIGHT7 READER

environment variable, U-101

ensightFoamReader utility, U-117

enstrophy utility, U-117

environment variable

CEI ARCH, U-101

CEI HOME, U-101

ENSIGHT7 INPUT, U-101

ENSIGHT7 READER, U-101

FOAM RUN, U-15

equilibriumCO utility, U-122

equilibriumFlameT utility, U-122

errorReduction keyword, U-63

Euler

keyword entry, U-81

execFlowFunctionObjects utility, U-119

expandDictionary utility, U-122

expansionRatio keyword, U-62

explicitFeatureSnap keyword, U-51

extrude2DMesh utility, U-113

F
face keyword, U-104

faceAgglomerate utility, U-112
faceAreaPair

keyword entry, U-84
faceLimited

keyword entry, U-79
faces

dictionary, U-33, U-38
fan

boundary condition, U-149, U-150, U-152
fanPressure

boundary condition, U-132, U-135, U-138,
U-142, U-143, U-145

FDIC

keyword entry, U-84
featureAngle keyword, U-62
features keyword, U-48, U-49
field

decomposition, U-26
fieldFunctionObjects

library, U-123
fields

mapping, U-60
fields tools, U-123
fields keyword, U-102
file

snappyHexMeshDict, U-46
file format, U-16
fileFormats

library, U-124
filteredLinear2

keyword entry, U-78
finalLayerThickness keyword, U-62
finiteVolume

library, U-123
finiteVolume tools, U-123
firstLayerThickness keyword, U-62
firstTime keyword, U-73
fixed

keyword entry, U-74
fixedFluxExtrapolatedPressure

boundary condition, U-138, U-148
fixedFluxPressure

boundary condition, U-132, U-135, U-138,
U-147, U-148

fixedGradient
boundary condition, U-128, U-129

fixedInternalValueFvPatchField
boundary condition, U-153, U-154, U-156

fixedJump
boundary condition, U-149, U-150, U-152

fixedJumpAMI
boundary condition, U-149, U-150, U-152

fixedMean
boundary condition, U-138, U-153, U-154
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fixedNormalInletOutletVelocity
boundary condition, U-132, U-135, U-139,

U-142, U-143, U-145
fixedNormalSlip

boundary condition, U-147, U-148, U-153,
U-154, U-156

fixedPressureCompressibleDensity
boundary condition, U-132, U-135, U-139

fixedProfile
boundary condition, U-153, U-154, U-156

fixedValue
boundary condition, U-128, U-129

flattenMesh utility, U-115
flowRateInletVelocity

boundary condition, U-132, U-135, U-139
flowType utility, U-117
fluent3DMeshToFoam utility, U-113
fluentMeshToFoam utility, U-114
fluentInterface directory, U-98
fluentMeshToFoam utility, U-53
fluxCorrectedVelocity

boundary condition, U-142, U-144, U-145
OpenFOAM

cases, U-15
FOAM RUN

environment variable, U-15
foamCalc utility, U-117, U-119
foamDataToFluent utility, U-117
foamDebugSwitches utility, U-122
foamFormatConvert utility, U-122
foamHelp utility, U-122
foamInfoExec utility, U-122
foamListTimes utility, U-119
foamMeshToFluent utility, U-114
foamToEnsight utility, U-117
foamToEnsightParts utility, U-117
foamToGMV utility, U-117
foamToStarMesh utility, U-114
foamToSurface utility, U-114
foamToTecplot360 utility, U-117
foamToTetDualMesh utility, U-117
foamToVTK utility, U-117
foamUpgradeCyclics utility, U-112
foamCalcFunctions

library, U-123
foamCorrectVrt script/alias, U-58
foamDataToFluent utility, U-98
FoamFile keyword, U-17
foamFile

keyword entry, U-102
foamJob script/alias, U-87
foamLog script/alias, U-88
foamMeshToFluent utility, U-98
foamyHexMesh utility, U-113

foamyHexMeshBackgroundMesh utility, U-113

foamyHexMeshSurfaceSimplify utility, U-113

foamyQuadMesh utility, U-113

forces

library, U-123

format keyword, U-17

fourth

keyword entry, U-79, U-80

freestream

boundary condition, U-132, U-136, U-139,
U-142, U-144, U-145

freestreamPressure

boundary condition, U-133, U-136, U-139,
U-142, U-144, U-146

functions keyword, U-75

fvDOM

library, U-125

fvMatrices tools, U-123

fvMesh tools, U-123

fvMotionSolvers

library, U-124

fvSchemes

dictionary, U-15, U-75, U-76

fvSolution

dictionary, U-15, U-82

G
gambitToFoam utility, U-114

gambitToFoam utility, U-53

GAMG

keyword entry, U-83, U-84

Gamma

keyword entry, U-78

Gauss

keyword entry, U-79

GaussSeidel

keyword entry, U-84

General window panel, U-95, U-96

general

keyword entry, U-74

genericFvPatchField

library, U-124

geometric-algebraic multi-grid, U-84

geometry keyword, U-47

global tools, U-123

gmshToFoam utility, U-114

gnuplot

keyword entry, U-75, U-102

gradSchemes keyword, U-76

graph tools, U-123

graphFormat keyword, U-74

GuldersEGRLaminarFlameSpeed model, U-126

GuldersLaminarFlameSpeed model, U-126
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H
hConstThermo model, U-67, U-126

heheuMixtureThermo model, U-68, U-125

Help menu, U-95

hePsiMixtureThermo model, U-68, U-125

hePsiThermo model, U-67, U-125

heRhoMixtureThermo model, U-68, U-125

heRhoThermo model, U-68, U-125

HerschelBulkley model, U-128

Hf keyword, U-69

hierarchical

keyword entry, U-27, U-28

highCpCoeffs keyword, U-69

homogeneousMixture model, U-67, U-125

hPolynomialThermo model, U-67, U-126

I
icoPolynomial model, U-67, U-126

ideasUnvToFoam utility, U-114

ideasToFoam utility, U-53

implicitFeatureSnap keyword, U-51

incompressibleTransportModels

library, U-128

Information window panel, U-92

inhomogeneousMixture model, U-67, U-125

inletOutlet

boundary condition, U-142, U-144, U-146

inletOutletTotalTemperature

boundary condition, U-142, U-144, U-146

inside

keyword entry, U-50

insideCells utility, U-115

interfaceProperties

library, U-128

interfaceProperties model, U-128

intermediate

library, U-124

internalField keyword, U-20

interpolation tools, U-123

interpolationScheme keyword, U-102

interpolations tools, U-123

interpolationSchemes keyword, U-76

iterations

maximum, U-83

J
janafThermo model, U-67, U-126

jobControl

library, U-123

jplot

keyword entry, U-75, U-102

jumpCyclic

boundary condition, U-129–U-131

jumpCyclicAMI

boundary condition, U-129–U-131

K
kEpsilon model, U-127

kEqn model, U-127

keyword

As, U-69

Cp, U-69

Cv, U-69

FoamFile, U-17

Hf, U-69

LESModel, U-71

Pr, U-69

RASModel, U-71

Tcommon, U-69

Thigh, U-69

Tlow, U-69

Ts, U-69

addLayersControls, U-47

adjustTimeStep, U-74

agglomerator, U-84

allowFreeStandingZoneFaces, U-49

arc, U-39

blocks, U-40

block, U-39

boundaryField, U-20

boundary, U-41, U-42

cacheAgglomeration, U-85

castellatedMeshControls, U-47

castellatedMesh, U-47

class, U-17

cloud, U-104

convertToMeters, U-39

debug, U-47

deltaT, U-73

delta, U-28, U-71

dimensions, U-20

distributed, U-28, U-29

divSchemes, U-76

doLayers, U-47

edgeGrading, U-41

edges, U-39

endTime, U-73

errorReduction, U-63

expansionRatio, U-62

explicitFeatureSnap, U-51

face, U-104

featureAngle, U-62

features, U-48, U-49

fields, U-102

finalLayerThickness, U-62

firstLayerThickness, U-62

firstTime, U-73

format, U-17
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functions, U-75
geometry, U-47
gradSchemes, U-76
graphFormat, U-74
highCpCoeffs, U-69
implicitFeatureSnap, U-51
internalField, U-20
interpolationSchemes, U-76
interpolationScheme, U-102
laplacianSchemes, U-76
layers, U-62
levels, U-50
libs, U-75
locationInMesh, U-49
location, U-17
lowCpCoeffs, U-69
manualCoeffs, U-28
maxBoundarySkewness, U-63
maxConcave, U-63
maxCo, U-74
maxDeltaT, U-74
maxFaceThicknessRatio, U-62
maxGlobalCells, U-49
maxInternalSkewness, U-63
maxIter, U-83
maxLoadUnbalance, U-49
maxLocalCells, U-49
maxNonOrtho, U-63
maxThicknessToMedialRatio, U-62
maxThicknessToMedialRatio, U-62
mergeLevels, U-85
mergePatchPairs, U-39
mergeTolerance, U-47
meshQualityControls, U-47
method, U-28
midPointAndFace, U-104
midPoint, U-104
minArea, U-63
minDeterminant, U-63
minFaceWeight, U-63
minFlatness, U-63
minMedialAxisAngle, U-62
minRefinementCells, U-49
minTetQuality, U-63
minThickness, U-62
minTriangleTwist, U-63
minTwist, U-63
minVolRatio, U-63
minVol, U-63
mode, U-50
molWeight, U-68
multiRegionFeatureSnap, U-51
mu, U-69
nBufferCellsNoExtrude, U-62

nCellsBetweenLevels, U-49
nFaces, U-34
nFeatureSnapIter, U-51
nFinestSweeps, U-85
nGrow, U-62
nLayerIter, U-62
nMoles, U-68
nPostSweeps, U-85
nPreSweeps, U-85
nRelaxIter, U-51, U-62
nRelaxedIter, U-62
nSmoothNormals, U-62
nSmoothPatch, U-51
nSmoothScale, U-63
nSmoothSurfaceNormals, U-62
nSmoothThickness, U-62
nSolveIter, U-51
neighbourPatch, U-42
numberOfSubdomains, U-28
n, U-28
object, U-17
order, U-28
pRefCell, U-86
pRefValue, U-86
p rhgRefCell, U-86
p rhgRefValue, U-86
patchCloud, U-104
patchMap, U-60
patchSeed, U-104
patches, U-39
polyLine, U-104
preconditioner, U-83, U-84
printCoeffs, U-71
processorWeights, U-27
processorWeights, U-28
purgeWrite, U-74
refinementRegions, U-49, U-50
refinementSurfaces, U-48, U-49
refinementRegions, U-50
relTol, U-83
relativeSizes, U-62
relaxed, U-63
resolveFeatureAngle, U-48, U-49
roots, U-28, U-29
runTimeModifiable, U-75
scotchCoeffs, U-28
setFormat, U-102
sets, U-102
simpleGrading, U-41
simulationType, U-71
smoother, U-85
snGradSchemes, U-76
snapControls, U-47
snap, U-47
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solvers, U-82
solver, U-82
specie, U-68
spline, U-39
startFace, U-34
startFrom, U-73
startTime, U-73
stopAt, U-73
strategy, U-27, U-28
surfaceFormat, U-102
surfaces, U-102
thermoType, U-67
thermo, U-68
thickness, U-62
timeFormat, U-74
timePrecision, U-74
timeScheme, U-76
tolerance, U-51, U-83
transport, U-68
triSurfaceMeshPointSet, U-104
turbulence, U-71
type, U-36
uniform, U-104
version, U-17
vertices, U-39
writeCompression, U-74
writeControl, U-74
writeFormat, U-74
writeInterval, U-74
writePrecision, U-74
<LESModel>Coeffs, U-71
<RASModel>Coeffs, U-71
<delta>Coeffs, U-71

keyword entry
CrankNicholson, U-81
DICGaussSeidel, U-84
DIC, U-84
DILU, U-84
Euler, U-81
FDIC, U-84
GAMG, U-83, U-84
Gamma, U-78
GaussSeidel, U-84
Gauss, U-79
LES, U-71
MGridGen, U-84
MUSCL, U-78
PBiCG, U-83
PCG, U-83
QUICK, U-81
RAS, U-71
SFCD, U-78, U-81
UMIST, U-77
adjustableRunTime, U-74

arc, U-40
ascii, U-74
backward, U-81
binary, U-74
boundaryData, U-102
bounded, U-79, U-80
cellLimited, U-79
cellPatchConstrained, U-102
cellPointFace, U-102
cellPoint, U-102
cell, U-102
clockTime, U-74
compressed, U-74
corrected, U-79, U-80
cpuTime, U-74
csv, U-102
cubicCorrected, U-81
cubicCorrection, U-78
cyclic, U-37
diagonal, U-83, U-84
distance, U-50, U-104
dx, U-102
empty, U-37
ensight, U-102
faceAreaPair, U-84
faceLimited, U-79
filteredLinear2, U-78
fixed, U-74
foamFile, U-102
fourth, U-79, U-80
general, U-74
gnuplot, U-75, U-102
hierarchical, U-27, U-28
inside, U-50
jplot, U-75, U-102
laminar, U-71
latestTime, U-73
leastSquares, U-79
limitedCubic, U-78
limitedLinear, U-78
limited, U-79, U-80
linearUpwind, U-78, U-81
linear, U-78, U-81
line, U-40
localEuler, U-81
manual, U-27, U-28
metis, U-28
midPoint, U-78
nastran, U-102
nextWrite, U-73
noWriteNow, U-73
none, U-77, U-84
null, U-102
outside, U-50
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patch, U-37, U-103

pointMVC, U-102

polyLine, U-40

polySpline, U-40

processor, U-37

raw, U-75, U-102

runTime, U-74

scientific, U-74

scotch, U-27, U-28

simpleSpline, U-40

simple, U-27, U-28

skewLinear, U-78, U-81

smoothSolver, U-83

starcd, U-102

startTime, U-73

steadyState, U-81

stl, U-102

symmetryPlane, U-37

timeStep, U-74

uncompressed, U-74

uncorrected, U-79, U-80

upwind, U-78, U-81

vanLeer, U-78

vtk, U-102

wall, U-37

wedge, U-37

writeControl, U-73

writeNow, U-73

xmgr, U-75, U-102

xyz, U-104

x, U-104

y, U-104

z, U-104

kivaToFoam utility, U-114

kOmega model, U-127

kOmegaSST model, U-127

kOmegaSSTDDES model, U-127

kOmegaSSTDES model, U-127

kOmegaSSTIDDES model, U-127

kOmegaSSTSAS model, U-127

L
Lambda2 utility, U-118

laminar model, U-127

laminar

keyword entry, U-71

laminarFlameSpeedModels

library, U-126

laplaceFilter model, U-127

laplacianSchemes keyword, U-76

latestTime

keyword entry, U-73

LaunderSharmaKE model, U-127

layers keyword, U-62

leastSquares

keyword entry, U-79
LES

keyword entry, U-71
LESdeltas

library, U-127
LESfilters

library, U-127
LESModel keyword, U-71
LESModels

library, U-127
levels keyword, U-50
libraries, U-25
library

Chung, U-126
DESModels, U-127
LESModels, U-127
LESdeltas, U-127
LESfilters, U-127
MGridGenGAMGAgglomeration, U-124
ODE, U-124
OSspecific, U-124
OpenFOAM, U-123
P1, U-125
PV3FoamReader, U-91
PV4FoamReader, U-91
RASModels, U-127
SLGThermo, U-126
Wallis, U-126
autoMesh, U-124
barotropicCompressibilityModels, U-126
basicSolidThermo, U-126
basicThermophysicalModels, U-125
basic, U-124
blockMesh, U-124
chemistryModel, U-126
coalCombustion, U-124
conversion, U-124
decompositionMethods, U-124
distributionModels, U-124
dsmc, U-124
dynamicFvMesh, U-124
dynamicMesh, U-124
edgeMesh, U-124
engine, U-124
fieldFunctionObjects, U-123
fileFormats, U-124
finiteVolume, U-123
foamCalcFunctions, U-123
forces, U-123
fvDOM, U-125
fvMotionSolvers, U-124
genericFvPatchField, U-124
incompressibleTransportModels, U-128
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interfaceProperties, U-128
intermediate, U-124
jobControl, U-123
laminarFlameSpeedModels, U-126
linear, U-126
liquidMixtureProperties, U-126
liquidProperties, U-126
meshTools, U-124
molecularMeasurements, U-124
molecule, U-124
pairPatchAgglomeration, U-124
postCalc, U-124
potential, U-124
radiationModels, U-125
randomProcesses, U-124
reactionThermophysicalModels, U-125
sampling, U-124
solarLoad, U-125
solidMixtureProperties, U-126
solidParticle, U-124
solidProperties, U-126
solid, U-126
specie, U-126
spray, U-124
surfMesh, U-124
surfaceFilmModels, U-128
systemCall, U-124
thermalPorousZone, U-127
thermophysicalFunctions, U-126
thermophysical, U-66
topoChangerFvMesh, U-124
triSurface, U-124
twoPhaseInterfaceProperties, U-128
utilityFunctionObjects, U-124
viewFactor, U-125
vtkPV3Foam, U-91
vtkPV4Foam, U-91

libs keyword, U-75
Lights window panel, U-95
limited

keyword entry, U-79, U-80
limitedCubic

keyword entry, U-78
limitedLinear

keyword entry, U-78
line

keyword entry, U-40
linear

library, U-126
linear

keyword entry, U-78, U-81
linearUpwind

keyword entry, U-78, U-81
liquidMixtureProperties

library, U-126

liquidProperties

library, U-126

localEuler

keyword entry, U-81

location keyword, U-17

locationInMesh keyword, U-49

lowCpCoeffs keyword, U-69

LRR model, U-127

M
Mach utility, U-118

manual

keyword entry, U-27, U-28

manualCoeffs keyword, U-28

mapFields utility, U-112

mapFieldsPar utility, U-113

mapFields utility, U-60

mappedField

boundary condition, U-149, U-150, U-152,
U-153, U-155, U-156

mappedFixedInternalValue

boundary condition, U-149, U-151–U-153,
U-155, U-156

mappedFixedPushedInternalValue

boundary condition, U-149, U-151–U-153,
U-155, U-156

mappedFixedValue

boundary condition, U-149, U-151–U-153,
U-155, U-156

mappedFlowRate

boundary condition, U-133, U-136, U-139,
U-149, U-151, U-152

mappedVelocityFluxFixedValue

boundary condition, U-133, U-136, U-139,
U-150–U-152

mapping

fields, U-60

matrices tools, U-123

maxBoundarySkewness keyword, U-63

maxCo keyword, U-74

maxConcave keyword, U-63

maxDeltaT keyword, U-74

maxDeltaxyz model, U-127

maxFaceThicknessRatio keyword, U-62

maxGlobalCells keyword, U-49

maximum iterations, U-83

maxInternalSkewness keyword, U-63

maxIter keyword, U-83

maxLoadUnbalance keyword, U-49

maxLocalCells keyword, U-49

maxNonOrtho keyword, U-63

maxThicknessToMedialRatio keyword, U-62

maxThicknessToMedialRatio keyword, U-62
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mdInitialise utility, U-113
memory tools, U-123
menu

Color By, U-94
Current Time Controls, U-93
Edit, U-95, U-96
Help, U-95
VCR Controls, U-93
View, U-95

menu entry
Save Animation, U-97
Save Screenshot, U-97
Settings, U-96
Solid Color, U-94
Toolbars, U-95
View Settings, U-95
Wireframe, U-94

mergeMeshes utility, U-115
mergeOrSplitBaffles utility, U-115
mergeLevels keyword, U-85
mergePatchPairs keyword, U-39
mergeTolerance keyword, U-47
mesh

1-dimensional, U-34
1D, U-34
2-dimensional, U-34
2D, U-34
axi-symmetric, U-34
block structured, U-38
decomposition, U-26
description, U-31
generation, U-38, U-45
grading, U-38, U-41
specification, U-31
split-hex, U-45
Stereolithography (STL), U-45
surface, U-45
validity constraints, U-31

meshes tools, U-123
meshQualityControls keyword, U-47
meshTools

library, U-124
message passing interface

openMPI, U-27
method keyword, U-28
metis

keyword entry, U-28
MGridGenGAMGAgglomeration

library, U-124
MGridGen

keyword entry, U-84
midPoint

keyword entry, U-78
midPoint keyword, U-104

midPointAndFace keyword, U-104
minArea keyword, U-63
minDeterminant keyword, U-63
minFaceWeight keyword, U-63
minFlatness keyword, U-63
minMedialAxisAngle keyword, U-62
minRefinementCells keyword, U-49
minTetQuality keyword, U-63
minThickness keyword, U-62
minTriangleTwist keyword, U-63
minTwist keyword, U-63
minVol keyword, U-63
minVolRatio keyword, U-63
mirrorMesh utility, U-115
mixtureAdiabaticFlameT utility, U-122
mode keyword, U-50
model

APIfunctions, U-126
BirdCarreau, U-128
CrossPowerLaw, U-128
DeardorffDiffStress, U-127
GuldersEGRLaminarFlameSpeed, U-126
GuldersLaminarFlameSpeed, U-126
HerschelBulkley, U-128
LRR, U-127
LaunderSharmaKE, U-127
NSRDSfunctions, U-126
Newtonian, U-128
PrandtlDelta, U-127
RNGkEpsilon, U-127
SSG, U-127
Smagorinsky, U-127
SpalartAllmarasDDES, U-127
SpalartAllmarasDES, U-127
SpalartAllmarasIDDES, U-128
SpalartAllmaras, U-127
WALE, U-127
anisotropicFilter, U-127
basicMultiComponentMixture, U-67, U-125
chemistryModel, U-126
chemistrySolver, U-126
constLaminarFlameSpeed, U-126
constTransport, U-67, U-126
cubeRootVolDelta, U-127
dieselMixture, U-67, U-125
distributed, U-125
dynamicKEqn, U-127
dynamicLagrangian, U-127
eConstThermo, U-67, U-126
egrMixture, U-67, U-125
hConstThermo, U-67, U-126
hPolynomialThermo, U-67, U-126
hePsiMixtureThermo, U-68, U-125
hePsiThermo, U-67, U-125
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heRhoMixtureThermo, U-68, U-125
heRhoThermo, U-68, U-125
heheuMixtureThermo, U-68, U-125
homogeneousMixture, U-67, U-125
icoPolynomial, U-67, U-126
inhomogeneousMixture, U-67, U-125
interfaceProperties, U-128
janafThermo, U-67, U-126
kEpsilon, U-127
kEqn, U-127
kOmegaSSTDDES, U-127
kOmegaSSTDES, U-127
kOmegaSSTIDDES, U-127
kOmegaSSTSAS, U-127
kOmegaSST, U-127
kOmega, U-127
laminar, U-127
laplaceFilter, U-127
maxDeltaxyz, U-127
multiComponentMixture, U-67, U-125
perfectGas, U-67, U-126
polynomialTransport, U-67, U-126
powerLaw, U-128
ptsotchDecomp, U-125
pureMixture, U-67, U-125
reactingMixture, U-67, U-125
realizableKE, U-127
reconstruct, U-125
scotchDecomp, U-125
simpleFilter, U-127
smoothDelta, U-127
specieThermo, U-67, U-126
sutherlandTransport, U-67, U-126
v2f, U-127
veryInhomogeneousMixture, U-67, U-125

modifyMesh utility, U-116
molecularMeasurements

library, U-124
molecule

library, U-124
molWeight keyword, U-68
moveDynamicMesh utility, U-115
moveEngineMesh utility, U-115
moveMesh utility, U-115
movingWallVelocity

boundary condition, U-147, U-148
MPI

openMPI, U-27
mshToFoam utility, U-114
mu keyword, U-69
multiComponentMixture model, U-67, U-125
multigrid

geometric-algebraic, U-84
multiRegionFeatureSnap keyword, U-51

MUSCL

keyword entry, U-78

N
n keyword, U-28

nastran

keyword entry, U-102

nBufferCellsNoExtrude keyword, U-62

nCellsBetweenLevels keyword, U-49

neighbour

dictionary, U-33

neighbourPatch keyword, U-42

netgenNeutralToFoam utility, U-114

Newtonian model, U-128

nextWrite

keyword entry, U-73

nFaces keyword, U-34

nFeatureSnapIter keyword, U-51

nFinestSweeps keyword, U-85

nGrow keyword, U-62

nLayerIter keyword, U-62

nMoles keyword, U-68

noSlip

boundary condition, U-148

noise utility, U-117

none

keyword entry, U-77, U-84

nonuniformTransformCyclic

boundary condition, U-129–U-131

noWriteNow

keyword entry, U-73

nPostSweeps keyword, U-85

nPreSweeps keyword, U-85

nRelaxedIter keyword, U-62

nRelaxIter keyword, U-51, U-62

nSmoothThickness keyword, U-62

nSmoothNormals keyword, U-62

nSmoothPatch keyword, U-51

nSmoothScale keyword, U-63

nSmoothSurfaceNormals keyword, U-62

nSolveIter keyword, U-51

NSRDSfunctions model, U-126

null

keyword entry, U-102

numberOfSubdomains keyword, U-28

O
objToVTK utility, U-115

object keyword, U-17

ODE

library, U-124

Opacity text box, U-95

OpenFOAM

applications, U-25
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file format, U-16

libraries, U-25

OpenFOAM

library, U-123

OpenFOAM file syntax

//, U-16

openMPI

message passing interface, U-27

MPI, U-27

Options window, U-96

order keyword, U-28

orientFaceZone utility, U-115

Orientation Axes button, U-95

oscillatingFixedValue

boundary condition, U-153, U-155

OSspecific

library, U-124

outletInlet

boundary condition, U-133, U-136, U-139

outletMappedUniformInlet

boundary condition, U-133, U-136, U-139

outletPhaseMeanVelocity

boundary condition, U-142, U-144, U-146

outside

keyword entry, U-50

owner

dictionary, U-33

P
P1

library, U-125

p rhgRefCell keyword, U-86

p rhgRefValue keyword, U-86

pPrime2 utility, U-118

pairPatchAgglomeration

library, U-124

paraFoam, U-91

parallel

running, U-26

partialSlip

boundary condition, U-147, U-148, U-153,
U-155, U-156

particleTracks utility, U-119

patch

boundary condition, U-37

patch

keyword entry, U-37, U-103

patchAverage utility, U-119

patchIntegrate utility, U-119

patchSummary utility, U-122

patchCloud keyword, U-104

patches keyword, U-39

patchMap keyword, U-60

patchSeed keyword, U-104

PBiCG

keyword entry, U-83
PCG

keyword entry, U-83
pdfPlot utility, U-119
PDRMesh utility, U-116
Pe utility, U-118
perfectGas model, U-67, U-126
phaseHydrostaticPressure

boundary condition, U-154–U-156
Pipeline Browser window, U-92
plot3dToFoam utility, U-114
pointMVC

keyword entry, U-102
points

dictionary, U-33, U-38
polyDualMesh utility, U-115
polyLine

keyword entry, U-40
polyLine keyword, U-104
polyMesh directory, U-15, U-33
polyMesh class, U-31, U-33
polynomialTransport model, U-67, U-126
polySpline

keyword entry, U-40
post-processing, U-91

post-processing
paraFoam, U-91

postChannel utility, U-119
postCalc

library, U-124
potential

library, U-124
powerLaw model, U-128
Pr keyword, U-69
PrandtlDelta model, U-127
preconditioner keyword, U-83, U-84
pRefCell keyword, U-86
pRefValue keyword, U-86
pressureDirectedInletOutletVelocity

boundary condition, U-133, U-136, U-139,
U-142, U-144, U-146

pressureDirectedInletVelocity
boundary condition, U-133, U-136, U-139

pressureInletOutletParSlipVelocity
boundary condition, U-133, U-136, U-139,

U-142, U-144, U-146
pressureInletOutletVelocity

boundary condition, U-133, U-136, U-140,
U-143, U-144, U-146

pressureInletUniformVelocity
boundary condition, U-133, U-136, U-140

pressureInletVelocity
boundary condition, U-133, U-137, U-140
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pressureNormalInletOutletVelocity

boundary condition, U-134, U-137, U-140,
U-143, U-144, U-146

pressurePIDControlInletVelocity

boundary condition, U-134, U-137, U-140

prghPressure

boundary condition, U-154–U-156

prghTotalPressure

boundary condition, U-154–U-156

primitives tools, U-123

printCoeffs keyword, U-71

processorWeights keyword, U-27

probeLocations utility, U-119

process

background, U-26

processor

boundary condition, U-38, U-130–U-132

processor

keyword entry, U-37

processorN directory, U-27

processorCyclic

boundary condition, U-130–U-132

processorWeights keyword, U-28

Properties window panel, U-92

ptot utility, U-120

ptsotchDecomp model, U-125

pureMixture model, U-67, U-125

purgeWrite keyword, U-74

PV3FoamReader utility, U-117

PV3FoamReader

library, U-91

PV4FoamReader

library, U-91

PVFoamReader utility, U-117

Q
Q utility, U-118

QUICK

keyword entry, U-81

R
R utility, U-119

radiationModels

library, U-125

randomProcesses

library, U-124

RAS

keyword entry, U-71

RASModel keyword, U-71

RASModels

library, U-127

raw

keyword entry, U-75, U-102

reactingMixture model, U-67, U-125

reactionThermophysicalModels

library, U-125

realizableKE model, U-127

reconstruct model, U-125

reconstructPar utility, U-122

reconstructParMesh utility, U-122

reconstructPar utility, U-29

redistributePar utility, U-122

refineHexMesh utility, U-116

refineMesh utility, U-115

refineWallLayer utility, U-116

refinementLevel utility, U-116

refinementRegions keyword, U-50

refinementRegions keyword, U-49, U-50

refinementSurfaces keyword, U-48, U-49

relative tolerance, U-83

relativeSizes keyword, U-62

relaxed keyword, U-63

relTol keyword, U-83

removeFaces utility, U-116

Render View window, U-96

Render View window panel, U-96

renumberMesh utility, U-115

Reset button, U-92

resolveFeatureAngle keyword, U-48, U-49

RNGkEpsilon model, U-127

roots keyword, U-28, U-29

rotateMesh utility, U-115

rotatingPressureInletOutletVelocity

boundary condition, U-134, U-137, U-140,
U-143, U-145, U-146

rotatingTotalPressure

boundary condition, U-134, U-137, U-140,
U-143, U-145, U-146

rotatingWallVelocity

boundary condition, U-147, U-148,
U-154–U-156

run

parallel, U-26

run directory, U-15

runTime

keyword entry, U-74

runTimeModifiable keyword, U-75

S
sammToFoam utility, U-114

sample utility, U-101, U-119

sampling

library, U-124

Save Animation

menu entry, U-97

Save Screenshot

menu entry, U-97

scalePoints utility, U-57
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scientific

keyword entry, U-74
scotch

keyword entry, U-27, U-28
scotchCoeffs keyword, U-28
scotchDecomp model, U-125
script/alias

foamCorrectVrt, U-58
foamJob, U-87
foamLog, U-88

Seed window, U-97
selectCells utility, U-116
Set Ambient Color button, U-94
setFields utility, U-113
setSet utility, U-115
setFormat keyword, U-102
sets keyword, U-102
setsToZones utility, U-116
Settings

menu entry, U-96
SFCD

keyword entry, U-78, U-81
shape, U-41
SI units, U-19
simple

keyword entry, U-27, U-28
simpleFilter model, U-127
simpleGrading keyword, U-41
simpleSpline

keyword entry, U-40
simulationType keyword, U-71
singleCellMesh utility, U-116
skewLinear

keyword entry, U-78, U-81
SLGThermo

library, U-126
slip

boundary condition, U-147, U-148, U-154,
U-155, U-157

Smagorinsky model, U-127
smapToFoam utility, U-117
smoothDelta model, U-127
smoother keyword, U-85
smoothSolver

keyword entry, U-83
snap keyword, U-47
snapControls keyword, U-47
snappyHexMesh utility, U-113
snappyRefineMesh utility, U-116
snappyHexMesh utility

background mesh, U-47
cell removal, U-49
cell splitting, U-48
mesh layers, U-51

meshing process, U-46
snapping to surfaces, U-50

snappyHexMesh utility, U-45
snappyHexMeshDict file, U-46
snGradSchemes keyword, U-76
solarLoad

library, U-125
solid

library, U-126
Solid Color

menu entry, U-94
solidMixtureProperties

library, U-126
solidParticle

library, U-124
solidProperties

library, U-126
solver

DPMFoam, U-110
MPPICFoam, U-110
MPPICInterFoam, U-108
PDRFoam, U-109
SRFPimpleFoam, U-106
SRFSimpleFoam, U-106
XiDyMFoam, U-109
XiFoam, U-109
adjointShapeOptimizationFoam, U-105
boundaryFoam, U-105
buoyantBoussinesqPimpleFoam, U-109
buoyantBoussinesqSimpleFoam, U-109
buoyantPimpleFoam, U-110
buoyantSimpleFoam, U-110
cavitatingDyMFoam, U-107
cavitatingFoam, U-107
chemFoam, U-109
chtMultiRegionFoam, U-110
chtMultiRegionSimpleFoam, U-110
coalChemistryFoam, U-110
coldEngineFoam, U-109
compressibleInterDyMFoam, U-107
compressibleInterFoam, U-107
compressibleMultiphaseInterFoam, U-107
dnsFoam, U-109
driftFluxFoam, U-107
dsmcFoam, U-111
electrostaticFoam, U-111
engineFoam, U-109
financialFoam, U-112
fireFoam, U-109
icoFoam, U-105
icoUncoupledKinematicParcelDyMFoam,

U-110
icoUncoupledKinematicParcelFoam, U-110
interDyMFoam, U-107
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interFoam, U-107
interMixingFoam, U-107
interPhaseChangeDyMFoam, U-108
interPhaseChangeFoam, U-108
laplacianFoam, U-105
magneticFoam, U-111
mdEquilibrationFoam, U-111
mdFoam, U-111
mhdFoam, U-111
multiphaseEulerFoam, U-108
multiphaseInterDyMFoam, U-108
multiphaseInterFoam, U-108
nonNewtonianIcoFoam, U-105
pimpleDyMFoam, U-106
pimpleFoam, U-106
pisoFoam, U-106
porousSimpleFoam, U-106
potentialFoam, U-105
potentialFreeSurfaceDyMFoam, U-108
potentialFreeSurfaceFoam, U-108
reactingFoam, U-109
reactingMultiphaseEulerFoam, U-108
reactingParcelFilmFoam, U-110
reactingParcelFoam, U-110
reactingTwoPhaseEulerFoam, U-108
rhoCentralDyMFoam, U-106
rhoCentralFoam, U-106
rhoPimpleDyMFoam, U-106
rhoPimpleFoam, U-106
rhoPorousSimpleFoam, U-106
rhoReactingBuoyantFoam, U-109
rhoReactingFoam, U-109
rhoSimpleFoam, U-106
scalarTransportFoam, U-105
shallowWaterFoam, U-106
simpleCoalParcelFoam, U-111
simpleFoam, U-106
simpleReactingParcelFoam, U-110
solidDisplacementFoam, U-111
solidEquilibriumDisplacementFoam, U-111
sonicDyMFoam, U-107
sonicFoam, U-107
sonicLiquidFoam, U-107
sprayDyMFoam, U-111
sprayEngineFoam, U-111
sprayFoam, U-111
thermoFoam, U-110
twoLiquidMixingFoam, U-108
twoPhaseEulerFoam, U-109
uncoupledKinematicParcelFoam, U-111

solver keyword, U-82
solver relative tolerance, U-83
solver tolerance, U-83
solvers keyword, U-82

SpalartAllmaras model, U-127
SpalartAllmarasDDES model, U-127
SpalartAllmarasDES model, U-127
SpalartAllmarasIDDES model, U-128
specie

library, U-126
specie keyword, U-68
specieThermo model, U-67, U-126
spline keyword, U-39
splitCells utility, U-117
splitMesh utility, U-116
splitMeshRegions utility, U-116
spray

library, U-124
SSG model, U-127
star3ToFoam utility, U-114
star4ToFoam utility, U-114
starcd

keyword entry, U-102
startFace keyword, U-34
startFrom keyword, U-73
starToFoam utility, U-53
startTime

keyword entry, U-73
startTime keyword, U-73
steadyParticleTracks utility, U-119
steadyState

keyword entry, U-81
Stereolithography (STL), U-45
stitchMesh utility, U-116
stl

keyword entry, U-102
stopAt keyword, U-73
strategy keyword, U-27, U-28
streamFunction utility, U-118
stressComponents utility, U-118
Style window panel, U-94
subsetMesh utility, U-116
supersonicFreestream

boundary condition, U-134, U-137, U-140,
U-143, U-145, U-147

surface mesh, U-45
surfaceAdd utility, U-120
surfaceBooleanFeatures utility, U-120
surfaceCheck utility, U-120
surfaceClean utility, U-120
surfaceCoarsen utility, U-120
surfaceConvert utility, U-120
surfaceFeatureConvert utility, U-120
surfaceFeatureExtract utility, U-120
surfaceFind utility, U-120
surfaceHookUp utility, U-120
surfaceInertia utility, U-120
surfaceInflate utility, U-120
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surfaceLambdaMuSmooth utility, U-120

surfaceMeshConvert utility, U-120

surfaceMeshConvertTesting utility, U-120

surfaceMeshExport utility, U-121

surfaceMeshImport utility, U-121

surfaceMeshInfo utility, U-121

surfaceMeshTriangulate utility, U-121

surfaceNormalFixedValue

boundary condition, U-134, U-137, U-140,
U-154, U-155, U-157

surfaceOrient utility, U-121

surfacePatch utility, U-121

surfacePointMerge utility, U-121

surfaceRedistributePar utility, U-121

surfaceRefineRedGreen utility, U-121

surfaceSplitByPatch utility, U-121

surfaceSplitByTopology utility, U-121

surfaceSplitNonManifolds utility, U-121

surfaceSubset utility, U-121

surfaceToPatch utility, U-121

surfaceTransformPoints utility, U-121

surfaceFeatureExtract utility, U-48

surfaceFilmModels

library, U-128

surfaceFormat keyword, U-102

surfaceMesh tools, U-123

surfaces keyword, U-102

surfMesh

library, U-124

sutherlandTransport model, U-67, U-126

swirlFlowRateInletVelocity

boundary condition, U-134, U-137, U-140

symmetry

boundary condition, U-130–U-132

symmetryPlane

boundary condition, U-130–U-132

symmetryPlane

boundary condition, U-37

symmetryPlane

keyword entry, U-37

syringePressure

boundary condition, U-134, U-137, U-140

system directory, U-15

systemCall

library, U-124

T
Tcommon keyword, U-69

temporalInterpolate utility, U-120

tetgenToFoam utility, U-114

text box

Opacity, U-95

thermalPorousZone

library, U-127

thermo keyword, U-68
thermophysical

library, U-66
thermophysicalFunctions

library, U-126
thermophysicalProperties

dictionary, U-66
thermoType keyword, U-67
thickness keyword, U-62
Thigh keyword, U-69
time

control, U-73
timeVaryingMappedFixedValue

boundary condition, U-134, U-137, U-141,
U-150–U-152

timeFormat keyword, U-74
timePrecision keyword, U-74
timeScheme keyword, U-76
timeStep

keyword entry, U-74
Tlow keyword, U-69
tolerance

solver, U-83
solver relative, U-83

tolerance keyword, U-51, U-83
Toolbars

menu entry, U-95
tools

algorithms, U-123
cfdTools, U-123
containers, U-123
db, U-123
dimensionSet, U-123
dimensionedTypes, U-123
fields, U-123
finiteVolume, U-123
fvMatrices, U-123
fvMesh, U-123
global, U-123
graph, U-123
interpolations, U-123
interpolation, U-123
matrices, U-123
memory, U-123
meshes, U-123
primitives, U-123
surfaceMesh, U-123
volMesh, U-123

topoSet utility, U-116
topoChangerFvMesh

library, U-124
totalPressure

boundary condition, U-134, U-138, U-141,
U-143, U-145, U-147
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totalTemperature

boundary condition, U-135, U-138, U-141,
U-143, U-145, U-147

transformPoints utility, U-116

translatingWallVelocity

boundary condition, U-147–U-149, U-154,
U-155, U-157

transport keyword, U-68

triSurface

library, U-124

triSurfaceMeshPointSet keyword, U-104

Ts keyword, U-69

turbulence keyword, U-71

turbulenceProperties

dictionary, U-71

turbulentDFSEMInlet

boundary condition, U-141

turbulentInlet

boundary condition, U-135, U-138, U-141

turbulentIntensityKineticEnergyInlet

boundary condition, U-135, U-138, U-141

twoPhaseInterfaceProperties

library, U-128

type keyword, U-36

U
UMIST

keyword entry, U-77

uncompressed

keyword entry, U-74

uncorrected

keyword entry, U-79, U-80

uniform keyword, U-104

uniformDensityHydrostaticPressure

boundary condition, U-154, U-155, U-157

uniformFixedGradient

boundary condition, U-154, U-155, U-157

uniformFixedValue

boundary condition, U-154, U-156, U-157

uniformInletOutlet

boundary condition, U-143, U-145, U-147

uniformJump

boundary condition, U-150–U-152

uniformJumpAMI

boundary condition, U-150–U-152

uniformTotalPressure

boundary condition, U-135, U-138, U-141,
U-143, U-145, U-147

units

base, U-19

of measurement, U-19

SI, U-19

Système International, U-19

United States Customary System, U-19

USCS, U-19
Update GUI button, U-93
uprime utility, U-118
upwind

keyword entry, U-78, U-81
USCS units, U-19
Use parallel projection button, U-95
utility

Co, U-117
Lambda2, U-118
Mach, U-118
PDRMesh, U-116
PV3FoamReader, U-117
PVFoamReader, U-117
Pe, U-118
Q, U-118
R, U-119
adiabaticFlameT, U-122
ansysToFoam, U-113
applyBoundaryLayer, U-112
attachMesh, U-114
autoPatch, U-115
blockMesh, U-38
blockMesh, U-113
boxTurb, U-112
ccm26ToFoam, U-114
cfx4ToFoam, U-53
cfx4ToFoam, U-113
changeDictionary, U-112
checkMesh, U-55
checkMesh, U-115
chemkinToFoam, U-122
collapseEdges, U-116
combinePatchFaces, U-116
createBaffles, U-115
createExternalCoupledPatchGeometry,

U-112
createPatch, U-115
createTurbulenceFields, U-118
createZeroDirectory, U-112
datToFoam, U-113
decomposePar, U-26, U-27
decomposePar, U-121
deformedGeom, U-115
dsmcFieldsCalc, U-119
dsmcInitialise, U-112
engineCompRatio, U-119
engineSwirl, U-112
ensight74FoamExec, U-100
ensightFoamReader, U-117
enstrophy, U-117
equilibriumCO, U-122
equilibriumFlameT, U-122
execFlowFunctionObjects, U-119
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expandDictionary, U-122
extrude2DMesh, U-113
faceAgglomerate, U-112
flattenMesh, U-115
flowType, U-117
fluent3DMeshToFoam, U-113
fluentMeshToFoam, U-53
fluentMeshToFoam, U-114
foamDataToFluent, U-98
foamMeshToFluent, U-98
foamCalc, U-117, U-119
foamDataToFluent, U-117
foamDebugSwitches, U-122
foamFormatConvert, U-122
foamHelp, U-122
foamInfoExec, U-122
foamListTimes, U-119
foamMeshToFluent, U-114
foamToEnsightParts, U-117
foamToEnsight, U-117
foamToGMV, U-117
foamToStarMesh, U-114
foamToSurface, U-114
foamToTecplot360, U-117
foamToTetDualMesh, U-117
foamToVTK, U-117
foamUpgradeCyclics, U-112
foamyHexMeshBackgroundMesh, U-113
foamyHexMeshSurfaceSimplify, U-113
foamyHexMesh, U-113
foamyQuadMesh, U-113
gambitToFoam, U-53
gambitToFoam, U-114
gmshToFoam, U-114
ideasToFoam, U-53
ideasUnvToFoam, U-114
insideCells, U-115
kivaToFoam, U-114
mapFields, U-60
mapFieldsPar, U-113
mapFields, U-112
mdInitialise, U-113
mergeMeshes, U-115
mergeOrSplitBaffles, U-115
mirrorMesh, U-115
mixtureAdiabaticFlameT, U-122
modifyMesh, U-116
moveDynamicMesh, U-115
moveEngineMesh, U-115
moveMesh, U-115
mshToFoam, U-114
netgenNeutralToFoam, U-114
noise, U-117
objToVTK, U-115

orientFaceZone, U-115
pPrime2, U-118
particleTracks, U-119
patchAverage, U-119
patchIntegrate, U-119
patchSummary, U-122
pdfPlot, U-119
plot3dToFoam, U-114
polyDualMesh, U-115
postChannel, U-119
probeLocations, U-119
ptot, U-120
reconstructPar, U-29
reconstructParMesh, U-122
reconstructPar, U-122
redistributePar, U-122
refineHexMesh, U-116
refineMesh, U-115
refineWallLayer, U-116
refinementLevel, U-116
removeFaces, U-116
renumberMesh, U-115
rotateMesh, U-115
sammToFoam, U-114
sample, U-101, U-119
scalePoints, U-57
selectCells, U-116
setFields, U-113
setSet, U-115
setsToZones, U-116
singleCellMesh, U-116
smapToFoam, U-117
snappyHexMesh, U-45
snappyHexMesh, U-113
snappyRefineMesh, U-116
splitCells, U-117
splitMeshRegions, U-116
splitMesh, U-116
star3ToFoam, U-114
star4ToFoam, U-114
starToFoam, U-53
steadyParticleTracks, U-119
stitchMesh, U-116
streamFunction, U-118
stressComponents, U-118
subsetMesh, U-116
surfaceFeatureExtract, U-48
surfaceAdd, U-120
surfaceBooleanFeatures, U-120
surfaceCheck, U-120
surfaceClean, U-120
surfaceCoarsen, U-120
surfaceConvert, U-120
surfaceFeatureConvert, U-120
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surfaceFeatureExtract, U-120

surfaceFind, U-120

surfaceHookUp, U-120

surfaceInertia, U-120

surfaceInflate, U-120

surfaceLambdaMuSmooth, U-120

surfaceMeshConvertTesting, U-120

surfaceMeshConvert, U-120

surfaceMeshExport, U-121

surfaceMeshImport, U-121

surfaceMeshInfo, U-121

surfaceMeshTriangulate, U-121

surfaceOrient, U-121

surfacePatch, U-121

surfacePointMerge, U-121

surfaceRedistributePar, U-121

surfaceRefineRedGreen, U-121

surfaceSplitByPatch, U-121

surfaceSplitByTopology, U-121

surfaceSplitNonManifolds, U-121

surfaceSubset, U-121

surfaceToPatch, U-121

surfaceTransformPoints, U-121

temporalInterpolate, U-120

tetgenToFoam, U-114

topoSet, U-116

transformPoints, U-116

uprime, U-118

viewFactorsGen, U-113

vorticity, U-118

vtkPVReaders, U-117

vtkUnstructuredToFoam, U-114

wallFunctionTable, U-113

wallGradU, U-118

wallHeatFlux, U-118

wallShearStress, U-118

wdot, U-120

writeCellCentres, U-120

writeMeshObj, U-114

yPlus, U-118

zipUpMesh, U-116

utilityFunctionObjects

library, U-124

V
v2f model, U-127

vanLeer

keyword entry, U-78

variableHeightFlowRate

boundary condition, U-135, U-138, U-141

variableHeightFlowRateInletVelocity

boundary condition, U-135, U-138, U-141

VCR Controls menu, U-93

vector class, U-19

version keyword, U-17

vertices keyword, U-39

veryInhomogeneousMixture model, U-67, U-125

View menu, U-95

View Settings

menu entry, U-95

View Settings (Render View) window, U-95

viewFactorsGen utility, U-113

viewFactor

library, U-125

volMesh tools, U-123

vorticity utility, U-118

vtk

keyword entry, U-102

vtkPVReaders utility, U-117

vtkUnstructuredToFoam utility, U-114

vtkPV3Foam

library, U-91

vtkPV4Foam

library, U-91

W
WALE model, U-127

wall

boundary condition, U-37

wall

keyword entry, U-37

wallFunctionTable utility, U-113

wallGradU utility, U-118

wallHeatFlux utility, U-118

wallShearStress utility, U-118

Wallis

library, U-126

waveSurfacePressure

boundary condition, U-135, U-138, U-141

waveTransmissive

boundary condition, U-143, U-145, U-147

wdot utility, U-120

wedge

boundary condition, U-34, U-37, U-44,
U-130–U-132

wedge

keyword entry, U-37

window

Options, U-96

Pipeline Browser, U-92

Render View, U-96

Seed, U-97

View Settings (Render View), U-95

window panel

Animations, U-96

Annotation, U-95

Charts, U-96

Color Legend, U-94
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Color Scale, U-94
Colors, U-96
Display, U-92, U-93
General, U-95, U-96
Information, U-92
Lights, U-95
Properties, U-92
Render View, U-96
Style, U-94

Wireframe

menu entry, U-94
writeCellCentres utility, U-120
writeMeshObj utility, U-114
writeCompression keyword, U-74
writeControl

keyword entry, U-73
writeControl keyword, U-74
writeFormat keyword, U-74
writeInterval keyword, U-74
writeNow

keyword entry, U-73

writePrecision keyword, U-74

X
x

keyword entry, U-104

xmgr

keyword entry, U-75, U-102

xyz

keyword entry, U-104

Y
y

keyword entry, U-104

yPlus utility, U-118

Z
z

keyword entry, U-104

zeroGradient

boundary condition, U-128, U-129

zipUpMesh utility, U-116
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