
Technische Universität München
THERMODYNAMIK
Lehrstuhl für

Hand Out of the Praktikum

Computational
Thermo-Fluid Dynamics

with
Open Source Tools

W. Polifke et al.

Status: 7th April 2012

Lehrstuhl für Thermodynamik
Prof. Dr.-Ing. T. Sattelmayer

Prof. W. Polifke Ph.D. (CCNY)
www.td.mw.tum.de

2

It would have been impossible to create
this course without the contribution of:

Danilo Bruno, Sebastian Bomberg, Alejandro
Cardenas, Joao Carneiro, Frederic Collonval,

Patrick Dems, Florian Ettner, Tobias Holzinger,
Volker Seidel and Johannes Weinzierl.

We are grateful for the time they spend
to design the test cases and write this

hand out.

3

Note:
Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte der
Vervielfältigung und Verbreitung, sowie der Übersetzung und des Nachdrucks
bleiben, auch bei nur auszugsweiser Verwertung, vorbehalten. Kein Teil des Werkes
darf in irgendeiner Form (Druck, Fotokopie, Mikrofilm oder ein anderes Verfahren)
ohne schriftliche Genehmigung des Verfassers reproduziert oder unter Verwen-
dung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

(Translation for information, only the German version is worth) This work is sub-
ject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and stor-
age in data banks. Thereof the permission of the author must always be obtained
prior to the duplication of this script or parts.

Contents

Chapter 1 Introduction into Linux and OpenFOAM® 13
1.1 Introduction into Linux 14

1.1.1 xTerm - Konsole 14
1.1.2 Kate - An Enhanced Text Editor 15

1.2 Introduction into OpenFOAM® 16
1.2.1 Installation 16
1.2.2 Structure of a Case 17
1.2.3 Starting OpenFOAM® 23
1.2.4 Post-Processing 23

1.3 Extra Practice and Background Information 25
1.3.1 Sources for documentation 25

Chapter 2 Heat Transfer in a Plate 27
2.1 Todays Problem 28
2.2 Physics 29

2.2.1 Fourier’s Law 29
2.3 Numerics 30

2.3.1 Temporal discretization schemes 30
2.3.2 Spatial discretization schemes 31

2.4 OpenFOAM® 33
2.4.1 Mesh Generation with blockMesh 33
2.4.2 Setup of the laplacianFoam Solver 36
2.4.3 The system Folder 40

2.5 Extra Practice and Background Information 46
2.5.1 Linear solvers and preconditioners 46

Chapter 3 Heat Transfer In a Complex Geometry 49
3.1 Todays Problem 50
3.2 Physics 51
3.3 Numerics 51
3.4 OpenFOAM® 52

3.4.1 The funkySetFields utility 52
3.4.2 Before writing some code 53
3.4.3 Structure of a solver folder 53

3.5 Extra Practice and Background Information 63

Chapter 4 Channel Pipe Flow 67
4.1 Physics 68

4.1.1 Laminar channel pipe flow 68
4.2 Numerics 69

4.2.1 Conservation equations 69
4.2.2 Collocated storage of variables 70
4.2.3 Staggered grid 72

6 Contents

4.2.4 Rhie-Chow Velocity Interpolation 73
4.2.5 Pressure-Correction Methods 74
4.2.6 SIMPLE - pressure velocity correction method 75

4.3 OpenFOAM® 80
4.3.1 simpleFoam 80
4.3.2 fvSchemes 80
4.3.3 fvSolution 80
4.3.4 Sampling 82

4.4 Extra Practice and Background Information 88
4.4.1 Discretization best practice guidelines 89

Chapter 5 Channel flows with Heat Transfer 91
5.1 Introduction 92

5.1.1 Todays problem 92
5.2 Physics 92

5.2.1 Laminar flow in a planar channel 93
5.3 OpenFOAM® 94

5.3.1 Numerics in OpenFOAM® 94
5.3.2 Mesh generation with the snappyHexMesh utility 99
5.3.3 Porous media and multiple reference frame (MRF) modeling 101
5.3.4 Convergence to a steady state 103

5.4 Exercises 107
5.5 Extra Practice and Background Information 110

Chapter 6 The Backward Step 111
6.1 Todays Problem 112
6.2 Physics 112

6.2.1 Turbulence Models 113
6.2.2 Law of the wall 115

6.3 OpenFOAM® 116
6.3.1 pisoFoam 116
6.3.2 Set up a turbulent flow 121

6.4 Extra Practice and Background Information 133

Chapter 7 Combustion 135
7.1 Todays problem 136
7.2 Physics 137

7.2.1 Combustion fundamentals 137
7.2.2 Turbulent Combustion 139

7.3 Numerics 140
7.4 OpenFOAM® 142

7.4.1 Preparing the solver files 142
7.4.2 Exploring the case setup 142
7.4.3 Implementing the Schmid Model 147
7.4.4 Running the case 152

7.5 Extra Practice and Background Information 154
7.5.1 Tools to handle the mesh 157

Contents 7

Chapter 8 Multiphase Flow 163
8.1 Todays problem 164
8.2 Physics 164
8.3 Numerics 166

8.3.1 Volume-Of-Fluid in OpenFOAM® 166
8.3.2 Counter-Gradient transport 167

8.4 OpenFOAM® 168
8.4.1 Implementation of the volume of fluid model 168
8.4.2 Structure of a class folder 170
8.4.3 Class for boundary conditions 171
8.4.4 The groovyBC boundary condition 174
8.4.5 Running in parallel 175

8.5 Exercises 179
8.6 Extra Practice and Background Information 184

8.6.1 Source code documentation 186

Chapter 9 Lagrangian Particle Tracking 191
9.1 Todays problem 192
9.2 Physics 193
9.3 Numerics 194
9.4 OpenFOAM® 194

9.4.1 Lagrangian Particle Tracking in OpenFOAM® 194
9.4.2 Postprocessing of Particle Trajectories 196
9.4.3 Boundary conditions for external flows 196

9.5 Exercises 197
9.6 Extra Practice and Background Information 201

9.6.1 Add new models 205

Chapter 10 Moving Mesh 209
10.1 Todays problem 210
10.2 Physics 211
10.3 Numerics 211
10.4 OpenFOAM® 215

10.4.1 Preparing the solver files 215
10.4.2 Modifying the solver 215

10.5 Extra Practice and Background Information 225

Chapter 11 Annexes 227
11.1 Paraview : some hints 228

11.1.1 Animation 228
11.1.2 Print nice picture 228

Objective of the Lab
Computational Fluid Dynamics (CFD) is the prediction and analysis of fluid flows
by numerical simulation. Appropriate algorithms are used to determine approx-
imate solutions to the equations describing the fluid motion. CFD is used for re-
search of fundamental kind and for practical development of any kind of engines,
where fluid flow plays a role. With increasing computational power and decreasing
development cycles of industrial products CFD becomes more and more an impor-
tant tool within the design process. It is used in very different fields to predict and
analyze the flow dynamics in very early stages of the development and design pro-
cess. Its advantages are the low cost insight in the fluid dynamics of the considered
system compared to experimental setups. Even more the specific negligence or con-
sideration of individual physical effects leads to more detailed understanding and
analysis of the system. Although numberless advantageous and successful appli-
cation of CFD in research and development, the accurate description of complex
physical phenomena as combustion, multiphase flows or highly resolved turbulent
flows with CFD is still a very ambitious challenge.

Beside the several commercial CFD software tools, OpenFOAM®, which is a C++
library based program package, becomes more and more popular. This is due to
several reasons. First, OpenFOAM® is an open source as well as an open code
software which is interesting for research and industrial application in two ways.
On the one hand the open code allows to implement and modify the models, algo-
rithms and solution processes in a nearly unlimited latitude which is very helpful
and beneficial for research. On the other hand the free availability of the software
is interesting for both, universities and industry. Basically for large concerns which
need a lot of licenses or small companies which are not able to afford commercial
CFD software is OpenFOAM® an interesting alternative. Also increasing applica-
tion at the universities and growing experience with OpenFOAM® encourages the
industrial partners to deal with this software.

Considering these developments and the fact, that more and more offers for Bach-
elor and Master theses contain the application of OpenFOAM®, the students de-
mand for a professional introduction to this software in the scope of their academic
studies is remarkable. Therefore the aim of this CFD course is to give a guided
introduction to OpenFOAM®. Starting with the very first steps of computational
fluid dynamics, this course should provide a fundamental overview and insight
into the program structure, the solvers, the tools and also a brief introduction to
the code itself and the implementation of new equations, models or applications.
It is not objective to impart knowledge of basic fluid dynamics and thermodynam-
ics, meshing tools, theoretical knowledge of finite-differences/elements/volume-
methods or advanced C++ programming skills.

Script Structure
This script provides the description of the weekly problem including physical and
numerical background, specific explanations concerning OpenFOAM® all informa-
tion needed for the handling of the exercises and additional sources providing re-
lated information to the problem itself and its context. The following listing gives
a more detailed description of structure of each chapter.

Todays Problem
To ensure a wide variety the course is divided into several individual and in-
dependent examples and simulation cases. Every week a different topic is pre-
sented, beginning with simple introduction examples and going further to more
complex cases. They treat different aspects of CFD and OpenFOAM®, whereas
the learned knowledge of one is not implicitly necessary for another one in ev-
ery case. This section presents the background of the weekly topic. It describes
the motivation for the simulation of the specific physical processes and its ap-
plication in research or industry.

Physics of the Problem
This section is used for a brief derivation and introduction to the physics, which
describe the problem. These are often simplified models which approximate
the real problem. As the consideration of all physical effects at all scales in time
and space is usually impossible, impractical or not required for solving a spe-
cific task, assumptions have to be made, which simplify the complexity of the
physical processes. This leads to a reduced number of the governing equations.
Furthermore several simplifications are necessary to reduce the complexity of
the equation system itself. Sometimes even vague estimates must be made to
close the problem, for example for unknown boundary conditions.

Numerics of the Problem
Here theoretical informations are provided about the methods used to solve the
problem. This is at first an evaluation of the general approaches to solve the
specific type of fluid flow discussing their advantages and shortcomings. This
includes amongst others the requirements for the mesh, the boundary condi-
tions, the solving process and the ratio of accuracy and computational effort.
After that a detailed description of the methods used here is given. Also several
hints to solve the numerical part of the exercises is provided.

OpenFOAM® specific stuff
To match the aim of this course numerous case-specific information about the
solver structure, the used discretization schemes, related script settings, bound-
ary conditions and data output options are listed with a detailed description of
their function and correct specification. As programming is not a straightfor-
ward work, where problems can be solved in one way, it is also shown how the
methods are realized in OpenFOAM® and how to implement new ones.

Extra Practice and Background Information
This section is used to provide further tutorials related to the topic and/or infor-
mation about alternatives and advanced techniques whose disquisition would
exceed the scope of this script and course.

Chapter

1 Introduction into Linux
and OpenFOAM®

14 1 Introduction into Linux and OpenFOAM®

Bibliography

[1] Sevier E., Spainhour S., Figgins S. and Hekman J.P.: Linux in a Nutshell O’Reilly,
3rd edition

[2] http://en.opensuse.org/Tutorials OpenSuse Tutorials
[3] http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf OpenFOAM User

Guide, Version 1.6, 24th July 2009
[4] http://foam.sourceforge.net/doc/Guides-a4/ProgrammersGuide.pdf OpenFOAM

Programmers Guide, Version 1.6, 24th July 2009
[5] http://openfoamwiki.net/ OpenFOAM Wiki

The first sections of this chapter give a brief introduction into the necessary soft-
ware tools that are not part of the CFD program OpenFOAM®. The second part
offers an explanation of how to get a first OpenFOAM® solution without any de-
tailed background.

1.1 Introduction into Linux

The basic software of a personal computer is a so-called operating system. Over the
last decades three main tree’s developed. Linux is a derivative of Unix and has the
great advantage of being an open source software. The chair of thermodynamics
currently uses the distribution of ”OpenSUSE“ , version 11.x.

As OpenFOAM® has no graphical user interface (GUI), we have to use some tools
provided by the Linux operating system. The chosen software is only a possible
choice and is adaptable by the users requirements.

1.1.1 xTerm - Konsole

In contrast to any GUI based software OpenFOAM® commands have to be started
in a text-based window, which is called ”Konsole“ or ”Terminal“. The start button
is placed at:

Applications → System → Terminal → Terminal .

This Konsole is our main operating window for using OpenFOAM® and provides
a lot of Linux commands that are needed to work with the CFD software. The most
relevant are listed in table 1.1.

A more detailed help for the different commands is available by typing man $COM-
MAND, $COMMAND –help or $COMMAND -h. Further information can be found
in the Internet [2] or [1].

Table 1.2 shows some shortcuts and special characters that might be used in a
Konsole.

1.1 Introduction into Linux 15

ls List all files

cd [$1] Change to directory [$1]

mkdir [$1] Create a new directory [$1]

cp [$1] [$2] Copy file [$1] to [$2]

cat [$1] Output text file [$1] to screen

less [$1] Output text file [$1] to screen and enable scrolling

tail -n [$1] [$2] Show the last [$1] lines of text file [$2]

head -n [$1] [$2] Show the first [$1] lines of text file [$2]

top show the processes running on the computer

bg, fg set a process to back- or foreground

echo [$Variable] show value of variable [$Variable]

rm [$1] remove a file or directory (-r)

Table 1.1: A list of typical linux commands

[Ctrl] + c Abort active process

[Ctrl] + z Pause active process

[Ctrl] + n Open a new Tab

[Tab] Auto complete

∼ The "home " path

& Run command and set it to background

> [$log] Forward output to [$log] file

./[$1] Execute file [$1]

Table 1.2: Shortcuts and special characters for a linux Terminal

1.1.2 Kate - An Enhanced Text Editor

Typically all software programs are started by typing a special command in a terminal.
As we need an editor for manipulating the text based files of OpenFOAM® we want
to start Kate from the Terminal by typing:

kate

Kate is only one of a bunch of editors provided by SUSE. One of its advantages is
the possibility to create sessions out of a collection of files. As every OpenFOAM®

case consists of ten to hundreds of files this application allows us to structure our
files and have them opened in only one working window.

Further common editors of Linux distributions are vi, vim (both terminal based),
emacs and kwrite. Dolphin and Konqueror are helpful file management tools for
opening, copying etc.

16 1 Introduction into Linux and OpenFOAM®

1.2 Introduction into OpenFOAM®

OpenFOAM® offers a large variety of solvers for a lot of different engineering prob-
lems, like heat transfer, mechanical engineering, fluid flow applications and even
financial problems. The first kind of problems will be as well part of this student’s
lab as fluid flow phenomena.

1.2.1 Installation

Before using OpenFOAM® this section gives a brief description of how to install
the software on a personal computer. The minimum recommendations for this in-
stallation is a 32 or 64 bit CPU with 2.0 GHz and 1 GB RAM. Additionally approx-
imately 15 GB free disk space is necessary for the installation. We recommend to
use a computer with a Debian-based distributions (like Ubuntu and Kubuntu) as
the installation procedure is the easiest. But any other Linux distributions is fine
for example at the chair you will use OpenSUSE.

The installation procedures are well described on http://www.openfoam.com/
download/. The first one is only for Debian users and is the easiest. The second
one requires to download the sources then to compile them. For that, the .tar balls
have to be downloaded from http://www.openfoam.com/download/source.
php and saved to "$HOME/OpenFOAM/". Now all files must be uncompressed by
typing
tar -xzvf $1,

starting with OpenFOAM-2.0.1.gtgz and followed by ThirdParty-2.0.1.gtgz. Then
you will have to source the new data by typing in a terminal:
source $HOME/OpenFOAM/OpenFOAM-2.0.1/etc/bashrc

Before compiling the code, check your system by executing foamSystemCheck.
Then if no errors occur, compile the code by typing the following commands:

cd $WM_PROJECT_DIR
./Allwmake

More advanced Linux users may follow the ’Git repository’ installation for having
an "up to date" version of the software.

Whatever version you have installed, you have to remember that during this course,
you will use the version 2.0.1. And some exercises are not working with an ear-
lier/latter version.
Remark: The latest version is maybe incompatible with some description in this
manuscript. However on http://www.openfoam.com/download, there is a
link to download old versions. You should find the right one there. Remark:
The latest version is maybe incompatible with some description in this manuscript.
However on http://www.openfoam.com/download, there is a link to down-
load old versions. You should find the right one there.

When the installation is finished, the following commands have to be executed:

echo ". ~/OpenFOAM/OpenFOAM-2.0.1/etc/bashrc" >>~/.bashrc
mkdir -p $FOAM_RUN
bash

http://www.openfoam.com/download/
http://www.openfoam.com/download/
http://www.openfoam.com/download/source.php
http://www.openfoam.com/download/source.php
http://www.openfoam.com/download
http://www.openfoam.com/download

1.2 Introduction into OpenFOAM® 17

The success of the installation should now be tested by opening a new Terminal
and typing: foamInstallationTest > log.foamInstallationTest

If the output of this file shows in the summary at the end of log.foamInstallationText;
Criticalsystems ok.. The installation is successfully completed.

The OpenFOAM® version used during the lab is a server based 2.0.1 version. The
whole installation process is already finished and all specifications should already
exist. Therefore no installation to the local user profile is necessary.

1.2.2 Structure of a Case

This section gives a short overview of a typical OpenFOAM® problem. Case spe-
cific differences will be declared and explained later.

When the software is installed a first short test-case should be run. At first we copy
a tutorial case into our user folder1:

mkdir -p $FOAM_RUN
mkdir $FOAM_RUN/myFirstTestCase
cp -r $OFP/Chpt1/cavity/* $FOAM_RUN/myFirstTestCase/
cd $FOAM_RUN/myFirstTestCase

This folder should now consist of different files and folders that can be listed by
~/OpenFOAM/user-2.0.1/run/myFirstTestCase > ls *

This command should create the following output:

0:
p U

constant:
polyMesh transportProperties

system:
controlDict fvSchemes fvSolution

. The system folder contains the main control options of the solving process. The
constant folder contains all settings that are time independent, like the meshing
information, constant properties and turbulence settings. At first the system folder
is considered.

The main control file is named controlDict and is, like all non-compiled OpenFOAM®

files, written in C++ language. The fvSchemes file sets the different discretization
schemes for all resolved differential operators. The last file, fvSolution, controls
the internal solvers of the subsequently running equations to solve. Both files will
be described in detail later.

1 Normally you can refer to the tutorials folder of OpenFOAM® by using the environment variable
$FOAM_TUTORIALS. But as some additional files have been added to the basic cavity case you will
get access to the files in another place

18 1 Introduction into Linux and OpenFOAM®

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.0.1
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object controlDict;

}
// * //
application icoFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 0.5;

deltaT 0.005;

writeControl timeStep;

writeInterval 20;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

// *** //

Listing 1.1: The main control file: controlDict

The controlDict of the first test case should look like the one displayed in listing
1.1. The commented header is followed by the name of the OpenFOAM® solver
that has to be used for the actual case.
The following lines contain switches for the most important simulation settings.
They control the timing, outputs, beginning and ending of the case. Their values
might be looked up in table 1.3 which can be found in the online documentation.

1.2 Introduction into OpenFOAM® 19

Time control

startFrom Controls the start time of the simulation.

- firstTime Earliest time step from the set of time directories.

- startTime Time specified by the startTime keyword entry.

- latestTime Most recent time step from the set of time directories.

startTime Start time for the simulation with startFrom startTime;

stopAt Controls the end time of the simulation.

- endTime Time specified by the endTime keyword entry.

- writeNow Stops simulation on completion of current time step
and writes data.

- noWriteNow Stops simulation on completion of current time step
and does not write out data.

- nextWrite Stops simulation on completion of next scheduled
write time, specified by writeControl.

endTime End time for the simulation when stopAt endTime; is
specified.

deltaT Time step of the simulation.

adjustTimeStep Some solvers adapt dynamically the time step. This
boolean (value is on or off) allows the function or
not.

maxCo The criteria to adapt the time step is based on the
Courant number, Co. This parameter sets the maximal
value of it.

maxDeltaT [optional] If the time step changes dynamically, this
parameter sets the upper limit.

Data writing

writeControl Controls the timing of write output to file.

- timeStep† Writes data every writeInterval time steps.

- runTime Writes data every writeInterval seconds of simulated
time.

- adjustableRunTime Writes data every writeInterval seconds of simulated
time, adjusting the time steps to coincide with the
writeInterval if necessary used in cases with automatic
time step adjustment.

- cpuTime Writes data every writeInterval seconds of CPU time.

- clockTime Writes data out every writeInterval seconds of real
time.

writeInterval Scalar used in conjunction with writeControl described
above.

20 1 Introduction into Linux and OpenFOAM®

purgeWrite Integer representing a limit on the number of time di-
rectories that are stored by overwriting time directo-
ries on a cyclic basis. Example of t0 = 5s, ∆t = 1s and
purgeWrite 2;: data written into 2 directories, 6 and 7,
before returning to write the data at 8s in 6, data at 9s
into 7, etc.
To disable the time directory limit, specify purgeWrite
0;†

For steady-state solutions, results from previous iter-
ations can be continuously overwritten by specifying
purgeWrite 1;

writeFormat Specifies the format of the data files.

- ascii† ASCII format, written to writePrecision significant fig-
ures.

- binary Binary format.

writePrecision Integer used in conjunction with writeFormat de-
scribed above, 6† by default

writeCompression Specifies the compression of the data files.

- uncompressed No compression.†

- compressed gzip compression.

timeFormat Choice of format of the naming of the time directories.

- fixed ±m.dddddd where the number of ds is set by timePre-
cision.

- scientific ±m.dddddde ± xx where the number of ds is set by
timePrecision.

- general† Specifies scientific format if the exponent is less than
-4 or greater than or equal to that specified by timePre-
cision.

timePrecision Integer used in conjunction with timeFormat described
above, 6† by default

graphFormat Format for graph data written by an application.

- raw† Raw ASCII format in columns.

- gnuplot Data in gnuplot format.

- xmgr Data in Grace/xmgr format.

- jplot Data in jPlot format.

Data reading

runTimeModifiable yes†/no switch for whether dictionaries,
e.g.controlDict, are re-read by OpenFOAM® at
the beginning of each time step.

1.2 Introduction into OpenFOAM® 21

Run-time loadable
functionality

libs List of additional libraries (on $LD_LIBRARY_PATH)
to be loaded at run-time, e.g.("libUser1.so"
"libUser2.so")

functions List of functions, e.g. probes to be loaded at run-time;
see examples in 6.3.2 or $FOAM_TUTORIALS

Table 1.3: Settings for the controlDict file († denotes default entry if associated
keyword is omitted).

The constant Folder

As mentioned above the constant folder contains time independant settings for the
simulation. The polyMesh folder consists of different files describing the meshing of
the considered problem. The most important entry of this subfolder is the boundary
file.
The boundary file is a list of all defined boundaries and their basic boundary type.
The basic boundary types are wall, patch, wedge, cyclic, mapped and symmetryPlane.
All further boundary settings have to fit to these settings.

The folder itself further contains two additional files: RASProperties and transport-
Properties. The first sets the parameters for the computation of the turbulence model.
The latter describes the basic properties of the material etc. Here the entry nu val-
ues the kinematic viscosity of the fluid. The appended field of seven values defines
the powers of the basic SI units in the following order:

[kg m s K kgmol A cd] .

For example our parameter is declared by:

nu nu [0 2 -1 0 0 0 0] 0.01;

. The kinematic viscosity ν of our fluid has the unit m2/s. The last value gives the
scalar value of the parameter. Here we have a value of 0.01.

22 1 Introduction into Linux and OpenFOAM®

The 0 Time Folder

FoamFile
{

version 2.0;
format ascii;
class volScalarField;
object p;

}
// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField
{

movingWall
{

type zeroGradient;
}

fixedWalls
{

type zeroGradient;
}

frontAndBack
{

type empty;
}

}

// *** //

Listing 1.2: The pressure initial value file p

This folder provides the boundary and start conditions of all used parameter-fields.
Exemplary we inspect the pressure p file in detail (see listing 1.2) The first lines
equal the header of the controlDict file. The next settings provide informations
about the current case and the files content and the variable name.

The internalField either consists of one uniform value for each scalar, vector
or tensor entry or a non-uniform vector with as many values as cells defined by the
meshing.

The last part of the file is the boundaryField structure. It defines the condition
at each boundary of the meshed domain. type has to be consistent to the bound-
ary file discussed above. Typical types are fixedValue (Dirichlet boundary con-
dition), which, like in the internal field, provide a value for each surface patch,
fixedGradient or zeroGradient which correspond to a Neumann boundary
condition (BC) or symmetryPlane. For two dimensional problems the third di-
rection entries are declared to be empty.

All fields are stored in similar files. Each time the output is written to a new folder
and files of the current values are created.

1.2 Introduction into OpenFOAM® 23

1.2.3 Starting OpenFOAM®

Before running the case, the mesh has to be created. For that, type the following
command in a terminal :

cd $FOAM_RUN/myFirstTestCase
blockMesh

After preparing or pre-processing the case the simulation can be started. We simply
type the name of the solver to use, here:

icoFoam

and a lot of ”prompt” is printed on the Terminal. When the simulation end is
reached the cursor sign comes up again. Typing ls shows us a variety of new
folders named by the software systematically.

After the simulation we need to convert the data for a post-processing software.
Here we create files in ’paraview’ format. This GUI based software is an open
source tool and part of the OpenFOAM® third-parties package. It is the best pro-
gram to get an first post-processed impression of the simulation results and it is
shortly described in the next section.

As a lot of text output is created during a simulation, and the display is much to fast
for the human eyes we prefer to forward the text to a log-file which can be observed
independently. The standard linux way would be to extend the commands with,
for example:

icoFoam > log.icoFoam &

. OpenFOAM® provides a further method, which is used in the Allrun script.
Here all necessary commands are saved and starting it will execute the commands
one after the other and create log files of the format log.$APPLICATION for each
command. The Allclean script should restore the initial form of the case.

After running both scripts the folder should have the same content like after the
first simulation run plus additional logs. Typing less log.icoFoam shows the
simulation output. Here we can read the initial and final residuals for each solved
equation for each simulation time step. Further the number of iterations needed by
the internal solver to reach the residual is displayed at the end of the lines. Pressing
q closes the display and the text mode is back.

1.2.4 Post-Processing

At first we have to convert the results into a data format that is compatible with
paraview. For creating the files, we simply execute:

paraFoam -touch

and a myFirstTestCase.OpenFOAM construct is saved to the case directory.

Now we start the post-processing tool by executing paraview&. When the GUI is
loaded we click ’File’ → ’Open’ and select myFirstTestCase.OpenFOAM.

24 1 Introduction into Linux and OpenFOAM®

Figure 1.1: The Paraview GUI: The red arrows point on important buttons

A shorter way to do those actions is to type the command paraFoam without op-
tions.

After pressing ’Apply’ the mesh is loaded and displayed in the initial conditions.
The drop down menu on the upper left allows us to select which computed field is
displayed. A second button sets the type of view (Mesh, Points, Surface,...). Push-
ing the play button runs the results in a kind of film.

Exercises

1.1 Follow the instructions given in the text.

1.2 Manipulate the controlDict file to create a different output, timestep, etc.

1.3 Reverse the swirl by changing the boundary values in the velocity U file.

1.4 Try to get comfortable with the Paraview GUI. Cut the domain using the Slice filter to
look at the pressure field in the mid-XY plan. In this plan, visualize the velocity field
using the Glyph filter.

1.5 Run Allclean before logout. And check that your case is properly cleaned.

1.3 Extra Practice and Background Information 25

1.3 Extra Practice and Background Information

Extra Practice

Additionally to this first contact with OpenFOAM® and paraView, we advice you
to do the first tutorial of the User Guide up to and including the 2.1.4 Post-processing
paragraph.

Background Information

1.3.1 Sources for documentation

The following section lists sites that can provide you more information about OpenFOAM®

and the other free tools useful in the frame of Computational Thermo-Fluid Dy-
namics.

1. Official websites

openfoam.com: http://www.openfoam.com/
The official website of OpenCFD®, the company that releases OpenFOAM®

User Guide: http://www.openfoam.com/docs/user/
The official user guide
C++ source guide: http://www.openfoam.com/docs/cpp
Link to the Doxygen documentation for the lastest version

2. Community websites

The OpenFOAM®-Extend Project: http://www.extend-project.de/
The website of the biggest community project of OpenFOAM®. This web-
site is supported actively by some of the first developers of OpenFOAM®.
Their goal is to gather in the same place the contribution of the community.
It will become (website launched mid-2010) the biggest unofficial source of
information and ressources (tools, test cases, validation, bug tracking,...).
Unofficial OpenFOAM® wiki: http://openfoamwiki.net/index.php/
Main_Page
Everything is said in the title :)
CFD-online -> OpenFOAM®: http://www.cfd-online.com/Forums/
openfoam/
With the link you will have access to the forum of OpenFOAM®. You have
to register to the website to post messages. But it is really worthy.
Foam CFD: Collaborative Open-Source CFD: http://www.foamcfd.org/
Old site for the community but not updated since 2008.

3. Useful tools

paraView: http://www.paraview.org/
The free post-processing software shipped by default with OpenFOAM®.
Its wiki provides help and documentation: http://paraview.org/Wiki/
ParaView.

http://www.openfoam.com/
http://www.openfoam.com/docs/user/
http://www.openfoam.com/docs/cpp
http://www.extend-project.de/
http://openfoamwiki.net/index.php/Main_Page
http://openfoamwiki.net/index.php/Main_Page
http://www.cfd-online.com/Forums/openfoam/
http://www.cfd-online.com/Forums/openfoam/
http://www.foamcfd.org/
http://www.paraview.org/
http://paraview.org/Wiki/ParaView
http://paraview.org/Wiki/ParaView

26 1 Introduction into Linux and OpenFOAM®

gnuplot: http://www.gnuplot.info/
The command-line graphical tools.
matplotlib: http://matplotlib.sourceforge.net/index.html
matplotlib is a python 2D plotting library which produces publication qual-
ity figures in a variety of hardcopy formats (Python base system).

4. Universities using OpenFOAM®

Lehrstuhl für Technische Thermodynamik der Universität Rostock: http:
//www.ltt-rostock.de/mediawiki/index.php/OpenFOAM
This departement has a wiki on OpenFOAM® (in German). In addition,
their tools are available through a svn repository. Unfortunately it looks
that the wiki has some problems (or new restrictions?). So if you are inter-
ested, you can download the full content of the SVN repository typing in a
terminal:

svn co --username gast --password ""
https://janus.fms.uni-rostock.de/svn/repository/OpenFOAM/

trunk/LTTRostockExtensions

Department of Applied Mechanics at Chalmers University: http://www.
tfd.chalmers.se/~hani/kurser/OS_CFD/
That departement offer a "PhD course in CFD with OpenSource software".
The main advantage is that all ressources are available: teaching hand-out,
presentations and reports of the attendees, additional links and information.
Faculty of Mechanical Engineering (UNIZAG FSB; http://www.fsb.hr/),
University of Zagreb (http://www.unizg.hr/), hosts one of the origi-
nal OpenFOAM® developer: Professor Hrvoje Jasak. He is still the lead-
ing developer of the community version OpenFOAM-extend. He organizes
a summer school for advanced users of OpenFOAM® every September.
For more information, here is the link to the Summer School 2011 website:
http://www.fsb.hr/?OpenFOAM_Summer_School_2011.

http://www.gnuplot.info/
http://matplotlib.sourceforge.net/index.html
http://www.ltt-rostock.de/mediawiki/index.php/OpenFOAM
http://www.ltt-rostock.de/mediawiki/index.php/OpenFOAM
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/
http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/
http://www.fsb.hr/
http://www.unizg.hr/
http://www.fsb.hr/?OpenFOAM_Summer_School_2011

Chapter

2 Heat Transfer in a Plate

28 2 Heat Transfer in a Plate

2.1 Todays Problem

Figure 2.1: Heat transfer in the cross-section of a infinitely long steel profile

Consider a plate like the one in figure 2.1. It consists of steel, has an initial tem-
perature of 1000◦C and is cooled by air of 20◦C in the upper part and a water-ice
mixture 0◦C in the lower part. As it is a symmetrical problem, only the half right
side of the plate will be modeled to reduce the computational cost. The bottom
boundary is cooled with a constant heat flux1 as q̇lin = 200W/m2.

Bibliography

[1] Wäermeübertragung, Polifke and Koptiz, Pearson, 2nd edition, 2009
[2] Fundamentals of Heat and Mass Transfer, Incropera and DeWitt, John Wiley &

Sons 1996
[3] Script: Grundlagen thermo-fluiddynamischer Simulation, Polifke, Kopitz and

Holzinger, TU München 2010
[4] Script: Finite-Volumen-Methode in der Numerischen Thermofluiddynamik, Bau-

mann et al.,TU Berlin 2006

1 So the global flux passing by the bottom boundary is equal to 200∗0.05 = 10W per meter unit in the
infinite direction

2.2 Physics 29

2.2 Physics

2.2.1 Fourier’s Law

Transient heat transfer problems are described by Fourier’s differential equation,
which will be derived for the 2D case in this chapter.

Figure 2.2: Heat transfer in an infinite small plate.

Consider the infinite small plate of the dimensions ∆x × ∆y shown in figure 2.2
with a depth of ∆z. An energy balance leads to:

dU

dt
=
∑

Q̇i (2.1)

The inner energy U of the solid material is defined by

U = mcvT

, and its temporal derivative can be written by substituting the volume V = ∆x∆y∆z
and density ρ as:

∂U

∂t
= ρ∆x∆y∆zcv

∂T

∂t
(2.2)

. The heat fluxes Q̇i are developed by Q̇i = Aiq̇i and inserting Fourier’s law

q̇i = −λ ∂T
∂xi

(2.3)

. Here xi stands for x and y respectively. Inserting these expressions lead to

ρ∆x∆y∆zcv
∂T

∂t
= ∆y∆zλ

∂T

∂x
+∆x∆zλ

∂T

∂y

30 2 Heat Transfer in a Plate

Dividing this equation by the spacial variables and setting the limit yields

ρcv
∂T

∂t
=

∂

∂x

(
λ
∂T

∂x

)
+

∂

∂y

(
λ
∂T

∂y

)
(2.4)

.

Introducing the thermal diffusivity a = λ
ρcv

this equation can be rewritten in tensor
form :

∂T

∂t
= ▽ (a▽T) (2.5)

This equation is of the Laplacian type, which is valid for other physical problems,
e.g. chemical diffusion as well. Generally the right hand side of this equation is
called diffusive term.

2.3 Numerics

The continuous differential equation 2.5 is discretized by the Finite Volume Method
(FVM) and has the following form

aPTP = Ψ(aNTN + aETE + asTS + aWTW) + (2.6)
(1−Ψ)

[
aNT

0
N + aET

0
E + asT

0
S + aWT

0
W+(

a0P − aN − aE − aS − aW
)
T 0
P

]
+ b

for a control volume in a two dimensional case. Here the subscripts mean:

P at this point, and in correspondence to
N the northern
W western
S southern
E eastern

cell. ai is a factor depending on the discretization schemes. b stands for a con-
stant term, which may come up with source terms. The superscript 0 identifies the
current time step. Ψ depends on the time discretization method.

2.3.1 Temporal discretization schemes

All differential equations describing a transient problem consist of a time derivative
term, generally of first order. A weighted integration from the actual time step to
the next leads to the next point P value. There are four schemes (see [3, 1] for
details) implemented in OpenFOAM® (see Table 2.1)

In OpenFOAM®, the time scheme doesn’t determine whether the equations are
solved implicitly or explicitly (See paragraph 2.4.2 for more explanation).

2.3 Numerics 31

Time schemes Description

steadyState The term is not discretized and the corresponding
sum terms of ap, a0p become 0.

Euler The time derivation is computed from the current and
the future time steps.

backward The time derivative is computed from the previous,
the current and the future time steps.

CrankNicholson Ψ The current and future steps are blended, Ψ = 0
stands for an explicit formulation, Ψ = 1 for a fully
implicit treatment and Ψ = 0.5 is the standard Crank
Nicholson method.

Table 2.1: Time schemes in OpenFOAM®

2.3.2 Spatial discretization schemes

Laplacian Schemes

Laplacian operators are recomputed by a Gaussian integration. This reduces the
order of derivatives and creates a further term containing the fluxes over the sur-
face, or , in other words, surface normal gradients. When Gaussian integration
is used, only the interpolation scheme for the approximation of the surface values
has to be selected. Here we commonly choose a linear interpolation. Further-
more, if we select an uncorrected surface normal gradient method, this would
correspond to a central difference scheme (CDS).

For completeness we introduce the two most common schemes for divergence and
gradient terms.

Gradient Schemes

Gradient schemes, for example emerge with the pressure term of the momentum
equation. Again, a linear Gaussian integration is used for standard compu-
tations. Further possibilities are a leastSquares method of second or fourth
order. All of them might be limited followed by a gradient scheme.

Divergence Schemes

Divergence Terms are very common in CFD. They especially describe the convec-
tive part of a differential equation. As the stability and exactness of the computation
is strongly coupled to the selected scheme, care has to be taken. At first a stable low
order method should be used before a more accurate scheme is selected.

The simplest method again is the CDS, which corresponds to a linear Gaussian
integration. However this method is not stable, and thus the upwind scheme
should be used as standard method.

32 2 Heat Transfer in a Plate

Considering the differential equation in Φ

d

dx
(ρuΦ) =

d

dx

(
Γ
dΦ

dx

)
(2.7)

the CDS leads to

(ρuΦ)E − (ρuΦ)W =

(
Γ
dΦ

dx

)
E

−
(
Γ
dΦ

dx

)
W

(2.8)

or by splitting into piecewise linear profile ΦE = 1
2 (ΦE +ΦP), ΦW = 1

2 (ΦP +ΦW)
to

1

2
(ρu)E (ΦE +ΦP)−

1

2
(ρu)W (ΦP +ΦW) =

ΓE
δxE

(ΦE − ΦP)−
ΓW
δxW

(ΦP − ΦW)

(2.9)

respectively. Reorganizing this equation in the standard manner it can be written
as

aPΦP = aWΦW + aEΦE (2.10)

, with F = ρu and D = Γ
δx the parameters ai become:

aW = DW − FW
2
, aE = DE − FE

2
(2.11)

aP = DE +
FE
2

+DW +
FW
2

= aW + aE + (FE − FW) (2.12)

Here the possibility of a change in the signs of Fi and as a consequence of ai, causes
the instability.

When the upwind scheme is used, the convective term on the left-hand side of
equation 2.7 is modeled differently. Depending on the sign of Fi the following
formulation is used instead:

aW = DW −max [FW , 0] aE = DE −max [FE , 0] (2.13)
aP = aW + aE + (FE − FW) (2.14)

This causes a fulfillment of the Scarborough (stability if aN,E,W,S > 0) criterion and
a reduction from second to first order in exactness of the discretization.

2.4 OpenFOAM® 33

2.4 OpenFOAM®

2.4.1 Mesh Generation with blockMesh

OpenFOAM® has a mesh generation routine, which may be called by typing

blockMesh

in the case folder or with a -case option. This utility is text based and only sensible
for very simple grids. The main construction file is located in the constant/polyMesh
folder and called blockMeshDict (an example is shown in Listing 2.1). Again this
file consists of an OpenFOAM® header and is followed by further substructures.

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.6
\\ / A nd	Web: http://www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object blockMeshDict;

}
// * //

convertToMeters 0.1; // coordinates are written in decimeter

vertices // coordinates of the points needed to specify the geometry
(

(0 0 0) // point 0
(5 0 0) // point 1
(5 5 0)
(0 5 0)
(0 0 0.1)
(5 0 0.1)
(5 5 0.1)
(0 5 0.1) // point 7

);

blocks
(
// definition of a mesh block
// type / list of points / number of cells in each direction / grading in the mesh

hex (0 1 2 3 4 5 6 7) (20 20 1) simpleGrading (1 1 1)
);

edges
(
);

34 2 Heat Transfer in a Plate

boundary // list of boundary faces
(

movingWall
{

type wall;
faces
(

(3 7 6 2) // list of points defining the boundary
);

}
fixedWalls
{

type wall;
faces

(
(0 4 7 3)
(2 6 5 1)
(1 5 4 0)

);
}
frontAndBack // faces with the normal in the 3rd dimension
{

type empty;
faces
(

(0 3 2 1)
(4 5 6 7)

);
}

);

mergePatchPairs
(
);

// *** //

Listing 2.1: Example of a blockMeshDict for a plate of 50 cmx 50 cm

At first the scaling of the following geometric values is set. Setting
convertToMeters 0.001;

causes all coordinates to be converted from mm to m.

Next all points of interest have to be defined by inserting their coordinates in the
vertices construct.
vertices
(

(1000 0 0)
)

for example creates a vertex at 1m in x-direction. In the case of a later reference, the
n vertices are numbered from 0 to n− 1.

The created points are now used to create blocks that get meshed later. The user
can choose hex for hexaedral blocks, wedge for wedge shaped geometries in rota-
tional symmetric 2D-simulations, prism for prisma shape or tetra for a tetrahe-
dral form. However always eight vertices have to be named for each block. When

2.4 OpenFOAM® 35

non-hexaedral blocks are created some vertices have to be called more than once to
create a degenerated surface or line.

Figure 2.3: Vertex Numbering in a hexaedral block

The local coordinate System of the block has to be right hand sided. This is ful-
filled if: The vector from the first vertex to the second vertex points into the positve
x1-direction , the second and third into x2-direction. Those three vertices in combi-
nation with the fourth vertex create a plane perpendicular to the x3-direction. The
first and fifth vertex then point into x3-direction. The last three vertices have to be
found by moving the vertices two, three and four into the positive x3-direction. An
example of such a numbering might be found in figure 2.3.

The list of points is followed by the number of cells per direction and grading in
their direction. This can either be done by simpleGrading (1 1 1) where the
numbers define the ratio of the last to the first cell edge, or by edgeGrading, which
is followed by the ratio for each block edge.

After defining the blocks special edge configurations might be set. By default all
edges are assumed to be straight between two vertices. Further possibilities are
arc, simpleSpline, polyLine, polySpline and line. The syntax can be
looked up in the users manual.

The last step of the geometrical definition is the definition of the patches. Each
patch consists of a generic patch type information and a characteristic name, like
mentioned in chapter 1 and is followed by a list of block faces that belong to this
patch. All faces are defined by four vertices, that are, observed from the inside,
traversed in clockwise direction.

If multiple blocks are used, their connecting faces might be merged. This procedure
is described in detail in the users manual.

36 2 Heat Transfer in a Plate

2.4.2 Setup of the laplacianFoam Solver

#include "simpleControl.H"

// * //

int main(int argc, char *argv[])
{

#include "setRootCase.H"

#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"

simpleControl simple(mesh);

// * //

Info<< "\nCalculating temperature distribution\n" << endl;

while (simple.loop())
{

Info<< "Time = " << runTime.timeName() << nl << endl;

for (int nonOrth=0; nonOrth<=simple.nNonOrthCorr(); nonOrth++)
{

solve
(

fvm::ddt(T) - fvm::laplacian(DT, T)
);

}

#include "write.H"

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

}

Info<< "End\n" << endl;

return 0;
}

Listing 2.2: The laplacianFoam.C main file of the laplacianFoam solver without the
commented header of the file. Usually the header consist of standard forms and a
short description of the solver.

The laplacianFoam solver of OpenFOAM® solves the laplacian equation

∂T

∂t
= ▽ (DT▽T) (2.15)

, where the thermal diffusivityDT is specified in the constant/transportProperties
file.

The solver is located in the applications folder of the OpenFOAM® installation di-
rectory. The main file laplacianFoam.C (listing 2.2) is written in C++. At first

2.4 OpenFOAM® 37

some standard header files (setRootCase.H, createTime.H, createMesh.H)
are loaded. Then, the first solver specific header, createFields.H (see Listing
2.3) is called.

Info<< "Reading field T\n" << endl;

volScalarField T
(

IOobject
(

"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

Info<< "Reading transportProperties\n" << endl;

IOdictionary transportProperties
(

IOobject
(

"transportProperties",
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE

)
);

Info<< "Reading diffusivity DT\n" << endl;

dimensionedScalar DT
(

transportProperties.lookup("DT")
);

Listing 2.3: The createFields.H file of the laplacianFoam solver

This file defines the fields and parameters of the differential equations to solve.

The first part defines the temperature field, giving an entry for every cell. It is set to
be a field of scalars by the volScalarField type, has to be read from the runtime
dictionary, and is automatically written if a write step is reached.

The second part of this header passes the filename information of the physical pa-
rameters to the solver. Here the transportProperties file has to be read from
the constant folder and is not overwritten.
After this dictionary is defined, the diffusivity DT is looked up from this file.

38 2 Heat Transfer in a Plate

The runtime loop

After reading this file the runtime loop starts, and is executed until the condition
defined in the controlDict file is fulfilled. Every time step the control switches in
the SIMPLE subdirectory of the systems/fvSolution file are read. Afterwards
equation 2.15 is solved.

Let us observe the equation construct in laplacianFoam.C (listing 2.2) a bit more
detailed.

solve
(

fvm::ddt(T) - fvm::laplacian(DT, T)
);

tells the solver to solve the discretized equation in the form of

∂T

∂t
− ▽ (DT▽T) = 0

, but what means the fvm: part of this equation?

OpenFOAM® internally reformulates the partial differential equations (PDE) to a
linear equation system

A−→x =
−→
b (2.16)

. The class fvm and its opposite fvc defines whether the derivative term is handled
implicitly or explicitly. For reliability all time derivatives always have to be handled
implicitly, but some spatial derivatives can be treated in both ways. Depending on
the choice, the terms are part of the system matrix A or the right-hand side vector
−→
b .

Here all terms are treated implicitly.

After solving the equation system the output is created in the write.H file.

2.4 OpenFOAM® 39

if (runTime.outputTime())
{

volVectorField gradT(fvc::grad(T));

volScalarField gradTx
(

IOobject
(

"gradTx",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
gradT.component(vector::X)

);

volScalarField gradTy
(

IOobject
(

"gradTy",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
gradT.component(vector::Y)

);

volScalarField gradTz
(

IOobject
(

"gradTz",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE

),
gradT.component(vector::Z)

);

runTime.write();
}

Listing 2.4: The write.H file of the laplacianFoam solver

In this special solver the spatial derivatives are saved separately in addition to the
scalar field of T if an output time step is reached. If so, first the gradient of the
scalar field is computed. Afterwards all the three components of the gradient vector
are saved to the time directory in a separate file named gradTx, gradTy and
gradTz. The IO object T is already defined to be stored by the AUTO_WRITE option
in the createFields.H file. The final task of this file is to write the output, which
is done by the command runTime.write();.

40 2 Heat Transfer in a Plate

2.4.3 The system Folder

As mentioned in the last chapter the main solver control settings are established
in the system/controlDict file. The system folder also consists of two further
files, which will be investigated in this chapter.

fvSchemes

FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object fvSchemes;

}
// * //
ddtSchemes
{

default Euler;
}

gradSchemes
{

default Gauss linear;
grad(T) Gauss linear;

}

divSchemes
{

default none;
}

laplacianSchemes
{

default none;
laplacian(DT,T) Gauss linear corrected;

}

interpolationSchemes
{

default linear;
}

snGradSchemes
{

default corrected;
}

fluxRequired
{

default no;
T ;

}
// *** //

Listing 2.5: A typical fvSchemes file of the laplacianFoam solver

2.4 OpenFOAM® 41

This file contains the definition of all used discretization schemes that are used,
if they come up in the code. Starting with the first and second time derivative,
the user can choose the settings from section 2.3.1. However for the second time
derivative only Euler can be chosen.

As you can see in the gradientSchemes construct, not only a default scheme can
be specified, but also special terms, of a differential equation.

The divergenceSchemes of section 2.3.2 are not the only one implemented. The
list in table 2.2 completes the possible items.

Scheme Numerical behaviour

linear Second order, unbounded

skewLinear Second order, (more) unbounded, skewness correc-
tion

cubicCorrected Fourth order, unbounded

upwind First order, bounded

linearUpwind First/second order, bounded

QUICK First/second order, bounded

TVD schemes First/second order, bounded

SFCD Second order, bounded

NVD schemes First/second order, bounded

Table 2.2: Interpolation schemes for the divergence terms in OpenFOAM®

The syntax of the laplacianSchemes subdictionary has the following form:

laplacian(DT,T) <interpolationScheme> <snGradScheme>

. Possible interpolation schemes are listed in table 2.3

Centred schemes

linear Linear interpolation (central differencing)

cubicCorrection Cubic scheme

midPoint Linear interpolation with symmetric weighting

Upwinded convection
schemes

upwind Upwind differencing

linearUpwind Linear upwind differencing

skewLinear Linear with skewness correction

QUICK Quadratic upwind differencing

TVD schemes

42 2 Heat Transfer in a Plate

limitedLinear limited linear differencing

vanLeer van Leer limiter

MUSCL MUSCL limiter

limitedCubic Cubic limiter

NVD schemes

SFCD Self-filtered central differencing

Gamma Ψ Gamma differencing

Table 2.3: Interpolation schemes in OpenFOAM®

If a strictly bounded scalar is computed the limitation might be set by adding the
word limited in front of the scheme and the boundary values behind the scheme,
e.g. limitedVanLeer 1 2.1.

Some interpolationSchemes are optimized for vector fields, and can be called by
adding a V. The most common are limitedLinearV, vanLeerV, GammaV,
limitedCubicV and SFCDV.

The surface normal gradients can be discretized by the schemes listed in table 2.4.

Scheme Description

corrected Explicit non-orthogonal correction

uncorrected No non-orthogonal correction

limited Ψ Limited non-orthogonal correction

bounded Bounded correction for positive scalars

fourth Fourth order

Table 2.4: Surface normal gradient schemes in OpenFOAM®

The default should be set to corrected.

After the laplacian interpolation and surface normal gradient schemes are set, those
schemes for detached terms are selected.

Finally if the flux shall be computed in the solver after solving the equation the
corresponding field has to be named in the fluxRequired field.

2.4 OpenFOAM® 43

fvSolution

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.6
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "system";
object fvSolution;

}
// * //

solvers
{

T
{

solver PCG;
preconditioner DIC;
tolerance 1e-06;
relTol 0;

}
}

SIMPLE
{

nNonOrthogonalCorrectors 2;
}

// *** //

Listing 2.6: A typical fvSolution file for the laplacianFoam solver

The fvSolution file defines the solvers for the discrete differential equations, that
the main solver should compute. This means the solution of equation 2.16 is ap-
proximated by different solvers for each PDE of the system.

The three possible solver are PCG (symmetric matrices) or PBiCG (asymmetric),
smoothSolver and GAMG for generalized geometric-algebraic multi-grid solvers.
The smoothSolvers can be looked up in the users manual or tutorial cases.

44 2 Heat Transfer in a Plate

The preconditioning of the matrices might be done with the following keywords:

Preconditioner
Keyword

Diagonal incomplete-Cholesky (symmetric) DIC

Faster diagonal incomplete-Cholesky (DIC
with caching)

FDIC

Diagonal incomplete-LU (asymmetric) DILU

Diagonal diagonal

Geometric-algebraic multi-grid GAMG

No preconditioning none

After the preconditioning is set the absolute and relative residual tolerances are
selected, meaning that either the approximation reaches a residual lower than the
absolute value, or the ratio of actual to former residual falls below the relTol limit.

After setting all the solver controls, the algorithm settings are made. Depend-
ing on the solver either PISO/PIMPLE or SIMPLE (here) algorithms are used in
OpenFOAM®. In the SIMPLE substructure the relevant parameters are set. They
will be discussed later in chapter 4.

The sub-dictionary relaxationFactors controls under-relaxation, a technique
used for improving stability of a computation, only when solving steady-state prob-
lems. Under-relaxation works by limiting the variation of a variable from one it-
eration to the next, either by modifying the solution matrix and source prior to
solving for a field or by modifying the field directly. An under-relaxation factor α,
0 < α < 1 specifies the amount of under-relaxation, ranging from none at all for
α = 1 and increasing in strength as α → 0. The limiting case where α = 0 repre-
sents a solution which does not change at all with successive iterations. An opti-
mum choice of α is one that is small enough to ensure stable computation but large
enough to move the iterative process forward quickly; values of α as high as 0.9
can ensure stability in some cases and anything much below 0.2 are prohibitively
restrictive in slowing the iterative process. The user can specify the relaxation fac-
tor for a particular field by specifying first the word associated with the field, then
the factor as shown below.

relaxationFactors
{

T 0.7;
}

2.4 OpenFOAM® 45

Exercises
2.1 Create a plate with the measures of figure 2.1.

2.2 Apply the correct boundary conditions to the plate and the initial condition of a constant
temperature of 1000◦C. Set the right diffusivity 2.
Remark :

Here is an example to set a boundary with a fixed value.

hotWall
{

type fixedValue;
value uniform 400;

}

Here is an example to set a boundary with a fixed gradient.

heatedWall
{

type fixedGradient;
gradient uniform 40;

}

2.3 At which time is the steel plate entirely cooled below 200◦C? Plot the evolution of the
temperature at the point at the middle of the bottom face of the plate.

2.4 Apply a grading to the plate mesh. The cells have to be finer at the top and the right
sides of the plate.

2 The value of the physical properties for different materials can be found on http://www.
engineeringtoolbox.com/ (Look in this case after the Carbon Steel).

http://www.engineeringtoolbox.com/
http://www.engineeringtoolbox.com/

46 2 Heat Transfer in a Plate

2.5 Extra Practice and Background Information

Extra Practice

Changing the boundary conditions

The steel plate stayed on the cooler during 6 minutes. But as nobody was there to
move it to another place, it stays on the cooler 6 additional minutes. But during
that time, the boundary conditions were different :

The temperature of the air is 10◦C
The ice-water filling by fresh ice stays at 0◦C.
The bottom of the cooler due to the thermal inertia give now a flux of 100W/m
to the steel plate (So the heat flux is inverted and now goes from the bottom to
the plate).

What is the structure of the temperature field after 6 minutes of cooling ? And after
the 6 additional minutes ? Plot the evolution of the temperature of the middle of
the bottom face of the plate during the 12 minutes.

Changing the material

You can change the material from steel to aluminum. How many time is now
needed to cool the plate below 200◦C?

Background Information

2.5.1 Linear solvers and preconditioners

The resolution of a discretized partial differential equation required to solve a linear
system Ax = b. OpenFOAM® has a number of linear solvers to do so, i.e. iterative
solvers for linear sets of equations of the type Ax = b. They are listed below:

diagonalSolver – diagonal solver. Remark : Cannot be selected usually.
PBiCG – Preconditioned bi-Conjugate Gradient solver for asymmetric lduMa-
trices using a runtime selectable preconditioner.
PCG – Preconditioned Conjugate Gradient (CG) solver for symmetric LDU ma-
trices using a runtime selectable preconditiioner.
smoothSolver – Iterative solver using smoother for symmetric and asymmetric
matrices which uses a run-time selected smoother e.g. GaussSeidel to converge
the solution to the required tolerance.
To improve efficiency, the residual is evaluated after every nSweeps smoothing
iterations.
This algorithm is efficient for steady-state simulation.
GAMG – Geometric Agglomerated Algebraic Multigrid solver.

2.5 Extra Practice and Background Information 47

A preconditioned iterative solver solves the system M−1Ax = M−1b, with M be-
ing the preconditioner3. The goal of the preconditioner is to make sure that conver-
gence for the preconditioned system is much faster than for the original one. For
that, M is typically an easily invertible approximation to A. The following types of
preconditioners are implemented in OpenFOAM®:

diagonal – Diagonal preconditioner for both symmetric and asymmetric matri-
ces.
DILU – Simplified diagonal-based incomplete LU preconditioner for asymmet-
ric matrices. The reciprocal of the preconditioned diagonal is calculated and
stored.
DIC – Diagonal-based Incomplete Cholesky preconditioner for symmetric ma-
trices (symmetric equivalent of DILU). The reciprocal of the preconditioned di-
agonal is calculated and stored.
FDIC – Faster version of the DIC Preconditioner in which the reciprocal of the
preconditioned diagonal and the upper coefficients divided by the diagonal are
calculated and stored.
GAMG – Geometric agglomerated algebraic multigrid preconditioner.

3 The example shown is called "left" preconditioning, but also central and right preconditioning exists.

Chapter

3 Heat Transfer In a
Complex Geometry

50 3 Heat Transfer In a Complex Geometry

3.1 Todays Problem

The purposes of this second exercise are multiple. You will first modify an exist-
ing solver, laplacianFoam. Then an introduction to the tool to import a mesh from
Fluent® to OpenFOAM® will be presented. And finally, a powerful tool to initial-
ize the internal fields will be described. But let’s start with the description of the
todays problem.

The system studied is a passive cooler of a chip in aluminum1. The purpose of
the cooler is to increase the exchange surface between the chip and the air. The
dimensions of the cooler are defined by the dimensions of the chip, the maximum
temperature viable for the chip and the Thermal Design Power (TDP) i.e. the max-
imum sustainable power to be dissipated by the chip.2

Figure 3.1: The Zalman cooler ZM-NB32K

The critical case simulated here will be the starting of the computer in a warm air
and with a constant and maximal dissipation of energy from the chip.

1 For more information : Zalman Tech Co., ZM-NB32K. URL : http://www.zalman.co.kr/ENG/
product/Product_Read.asp?idx=132 (visited 06/03/2010)

2 Example of specifications used for this case : Intel® X38 Express Chipset Thermal and Mechan-
ical Design Guidelines. URL http://www.intel.com/products/desktop/chipsets/x38/
x38-technicaldocuments.htm (visited on 26/02/2010)

http://www.zalman.co.kr/ENG/product/Product_Read.asp?idx=132
http://www.zalman.co.kr/ENG/product/Product_Read.asp?idx=132
http://www.intel.com/products/desktop/chipsets/x38/x38-technicaldocuments.htm
http://www.intel.com/products/desktop/chipsets/x38/x38-technicaldocuments.htm

3.2 Physics 51

3.2 Physics

In this second chapter, laplacianFoam will be used again as the basis of your first
solver. As you learnt in the first exercise, this application solves the Fourier-Kirchhoff
equation :

∂T

∂t
= a∇2T (3.1)

In this equation a is the thermal diffusivity [m2/s] and it is a constant defined in
transportProperties3. In order to improve the solver, we want to be able to
set a varying value for the thermal diffusivity.

The exercise will be based on a cooling system for micro-chips. For that purpose a
new type of boundary condition will be used : heat transfer between a wall and a
fluid. This condition is modelled using the following equation :

qs = −k∂T
∂n

= h(Twall − Tfluid) (3.2)

where
qs is the heat flux [W/m2]
k the thermal conductivity of the solid [W/mK]
∂T
∂n the gradient of temperature going out of the solid (<0 if the wall is hotter
than the fluid) [K/m]
h the heat transfer coefficient [W/m2K]
S the surface of the wall [m2]

Consequently this is a Neumann condition, the gradient at the boundary is known.

The heat transfer coefficient depends on the physical properties of the fluid and the
solid. Typical values are4 :

For the air : 10 - 100 [W/m2K]
For the water : 500 - 10 000 [W/m2K]

3.3 Numerics

The structure of a code in C++ will be presented shortly in this paragraph.

There are two main categories of codes : the classes and the applications. They are
compiled in libraries and in executables files respectively. The main difference is
that a library cannot be run by itself. But it provides functionalities that could be
linked into applications or other libraries. In the opposite an executable is runnable
(e.g. a solver is an executable but the classes defining the boundary conditions are

3 see Chapter 1.
4 source : http://www.engineeringtoolbox.com/convective-heat-transfer-d_430.

html (visited on 05-03-2010)

http://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html
http://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html

52 3 Heat Transfer In a Complex Geometry

stored in libraries). In this chapter, we will focus on the applications. The class will
be described in the chapter 8.

For an application like laplacianFoam (cf. listing 2.2), the source file contains a
main function (entry point of the executable file). And some header files are added
before the main function to define the classes used in the solver. Or they are added
in the code to improve the readability of the code.

3.4 OpenFOAM®

3.4.1 The funkySetFields utility

funkySetFields5 is an improved version of the official setFields tool. It allows to
change the internal value of a field with conditions on the location of the point,
with mathematical expression,. . . . It can be used as a command with arguments or
by reading a dictionary system/funkySetFieldsDict. This second option will
be used.
Here is an example of that dictionary. In this example all the optional parameters
have the default values.

expressions
(

pressure1 //Name of the action
{

field p; // field to be modified
// expression to use to evaluate the field

expression "10.*(0.1-pos().y)";
/* [optional] subset of cells for which the action
is valid */

condition "";
/* [optional] if true, keep the current boundary
conditions. Otherwise the boundary condition
is set to zeroGradient. */

keepPatches false;
/* [optional] list of patches where the boundary
condition has to be set to fixedValue extrapolate
from the internal field.*/

valuePatches ();
// [optional] is true if the field has to be created

create false;
/* [optional] if the field has to be created,
you can specify the dimension of it.*/

dimension ();
}

);

Listing 3.1: Example of funkySetFieldsDict

Once the dictionary is set, you can execute the tool by typing the following com-
mand in a terminal :

funkySetFields -time 0

5 The source code and the documentation of this tool is part of the toolbox swak4Foam. You can obtain
more information and download the sources on http://www.openfoamwiki.net/index.php/
Contrib/swak4Foam

http://www.openfoamwiki.net/index.php/Contrib/swak4Foam
http://www.openfoamwiki.net/index.php/Contrib/swak4Foam

3.4 OpenFOAM® 53

3.4.2 Before writing some code

The following paragraph will give you some important advices to follow when you
want to write/modify some code.
First, to avoid modifying the basic code of OpenFOAM®, you should work on a
copy of the files and use a different name to avoid any conflict between your version
and the one from OpenFOAM®. So we will start by copying the source code of
laplacianFoam in your $FOAM_RUN folder. In a terminal, write the following
commands6 :

creation of the folder structure
mkdir -p $WM_PROJECT_USER_DIR/applications/solvers/myLaplacianFoam

move to this new folder
cd $WM_PROJECT_USER_DIR/applications/solvers/myLaplacianFoam

copy the folder containing the parameters for the compiler
cp -r $FOAM_SOLVERS/basic/laplacianFoam/Make ./

copy the header files
cp $FOAM_SOLVERS/basic/laplacianFoam/*.H ./

copy the source code and rename the solver to myLaplacianFoam7

sed s/laplacianFoam/myLaplacianFoam/g

$FOAM_SOLVERS/basic/laplacianFoam/laplacianFoam.C > myLaplacianFoam.C

Before continuing, we can check if all the required files are copied in $WM_PROJECT_USER_DIR/
applications/solvers/myLaplacianFoam. For that, type in the terminal

ls -R .

The command will list all the existing files in the current folder and its sub-folders.
You should have in the main folder : createFields.H Make myLaplacianFoam.C
write.H and in the Make folder : files options.

3.4.3 Structure of a solver folder

OpenFOAM® is tool-box that contains lots of classes stored in different libraries.
Consequently, writing a solver is like making a recipe from those ingredients.

Classically in a folder directory, you will find some source code files and a folder
Make containing two files : files and options. In the following paragraphs,
those elements will be described in more details, taking myLaplacianFoam as
example.

Source code

There are two kinds of files containing the source code : the header files and one
source file named nameSolver.C.

6 To have more information about a Linux command, you can type command -help or man
command. For example mkdir -help

7 The command sed s/oldName/newName/g file replace in the file the oldName pattern by the
newName pattern.

54 3 Heat Transfer In a Complex Geometry

The header files (extension .H) : they contain pieces of code used in the solver.
They are used with the include command. It is equivalent to copy the content of
a header file instead of the command #include "myheader.H". For example at
the line 43 in myLaplacianFoam.C, you can replace #include "createFields
.H" by the content of createField.H i.e. Info« ... transportProperties.
lookup("DT"));.
There are two main reasons to use the header files like that. Firstly, it eases the com-
prehension of the code. For example createFields.H contains the code to create
the fields used in the simulation as well as the code to read the parameters needed
to do so. So if you want to change the equation solved by the solver, you know
that is not in that part of the code. And inversely if you want to change the way a
field is created, you have to look in that file and not in nameSolver.C. The second
advantage of those header files comes when you want to reuse a part of the code.
Indeed, for example, the creation of the geometry is a part common to all solvers.
So this part is written only once in a file called createMesh.H. And you just have
to include this file at the begin of the solver (e.g. line 42 in myLaplacianFoam.C).8

The source code file (extension .C) defines the solver itself. It starts by a series of
header files that define the classes that could be used in the solver; e.g. fvCFD.H
line 32 in myLaplacianFoam.C is included in all solvers because it contains the
definition of all basic OpenFOAM® classes. Then the solver starts (= function int
main(int argc, char *argv[])).
The structure of an OpenFOAM® solver is as follow :

1. Some header files that read the parameters, create the geometry and the fields,. . . .
In fact this part groups all the actions that have to be done before solving the
equations.

2. The time loop (while (runTime.loop())). As OpenFOAM® is a transient
solver, a time loop is an unavoidable item. During each time step the three
following events are carried out :

Reading and setting of the solver parameters (in our case readSIMPLEControls.H)
Solution of the equation. In this case, only equation (3.1) has to be solved.
Writing of the data (after checking if the current time step corresponds to a
writing time as defined in system/controlDict)

Make folder

This folder is used only by the compilation tools provided by OpenFOAM® to cre-
ate the executable version of the solver. It always contains only two files named
files and options.
The first one contains the list of the source code files that have to be compiled, the
location of the executable file and the name of this last one. The content of files
in our case is :

laplacianFoam.C

EXE = $(FOAM_APPBIN)/laplacianFoam

8 For more information on the header files used at the beginning of solver, have a look to
$FOAM_SRC/OpenFOAM/include/. But the comprehension of those files are not mandatory to un-
derstand the solver.

3.4 OpenFOAM® 55

This is wrong. So change it to compile myLaplacianFoam.C and create an exe-
cutable file called myLaplacianFoam. Another important change is the location of
the executable. Currently the location is $FOAM_APPBIN, the main OpenFOAM®

folder for applications. However, you should not use this directory. A good prac-
tice is to put your executable files in your working directory. To do so, change
$(FOAM_APPBIN) to $(FOAM_USER_APPBIN).

The second file, options, contains the location of the header files and the libraries9

used by the solver. Those parameters are used during the compilation to check for
error and to link the executable file with the libraries.

Compilation of the solver

OpenFOAM® provides powerful tools to compile : wclean and wmake. As an
example is better than a long text, you will compile the new solver. For that make
sure that the current directory is the one containing myLaplacianFoam.C and a
Make folder. Then type the following command :

wclean; wmake

The following lines are then printed on the terminal :

Making dependency list for source file myLaplacianFoam.C
SOURCE=myLaplacianFoam.C ;
g++ -m64 -Dlinux64 -DWM_DP -Wall -Wextra -Wno-unused-parameter

-Wold-style-cast -Wnon-virtual-dtor -O3 -DNoRepository
-ftemplate-depth-100
-I/.../OpenFOAM/OpenFOAM-2.0.1/src/finiteVolume/lnInclude
-I../heatTransferFvPatchScalarField/lnInclude -IlnInclude -I.
-I/.../OpenFOAM/OpenFOAM-2.0.1/src/OpenFOAM/lnInclude
-I/.../OpenFOAM/OpenFOAM-2.0.1/src/OSspecific/POSIX/lnInclude
-fPIC -c $SOURCE -o Make/linux64GccDPOpt/myLaplacianFoam.o

g++ -m64 -Dlinux64 -DWM_DP -Wall -Wextra -Wno-unused-parameter
-Wold-style-cast -Wnon-virtual-dtor -O3 -DNoRepository
-ftemplate-depth-100
-I/.../OpenFOAM/OpenFOAM-2.0.1/src/finiteVolume/lnInclude
-I../heatTransferFvPatchScalarField/lnInclude -IlnInclude -I.
-I/.../OpenFOAM/OpenFOAM-2.0.1/src/OpenFOAM/lnInclude
-I/.../OpenFOAM/OpenFOAM-2.0.1/src/OSspecific/POSIX/lnInclude
-fPIC -Xlinker --add-needed Make/linux64GccDPOpt/myLaplacianFoam.o
-L/.../OpenFOAM/OpenFOAM-2.0.1/platforms/linux64GccDPOpt/lib \
-L/.../user-2.0.1/platforms/linux64GccDPOpt/lib -lfiniteVolume
-lheatTransferBC -lOpenFOAM -ldl -lm
-o /.../user-2.0.1/platforms/linux64GccDPOpt/bin/myLaplacianFoam

The first line informs you about the header files needed by myLaplacianFoam.C.
This list is stored in a file called myLaplacianFoam.dep. Then the source code is
checked for warnings and errors. Here none are detected. So the first step of the
compilation is done. In a second step the executable file called myLaplacianFoam
is generated.

9 A library is a binary file containing some compiled code that are not directly executable. For example,
the functions defining the discretization of the equation (e.g. fvm::laplacian()) are contained in
the finiteVolume library.

56 3 Heat Transfer In a Complex Geometry

After the compilation, additional elements are present in the folder of the solver :
a file myLaplacianFoam.dep and another folder in Make, linux64GccDPOpt.
The first one contains a list of header files used by the solver and the folder in Make
contains the intermediate objects created during the compilation process. When
later you will run again the command wclean; wmake, the former will remove
those two elements and then the compilation will take place again.

Congratulations, you have just compiled your first OpenFOAM® solver. But that
was easy as you change only the name of the solver. Let’s go further and change
effectively the code. This is one of the objectives of the next section.

Exercise

Modification of the solver

As said previously, we want to change the thermal diffusivity from a constant scalar
to a field varying in the domain. To do so, two steps are needed. First a new field
has to be created at the start of the solver instead of a scalar. Then we need to
modify the equation.

Addition of a field

The creation of the fields is defined in createFields.H. In this case, there is only
one field created, the temperature T, from line 3 to 14. An analysis of those lines
will allow you to understand how to create a field.

volScalarField T
(

IOobject
(

"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE

),
mesh

);

In the first line, an object is created; its type is volScalarField and its name
is T. The type volScalarField could be translated in a natural language by
"field of a scalar parameter defined on the volume". Another important type is
volVectorField (e.g. the velocity). It defines a field of a vector parameter de-
fined for each point of the volume. In order to create such object, two parameters
are required the so-called IOobject and the mesh variable.
IOobject is an Input/Ouput object managing the reading and writing of files. To
construct it, 3 parameters are mandatory the name of the file to be read/written
(here "T"), the folder where to read/write the data (here runTime.timeName()
= caseDirectory/timeFolder) and the mesh object.
The two following are optional. The first option can take the values MUST_READ,
MUST_READ_IF_MODIFIED, READ_IF_ PRESENT or NO_READ (default value). If

3.4 OpenFOAM® 57

the first option is chosen, when the field is created, a file containing the values of
it has to be present in the current time folder. The second option as the same effect
than the first one, except during the execution of the solver. Indeed if you manually
modify the file during the execution, the solver will be aware of your changes in the
contrary with the first option. Usually fields like temperature or velocity are created
with the option MUST_READ. However the dictionary like transportProperties
are created with MUST_READ_IF_MODIFIED.
If the third option is chosen, the file with the values is read if present. And with the
default option, this file with the values is ignored. If the option is not MUST_READ a
default value has to be given to the volScalarField instead of the mesh object.
The second optional parameter could be AUTO_WRITE or NO_WRITE (default value).
With the first option, the field is written according the parameters specified in the
system/controlDict. If the second option is specified, the field is not written.

For this case, a new field for the thermal diffusivity named a has to be created after
the temperature field. The value of that new field will be stored in a file that has
to be read. And the values of the field have to be written according the control
dictionary.
As the variable DT is no more needed, you can comment the definition of it10.

The last change to be made in createFields.H is to update the output informa-
tion Reading diffusivity DT\n. Indeed you should at least update the name
of the diffusivity variable.

Change the equation

In order to change the equation, find the line in myLaplacianFoam.C with the
definition of the equation (3.1). Copy this line. Then put the original line in com-
ment and modify the copy to use the new field a instead of DT.

You can now compile your modified solver.

The cooler case

Now that your new solver is compiled, it can be used to solve a problem, in partic-
ular the cooler test case of this chapter.

Preliminaries

But before running the case, some initial steps have to be carried out. First copy the
archive file cooler.tar.gz into your OpenFOAM® working directory. Then extract the
files by typing the following commands in a terminal :

cd $WM_PROJECT_USER_DIR
tar xf cooler.tar.gz

In addition with the test case, that file contains a new boundary condition. It has to
be compiled. To do so execute the two following commands :

10 You can also delete those lines but you should always think twice before deleting a piece of code that
works.

58 3 Heat Transfer In a Complex Geometry

cd $WM_PROJECT_USER_DIR/src/fvPatchFields/heatTransferFvPatchField
wclean libso; wmake libso

The new boundary condition is compiled in a library called libheatTransferBC.so.
The difference between the compilation of an executable (like a solver) and a library
is done by passing the argument libso to wclean and wmake. Now, all the code
needed is compiled. The next step is the setup of the case.

Setup of the case

The archive file provides you with all the parameter files that you need. But the
geometry, the initial state and the boundary conditions are incomplete. The mesh is
defined using the Fluent® format (file constant/polyMesh/mesh_cooler.msh).
In order to convert it in the OpenFOAM® format, the utility fluentMeshToFoam
will be employed. First you can look at the options of that command. Write in
a terminal :

fluentMeshToFoam -help

An interesting option is the scale option. In fact the unit used for the mesh is the
millimeter. However OpenFOAM® uses SI units. Consequently you have to used
the option -scale scale_factor.
The other options are not interesting in this case. So to transform the Fluent® mesh
into an OpenFOAM® mesh, you will have to run the utility fluentMeshToFoam.
The two elements that have to be specified are the mesh file and the scale factor.

The surfaces of the cooler are divided into three groups : PROCESSOR, EXCHANGE
_SURFACE and COOLER. The first one is the large flat face in contact with the chip,
the second groups all the surfaces that dissipate energy to the surrounding air and
the last one is the surfaces negligible for the heat transfer with the air.
The list of boundary conditions can be checked by opening constant/polyMesh/boundary.

The last thing to be done before running the case is the definition of the initial and
boundary conditions. If you look into the folder 0 (zero), there is only one file a but
no file T to define the conditions on the temperature field. To do so, copy the file
defining the thermal diffusivity and rename it as T. Then open it and change the
following elements :

1. In the header, change the name of the field
2. Change the dimensions of the field from [m/s2] to [K] (see pp.105-107 of the

User Guide for more information11.)
3. Set the internal field to the temperature of the air (here 35oC).
4. Set the boundary conditions :

PROCESSOR : the chip dissipates 26.5 W on a surface of 25 mm x 37 mm.
Set that boundary condition using a fixedGradient condition. That con-
dition requires the parameter gradient. For example :
wall1
{

type fixedGradient;
gradient uniform 20;

}

11 And more specifically the paragraphs 4.2.6 and 4.2.8

3.4 OpenFOAM® 59

EXCHANGE_SURFACE : the cooler transfers the heat to the air following
equation (3.2). The heat transfer coefficient is supposed to be constant and
equal to 50 W/m2/K. The air is at a temperature of 35oC. And the solid ma-
terial is aluminium (its thermal conductivity is 250 W/m/K). An example
of the definition of such boundary condition follows.

exchange
{

type heatTransfer;
h 40; // heat transfer coefficient
k 120; // solid thermal conductivity
Tfluid 293; // temperature of the air
value uniform 293; // temperature at t=0

}

COOLER : the heat flux across that surface is zero.

Before running the solver, open the a file to have a look at it. As you can see, the
internal field and the boundary conditions set the thermal diffusivity to the one of
the aluminum : 8.418e-5 m2/s.

Running and post-processing

The case is now ready to be solved. To run the new solver on the case, write the
following command in a terminal where the current directory is the case directory
(here $FOAM_RUN/myLaplacianFoam/cooler) :

myLaplacianFoam > log &

To have a look of the log file, type the following command :

tail -f log

And press Ctrl+C to stop the command.

Once the case is solved (the end time is 240 s), the data can be post-processed using
Paraview®12. For that, type paraFoam & in the terminal. You can for example
visualize the increase of temperature until it reaches the steady state.
If the design of the passive cooler is good, the heat flux at the end of the fins have
to be close to zero. In the results, the heat flux is not computed directly. But the
temperature gradient is available. And as shown by equation (3.2), it is linked to
the heat flux.
The normal to the end face of the fin is z, the gradient of temperature in the z
direction, gradTz, is consequently the one interesting in this case.
Have a look to the field gradTz.

Is the evolution of the gradient along a fin physically correct ?
What about the evolution in absolute value with z ?
What about the sign ?

12 For more information on how to use Paraview, have a look to the first tutorial in the User Guide of
OpenFOAM®.

60 3 Heat Transfer In a Complex Geometry

You can check a value of a field in a point in ParaView® thank to the filter Probe
Location.
To look at the value at the points (0.0185, 0, 0.032) and (0.0185, 0.0175, 0.032) select
the filter Probe Location. Then click on the Split Vertical button on the upper right of
the frame view13. And choose Spreadsheet View.

Is the difference between the gradient at those two points large ?
Is the design of the cooler good (compare the value of the gradient at those two
points with the gradient at the boundary condition PROCESSOR) ?

Another test is the comparison between the current results and the results given by
the original solver laplacianFoam. Indeed as, in this case, the thermal diffusivity
is constant, the results should match those obtained by laplacianFoam.
The results at the latest time step will be the only one to be compared.
Execute the following actions to do so :

1. Create a new directory $FOAM_RUN/laplacianFoam/cooler2
2. Copy in that directory the folders 0 (zero), constant and system from the

cooler case directory
3. Modify, in the system/controlDict, the application parameter to laplacianFoam

and writeInterval to 40
4. Run laplacianFoam on that new case14

Once the case is solved, launch paraFoam. And to be able to compare easily this
case with the previous one, you can create two visualization windows. For that,

Click on the icon Split Horizontal. It is the first button on the upper right corner
of the frame view.
Select 3D View
With a terminal, go to the directory of the previous case
Type in the terminal :

touch cooler.OpenFOAM

In paraView®, click on Open file15. And open the file cooler.OpenFOAM in the
directory of the previous case.
To change something in one of the frame, be sure that it is selected (The border of
the frame is then blue) and then used the Pipeline browser and the Object Inspector
panels as usual.

Compare the temperature field at the latest time step in two cutting plans, called
Slice in ParaView® : the centre YZ plan and the centre XZ plan.

13 Be sure that the filter Probe Location is selected before splitting the window.
14 Reminder : the command is laplacianFoam > log &

15 Before opening the file, you should check if the new window is the current selected window.s

3.4 OpenFOAM® 61

The defective cooler case

The next step is to use the new feature introduced in myLaplacianFoam : the non-
constant thermal diffusivity. To change the value of the field inside the domain, the
tool funkySetFields will be used.

Description of the case

Unfortunately, during the manufacturing of a cooler, a piece of sand was captured
in the aluminum. The thermal diffusivity of the sand is 1.12e-6 m2/s and the one
of the aluminum is 8.418e-5 m2/s. That piece has roughly the form of an ellipsoid
with its center at (0.015, 0.0045, 0.003) and its radii (0.003, 0.0007, 0.001).

Setup of the case

First create a new folder to store this case. Copy in that folder the folders 0 (zero),
constant and system of the first case (directory $FOAM_RUN/myLaplacianFoam/cooler).
Open the funkySetFieldsDict file. To achieve the goals described above, the
following two actions will be set in funkySetFieldsDict :

1. First action, set the thermal diffusivity field to 8.418e-5 m2/s. Set all the bound-
ary conditions as fixedValue computed from the internal field.

2. Secondly, set the interior of the ellipsoid with the sand thermal diffusivity value.
Keep the boundary conditions as defined previously.

Remark :

The formula for the interior of an ellipsoid is :

(x− xc)
2

a2
+

(y − yc)
2

b2
+

(z − zc)
2

c2
< 1 (3.3)

where (xc, yc, zc) are the centre coordinates and (a, b, c) the radii of the ellipsoid.
To use a coordinate in expression or condition, use pos().x for x, pos().y for y
or pos().z for z
To take the square of a value X, use sqr(X)

Run funkySetFields on the time folder 0.

Open now the control dictionary and change writeInterval to 20.

Running and post-processing

The case can be solved. For that run myLaplacianFoam on the current case16. Use
ParaView® to compare the defective cooler case and the cooler case. And find the
answer to the following questions :

16 Reminder : the command is myLaplacianFoam > log &

62 3 Heat Transfer In a Complex Geometry

What is the maximum temperature of the chip in the cooler case after 240 s ?
And in the defective cooler case ?
Is the gradient at the end of the fin directly above the piece of sand different
than in the cooler case ?
How is the heat flux modified by the piece of sand ?

Hint : The vector of the temperature gradient allows you to visualize the heat flux
lines. So in this case, you can for example slice the cooler and the hole. Then on the
Slice filter in ParaView®, you can apply on the temperature field the filter Gradient
Of Unstructured Data Set17. And finally apply on that last filter a Glyph filter.

17 Location within the menu : Filters->Alphabetical->Gradient Of Unstructured Data Set

3.5 Extra Practice and Background Information 63

3.5 Extra Practice and Background Information

This section will introduce an additional tool for post-processing data in OpenFOAM®.
And in the second part you will create your first boundary condition.

Reach the steady state

Until now, the data were analysed by presuming that the steady state were reached.
In this paragraph, the tool patchIntegrate will help you to know if the system is in
a steady state or not. The steady state of the system corresponds at the dynamical
equilibrium between the power dissipated by the processor and the one exchanged
with the surrounding air.

The utility patchIntegrate

This tool integrates given fields on specified patches. In this case, the heat flux is not
directly accessible. However as written in (3.2), the heat flux is proportional to the
gradient of temperature. Consequently by knowing the integral of this gradient,
the output power and the input power could be compared.

The syntax for the patchIntegrate tool is :

patchIntegrate scalar_field patch [-latestTime]
[-time writing_time]

The time options are quite interesting in this case. Indeed, if no options are given,
the integral is computed at each writing time. However only the latest time step is
of interest in this case (or maybe the few last ones).

By default the command prints the data on the terminal in which it runs. In order
to store them, you can redirect the flow to a file (like when you use the log file with
a OpenFOAM® solver)18.

A typical output of the function follows :

Time = 240
Area vector of patch PROCESSOR[1] = (0 0 -0.000925635)
Area magnitude of patch PROCESSOR[1] = 0.000925635
Reading volScalarField gradTz
Integral of gradTz over vector area of patch

PROCESSOR[1] = (0 0 -0.0642255)
Integral of gradTz over area magnitude of patch

PROCESSOR[1] = 0.0642255

In order to correctly interpret the output above, you have to remember that in
OpenFOAM® each face of a cell is characterized with a vector S⃗f parallel to the

18 An example could be : patchIntegrate p inlet -latestTime > integrationPInlet

64 3 Heat Transfer In a Complex Geometry

normal, pointing to the exterior of the cell and with a magnitude equal to the sur-
face of the cell. So the four results correspond to the following equations :

∑
faces

S⃗f (3.4)

∑
faces

|S⃗f | (3.5)

∑
faces

fS⃗f (3.6)

∑
faces

f |S⃗f | (3.7)

where f is the scalar field put in argument of patchIntegrate (in the example is
gradTz).

You should now be able to verify the following statement for the cooler case:∫∫
PROCESSOR

∇⃗T ·dS⃗f
?
=

∫∫
EXCHANGE_SURFACE

∇⃗T ·dS⃗f (3.8)

My first boundary condition

The goals of this second optional exercise are to create a new boundary condition
(BC) and to test it on the test case of the cooler.

Your first BC will be based on the heatTransfer BC used previously. To do so, you can
duplicate19 the header file and the source file heatTransferFvPatchScalarField
in $FOAM_RUN/src/fvPatchFields/heatTransferFvPatchScalarField.
ATTENTION : do not forget to rename the files and change the class name inside
the files according the new name you want to give to the new boundary condi-
tion20. You also have to choose the name of the boundary condition that will be
used in the boundary condition file of the temperature field (e.g. : heatTransfer in
the previous exercise). The name of the boundary condition is defined by the string
TypeName at the line 92 of the header file.
Then you can add the new source file to the Make/files list.
Before going further try to compile the two boundary conditions to be sure that
the renaming process carried out successfully. To compile a library the following
command has to be used:

wclean libso; wmake libso

The boundary condition can now be changed. Until now, the condition is an ex-
change with the air using a constant heat transfer coefficient. However it is clear
that in the reality, the heat transfer coefficient is higher on the external face of the

19 Don’t create a new folder containing your new boundary because you will have trouble to use it with
a case. Or read the paragraph 3.2.6 Linking new user-defined libraries to existing applications in the User
Guide

20 For that you can use advantageously the command sed s/oldName/newName/g oldFile >
newFile

3.5 Extra Practice and Background Information 65

cooler and at the end of fins and lower at the center of the cooler. A definition of the
heat transfer coefficient using an empirical equation could be implemented. But to
stay focused on the computational aspect, the coefficient will be deduced only from
the geometry in order to respect the following requirements :

The coefficient is proportional to the cube of the distance, r, between the face
and the centre of the cooler (18,5e-3; 0; 5e-3).
The minimum value of the coefficient is 10 W/m2/K at r = 0 mm
The maximum value is 60 W/m2/K at the maximal ray (R = 32,7 mm)
The equation is h = A((rR)

3 − 1) +B

The gradient of temperature is defined in the function updateCoeffs. Try to mod-
ify the equation to use a variable heat transfer coefficient instead of the constant h_.
To implement the new boundary condition, you need the coordinates of the face
centre. They can be obtained as a vectorField by adding the following line in
the function:

const vectorField& Cface = patch().Cf();

Then you can access the coordinates through the variable Cface by calling the func-
tion component : Cface.component(vector::X), Cface.component(vector
::Y) and Cface.component(vector::Z).
You will need also the function pow. For example to take the cube of X, write
pow(X, 3.0). After compiling the boundary condition, you can test it on the
cooler test case. For that, only the name of the temperature boundary condition has
to be changed. Once it’s done, solve the case using myLaplacianFoam and answer
the following questions.

Is the steady state reached after 240 s (Hint : the utility patchIntegrate can help
you) ? What’s the difference between the heat flux provided by the processor
and the one dissipated at 240 s ?
Is the maximum temperature at the interface between the processor and the
cooler still acceptable (Tcmax = 92oC)?
Is the temperature field closer to the reality with the new boundary condition ?
Compare, when the steady state is reached, the temperature profile along a fin
in the centre of the cooler and in the extremity for this case and for the first case.

Chapter

4 Channel Pipe Flow

68 4 Channel Pipe Flow

4.1 Physics

4.1.1 Laminar channel pipe flow

This tutorial case will describe a laminar, incompressible and isothermal flow in a
pipe with circular cross section. Once the flow is fully developed ∂u/∂z = 0 we
expect a parabolic velocity profile u(r). The velocity profile does not change along
z which means (1/ρ) · (∂p/∂z) = const.. We neglect any influence of gravity forces.

Figure 4.1: Poiseuille channel pipe flow

One can derive from the incompressible Navier-Stokes equations in cylindrical co-
ordinates:

1

ρ

∂p

∂z
= ν

(
∂2u

∂r2
+

1

r
·
∂u

∂r

)
= const. (4.1)

Thus we have a 2nd order differential equation with the boundary condition:

u(R) = 0 (4.2)

and the side condition:
δu

δr

∣∣∣∣
r=0

= 0

Equation 4.1 can be solved for u(r)

u(r) = − R2

4 ν ρ

dp

dz

(
1− r2

R2

)
(4.3)

With the maximum velocity umax = −(R2/(4 ν ρ)) · (dp/dz) we get

u(r) = umax

(
1− r2

R2

)
(4.4)

4.2 Numerics 69

4.2 Numerics

In this section, the conservation equations will be expressed for the two-dimensional
mesh presented in the figure 4.2. The extension to the 3D mesh is straightforward.
The capital letters refer to the centroid of the cells and the small letters to the faces.

Figure 4.2: Pressure-velocity coupling: a 2D mesh example

The velocity U is decomposed in (u, v) in the x and y direction respectively.

4.2.1 Conservation equations

For incompressible and isothermal steady flows, the 2D governing equations are:

continuity equation

∂u

∂x
+
∂v

∂y
= 0 (4.5)

momentum equations

∂uu

∂x
+
∂uv

∂y
= ν

(
∂2u

∂x2
+
∂2u

∂y2

)
− 1

ρ

∂p

∂x
(4.6)

∂vu

∂x
+
∂vv

∂y
= ν

(
∂2v

∂x2
+
∂2v

∂y2

)
− 1

ρ

∂p

∂y
(4.7)

The continuity equation is a single equation with a vector for unknowns: the veloc-
ity. But the momentum equations are a vector equation with a vector - the velocity -
and a scalar - the pressure - for unknowns. As a result of this pressure-velocity cou-
pling those two equations cannot solve in a segregated way. To solve it they have
to be solve together or a special algorithm should be used. That second solution is
used in the code.

70 4 Channel Pipe Flow

The discretization for the cell centered on P (cf. figure 4.2) of the x-momentum
equation using the finite volume framework is (with A being the face area)

(uuA)e − (uuA)w + (uvA)n − (uvA)s =(
νA

∂u

∂x

)
e

−
(
νA

∂u

∂x

)
w

+

(
νA

∂u

∂y

)
n

−
(
νA

∂u

∂y

)
s

(4.8)

−1

ρ
((pA)e − (pA)w)

The equation can still not be solved numerically. We need to interpolate the dif-
ferent variables at the cell faces as well as the gradient of u. This is the role of the
numerical schemes. The latter will interpolate the fields on the cell faces using the
known values in the neighboring cells of P (i.e. W , E, N , S,... grouped further
under the abbreviation nb). The resulting equation is

aPuP =
∑
nb

anbunb −
A

ρ
(pe − pw) (4.9)

The values of the ai are function of the geometry, the numerical schemes and the
physical properties.

The Poisson’s equation

Taking the divergence of the momentum equations and using the continuity equa-
tion (∇U = 0) gives

∂2(uiuj)

∂xi∂xj
= −1

ρ
∇2p (4.10)

or

∇2p = −ρ∂
2(uiuj)

∂xi∂xj
(4.11)

Hence, analytically, the combination of momentum and continuity gives a Poisson
equation for pressure.

4.2.2 Collocated storage of variables

First of all, suppose that pressure and velocity are collocated (stored at the same po-
sitions) and that mass fluxes are evaluated by linear interpolation of the velocities
to cell faces.

Momentum Equation

The net pressure force (in the x direction) depends on the difference of values pw
and pe. These must be obtained by interpolation resulting in the elimination of pP :

pw − pe =
1

2
(pW + pP)−

1

2
(pP + pE)

=
1

2
(pW − pE) (4.12)

4.2 Numerics 71

Hence, the discretized momentum equation has the form:

uP =
1

2
dP (pW − pE) + ... (4.13)

uP depends on the difference in pressure at nodes separated by 2∆x. It does not de-
pend on pP , which could, in fact, take any value without affecting the momentum
balance of that cell.

Continuity Equation

If one applies continuity to a control volume centered on a pressure node, advective
velocities ue and uw can be obtained on the cell faces by linear interpolation:

uw =
1

2
(uW + uP) , ue =

1

2
(uP + uE) (4.14)

Mass conservation implies

0 = (Au)e − (Au)w + ... = A

{
1

2
(uP + uE)−

1

2
(uW + uP)

}
+ ...

= A
1

2
(uE − uW) + ... (4.15)

A pressure equation is generated by linking velocities to pressure differencing us-
ing 4.13,

0 = (Au)e − (Au)w + ...

= A
1

2
(uE − uW) + ... (4.16)

= A
1

2

(
1

2
dE (pP − pEE)−

1

2
dW (pWW − pP)

)
+ ...

Thus, the continuity equation yields an equation for pressure. However, it only
links pressure values at every second node.

The combination of collocated u, p and
linear interpolation for advective veloci-
ties leads to a decoupling of odd nodal
values p1, p3, p5, ... from even nodal val-
ues p2, p4, p6, This odd-even decou-
pling leads to indeterminate pressure os-
cillations in the pressure field.

There are two common remedies:

Use the staggered grid where velocity and pressure are stored in different loca-
tions.
Use a collocated grid but Rhie-Chow interpolation for the advective velocities.

Both provide a link between adjacent pressure nodes to prevent odd-even decou-
pling.

72 4 Channel Pipe Flow

4.2.3 Staggered grid

In the staggered grid arrangement, velocity components are stored half-way be-
tween the pressure nodes that drive them. This leads to different sets of control
volumes.

Other scalars are stored at the same position as pressure.

Figure 4.3: Staggered grid

On a Cartesian mesh: In the momentum equation, pressure is stored at precisely
the points required to compute the pressure force. For example:

uw = dw
1

2
(pW − pP) + ... (4.17)

In the continuity equation, pressure is stored at precisely the points required to
compute the mass fluxes.

The net mass flux involves:

uw − ue + ... = de
1

2
(pP − pE)− dw

1

2
(pW − pP) + ...

= −1

2
dwpW +

1

2
(dw + dw) pP − 1

2
depE (4.18)

The contribution from pP doesn’t cancel out, so there is no odd-even decoupling.
In both cases no interpolation is required for cell-face values and there is a strong
linkage between successive, rather than alternate pressure nodes.

Advantages:

No interpolation needed; variables are stored where they are needed.
No problem of odd-even pressure decoupling

4.2 Numerics 73

Disadvantages:

Added geometry complexity from multiple
sets of nodes and control volumes.
If the mesh is not cartesian then the velocity
nodes may cease to lie between the pressure
nodes that drive them.
A countermeasure is the non-orthogonal cor-
rector in OpenFOAM® which takes into ac-
count the distortion of the mesh. It is available
for both PISO and SIMPLE algorithms.

4.2.4 Rhie-Chow Velocity Interpolation

The alternative approach is to use collocated pressure and velocity nodes but em-
ploy a higher order interpolation for advective velocities (the cell-face velocities
used to calculate mass fluxes).

The Rhie-Chow’s interpolation practice is to obtain the cell face velocity ue as

ue = ū+ d̄′∇p− d′∇p (4.19)

in which the overline symbolizes the linear interpolation from the adjacent nodes.
Consequently

ue =
uP + uE

2
+
dP + dE

2
(pP − pE)−

d′P∇pP + d′E∇pE
2

(4.20)

=
uP + uE

2
+
dP + dE

2
(pP − pE)−

1

4
(dP (pW − pE) + dE(pP − pEE))

The face velocity is directly link to the driven pressure gradient due to the second
term. The last term avoid the appearance of the troublesome checker-board pres-
sure.

Assuming that the coefficient d are all identical, the face velocity ue can be ex-
pressed as

ue =
uP + uE

2
+
d

4
[4(pP − pE)− (pW − pE)− (pP − pEE)]

=
uP + uE

2
+
d

4
[pEE − 3pE + 3pP − pW]

=
uP + uE

2
+
d

4

∂3p

∂x3

∣∣∣∣
e

∆x3 (4.21)

Using the central differencing, we can prove that the correction introduced is a
third-order pressure gradient term. As the other parts of the method are at best
second-order accurate, the correction doesn’t reduced the global accuracy.

Pressure-velocity coupling is the dominant feature of the Navier-Stokes equations.
Staggered grids are an effective way of handling it on Cartesian meshes. However,
for non-Cartesian (or curvilinear) meshes, collocated grids are the norm and are
employed in almost all general-purpose CFD codes.

74 4 Channel Pipe Flow

4.2.5 Pressure-Correction Methods

Consider how changing pressure can be used to enforce mass conservation.

Net mass flux in;
→ increase cell pressure to drive mass out

Net mass flux out;
→ decrease cell pressure to suck mass in

Pressure-correction methods

Iterative numerical schemes for pressure-linked equations
Used to derive velocity and pressure fields which satisfy both mass and mo-
mentum equations
Consist of alternating updates of velocity and pressure:

– solve the momentum equation for velocity with the current pressure
– observing the relationship between velocity and pressure changes imposed

by the momentum equation, rephrase the continuity equation as a pres-
sure correction equation and solve for the pressure correction p necessary
to ”nudge “the velocity field towards mass conservation

There are two common schemes: SIMPLE and PISO

The relationship between velocity and pressure corrections

The momentum equation connects velocity and pressure:

u = d
(
p−1/2 − p+1/2

)
+ ...

One must correct velocity to satisfy continuity:

u = u∗ + u′

but simultaneously correct pressure so as to retain a solution of the momentum
equation:

u′ = d
(
p′−1/2 − p′+1/2

)
+ ...

The velocity-correction formula is, therefore,

u = u∗ + d
(
p′−1/2 − p′+1/2

)
+ ...

4.2 Numerics 75

4.2.6 SIMPLE - pressure velocity correction method

SIMPLE - Semi-Implicit Method for Pressure-Linked Equations (Patankar and Spald-
ing, 1972)

For simplicity, only the steady-state situation will be considered since this tutorial’s
problem is not time dependent.

Stage 1. Solve momentum equations with current
pressure.

aPuP−
∑
nb

anbunb = A (p∗w − p∗e)︸ ︷︷ ︸
pressure forces

+ bP︸︷︷︸
other sources

(4.22)

Resulting velocity generally won’t be
mass-consistent.

Stage 2. Formulate the pressure correction equation

1. Relate changes in u to changes in p

u′P =

∑
nb anbu

′
nb

aP
+ dP (p′w − p′e) , dP =

A

aP

2. Make the SIMPLE approximation: neglect
∑
nb anbu

′
nb

u′P ≈ dP (p′w − p′e) , dP =
A

aP

This is legitimate since we are interested in the converged solution, where all
corrections will be zero anyway.

3. Apply mass conservation to a control volume centered on the pressure node.
The net mass flux results from current (u∗) plus correction (u′) velocity fields:

∑
faces

ρu∗fA+
∑
faces

ρu′fA = 0

i.e.

(ρu′A)e − (ρu′A)w + ... = −ṁ∗

(minus the current net mass flux) or, writing in terms of the pressure correction
(staggered or non-staggered mesh):

(ρuA)e(p
′
P − p′E)− (ρuA)w(p

′
W − p′P) + ... = −ṁ∗

76 4 Channel Pipe Flow

This results in a pressure-correction equation of the form:

aP p
′
P −

∑
nb

anbp
′
nb = −ṁ∗ (4.23)

Where ai = (ρuA)i, etc. , and aP =
∑
nb

anb

Stage 3. Solve the pressure-correction equation
The important thing to notice is the discretized pressure-correction equation (4.23)
is of precisely the same form as the discretized scalar equations, and hence the same
algebraic solvers may be used.

Stage 4. Correct pressure and velocity

pP → p∗P + p′P (4.24)
uP → u∗P + dP (p

′
w − p′e)

(and similarly for other velocity components)

Hence the velocity field now satisfies momentum and continuity equations.

SIMPLE algorithm in OpenFOAM®

The SIMPLE loop is implemented in the solver code, e.g. simpleFoam used in this
tutorial . The file simpleFoam.c can be found in:
$FOAM_SOLVERS/applications/solvers/incompressible/simpleFoam
The loop consists of the code fragment displayed in listing 4.1:

47 simpleControl simple(mesh);
48

49 Info<< "\nStarting time loop\n" << endl;
50

51 while (simple.loop())
52 {
53 Info<< "Time = " << runTime.timeName() << nl << endl;
54

55 p.storePrevIter();
56

57 // --- Pressure-velocity SIMPLE corrector
58 {
59 #include "UEqn.H"
60 #include "pEqn.H"
61 }
62

63 turbulence->correct();
64

65 runTime.write();
66

67 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
68 << " ClockTime = " << runTime.elapsedClockTime() << " s"
69 << nl << endl;
70 }
71

72 Info<< "End\n" << endl;

Listing 4.1: SIMPLE loop

4.2 Numerics 77

The SIMPLE loop is implemented as a while-loop that ends when the determined
run time is reached or when the desired convergence is reached.
Before the time loop the parameters to control the loop are read out when creating
the object simpleControl simple(mesh);. These are for example the number
of non-orthogonal correctors nNonOrthogonalCorrectors and the convergence
parameters defined in fvSolution. They will be used to evaluate the residuals
and determine the end of the run.

Before presenting the implementation, some notations used in the code will be in-
troduced.

The governing equations are the momentum and continuity equations:

∇ · (U ⊗ U) = ∇ · (ν∇U)−∇
(
p

ρ

)
+ SU

∇ ·U = 0

p/ρ is the kinematic pressure and SU is the source terms for the momentum equa-
tion. It is renamed simply p in OpenFOAM® for incompressible flow. You have
seen that the discretized momentum equation results in

aPUP +
∑
nb

anbUnb = SU −∇p

where p is the kinematic pressure.

By introducing the operator H(U):

H(U) = SU −
∑
nb

anbUnb (4.25)

The momentum equation becomes:

aPUP = H(U)−∇p (4.26)
UP = (aP)

−1 (H(U)−∇p) (4.27)

The pressure equation appears when substituting the expression of UP (4.27) in the
continuity equation ∇ ·U = 0

∇ ·
(
(aP)

−1∇p
)
= ∇ ·

(
(aP)

−1H(U)
)

(4.28)

So the pressure solution of that equation guarantees a divergence-free velocity field.

The convection term of the conservation equations requires the face mass flux called
phi in OpenFOAM®. By looking at the discretized form of the continuity equation

∇ ·U =
∑
faces

Sface ·U =
∑
faces

phi

Consequently using (4.27)

phi = Sface ·U
= Sface ·

(
(aP)

−1H(U)
)
− Sface ·

(
(aP)

−1∇p
)

(4.29)

Therefore the conservative face flux should be created from the pressure equation.

78 4 Channel Pipe Flow

The pressure-velocity coupling is solved in the following five steps:

Stage 1
Guess the pressure field p∗

Stage 2
Now in UEqn.H the momentum equation is solved with the guess pressure p∗

using the equation (4.27). The relaxation factor is applied and the initial and
maximum residuals are calculated. This step is called momentum predictor.
In pEqn.H (see Listing 4.2) the face flux is guessed by

phi =
(
H(U)(aP)

−1
)

·Sf

Stage 3
The pressure correction step is carried out by solving (4.28).
Stage 4
Correct the conservative face flux: phi − = (aP)

−1Sf ·∇p
Stage 5
Repeat to convergence

The corrected velocity is finally obtained by solving the momentum equation (4.27)
with the new pressure.

Before the next loop starts the run and clock time are plotted and the convergence
is checked.

{
p.boundaryField().updateCoeffs();

volScalarField rAU(1.0/UEqn().A());
U = rAU*UEqn().H();
UEqn.clear();
phi = fvc::interpolate(U, "interpolate(HbyA)") & mesh.Sf();
adjustPhi(phi, U, p);
// Non-orthogonal pressure corrector loop
for (int nonOrth=0; nonOrth<=simple.nNonOrthCorr(); nonOrth++)
{

fvScalarMatrix pEqn
(

fvm::laplacian(rAU, p) == fvc::div(phi)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
if (nonOrth == simple.nNonOrthCorr())
{

phi -= pEqn.flux();
}

}
#include "continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
// Momentum corrector
U -= rAU*fvc::grad(p);
U.correctBoundaryConditions();

}

Listing 4.2: pEqn.H

4.2 Numerics 79

Notes:

Staggered and unstaggered grids. The distinction between staggered and un-
staggered grids is subtle. In both cases, the expression for u′e etc. at cell faces
depends on the pressure corrections at adjacent nodes. However, for a (carte-
sian) staggered grid the relevant normal velocities are actually stored on the
faces of the pressure control volumes where they are required to establish mass
conservation.

Source term for the pressure-correction equation. That the ”source“ for the
pressure-correction equation should be minus the current net mass flux (−ṁ∗)
is reasonable. If there is a net mass flow into a control volume then the pressure
in that control volume must rise in order to ”push“ mass back out of the cell.

Under-relaxation. In practice, substantial under-relaxation of the pressure up-
date is needed to prevent divergence. On the correction step the pressure (but
not the velocity) update is relaxed:

p→ p∗ + αP p
′ (4.30)

Typical values of αP are in the range 0.1 - 0.3. Velocity is under-relaxed in the
momentum equations, but the under-relaxation is generally less severe: αU ≈
0.6− 0.8. A classical guideline states that αP + αU ≈ 1.
Iterative process. Since the equations are non-linear and coupled the matrix
equations may change at each iteration. There is little to be gained by solving
the matrix equations exactly at each stage, but only doing enough iterations of
the matrix solver to reduce the residuals by a sufficient amount.
Alternative strategies at each SIMPLE iteration are:

m iterations of each u, v, w equation, followed by n iterations of the p′

equation (typically m = 1, n = 4);

or

do enough iterations of each equation to reduce the residual error to a
small fraction of the original (typically 10 %).

The SIMPLE scheme can be inefficient and requires considerable pressure under-
relaxation. This is because the corrected fields are good for updating velocity (since
the mass-consistent flow field is produced) but not pressure (because of the inaccu-
racy of the approximation connecting velocity and pressure corrections).
To remedy this, a number of variants of SIMPLE have been produced such as SIM-
PLER (SIMPLE Revised - Patankar 1980), SIMPLEC (Van Doormaal and Raithby,
1984) or SIMPLEX (Raithby and Schneider, 1988). For more information about this
topic the reader is referred to the literature.

80 4 Channel Pipe Flow

4.3 OpenFOAM®

4.3.1 simpleFoam

OpenFOAM® provides the solver simpleFoam to analyse incompressible and isother-
mal flows. It is formulated in steady-state mode which means it is iterative, so the
solution does not change over time such as marching or propagation problems.
SimpleFoam solves both laminar and turbulent problems.

4.3.2 fvSchemes

The system folder contains two important files fvSolution and fvSchemes. The lat-
ter defines the finite volume discretization schemes, it sets the numerical schemes
for terms, such as derivatives in equations, that appear in applications being run.
The terms range from derivatives e.g. the time marching scheme for first and sec-
ond time derivatives d/dt, d2/dt2, gradient schemes ∇ interpolation schemes from
point to point, convection divergence schemes ∇• or the laplacian schemes ∇2.
The problem we are analysing is steady-state so steadyState should be selected
for the time derivatives in timeScheme. This essentially switches off the time
derivative terms. Not all solvers in OpenFOAM® work both in transient and steady-
state mode. In the finite volume method the discretization is based on the Gauss’s
theorem which needs to be selected for the gradSchemes.
For example the convection term in the momentum equation for incompressible
problems (∇ · (UU)), denoted by the div(phi,U) keyword, uses Gauss linear
which stands for the Central Difference Scheme. Since it is second order accurate
both on structured and unstructured meshes it is the first choice. It should be noted
that it tends to produce unphysical oscillations due to its unboundedness. If this is
the case, Gauss upwind should be preferred.
The other terms are less problematic and commonly employed schemes may be se-
lected so that the fvSchemes dictionary entries should be as written in the Listing
4.3.

4.3.3 fvSolution

When using the SIMPLE algorithm, a sub-dictionary SIMPLE has to be defined in
fvSolution. The parameters are:

nNonOrthogonalCorrectors: Number of correction loop to do to compen-
sate the non-orthogonality of the mesh (0 is mesh is orthogonal and no more
than 20 otherwise).
pRefCell or pRefPosition [optional]: In closed incompressible system, the
pressure is relative. Therefore a reference position and value as to be set. This
parameter specifies the position at which the reference pressure is set.
pRefValue [optional]: Reference pressure.
residualControl [optional]: Specify convergence criteria. When the criteria
are all fulfilled the simulation stops. For example to stop the simulation when
the pressure and the velocity residuals are below 1e-05:

4.3 OpenFOAM® 81

SIMPLE
{

nNonOrthogonalCorrector 0;
residualControl
{

p 1e-05;
U 1e-05;

}
}

ddtSchemes
{

default steadyState;
}
gradSchemes
{

default Gauss linear;
grad(p) Gauss linear;
grad(U) Gauss linear;

}
divSchemes
{

default Gauss linear;
div(phi,U) Gauss linear;
div((nuEff*dev(grad(U).T()))) Gauss linear;

}
laplacianSchemes
{

default none;
laplacian(nuEff,U) Gauss linear corrected;
laplacian((1|A(U)),p) Gauss linear corrected;
laplacian(DnuTildaEff,nuTilda) Gauss linear corrected;
laplacian(1, p) Gauss linear corrected;

}
interpolationSchemes
{

default linear;
interpolate(U) linear;

}
snGradSchemes
{

default corrected;
}
fluxRequired
{

default no;
p ;

}
// *** //

Listing 4.3: fvSchemes

82 4 Channel Pipe Flow

4.3.4 Sampling

The utility sampling can be used to sample field data at prescribed locations in
the domain. The dictionary sampleDict is located in the system folder (cf. Listing
4.4 for an detailed example).
To interpolate data, three interpolation schemes are available: cell, cellPoint
and cellPointFace. They determine the data by use of the cell-center values
only (cell), the cell-center and vertex values (cellPoint) and cell-center, vertex
and face values (cellPointFace). The user has the choice between different out-
put formats for sets and surfaces. A common format is raw which exports data in
text format x y z value that can be used for further post-processing. Finally in
section fields it should be specified which fields to sample. To sample surface a
base point and normal vector are required. It is also possible to extract values of
prescribed boundary patches. The command to execute is simply sample.

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.6
\\ / A nd	Web: http://www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location system;
object sampleDict;

}

// * //

// Set output format : choice of xmgr, jplot, gnuplot, raw
setFormat raw;

// Surface output format. Choice of
// null : suppress output
// foamFile : separate points, faces and values file
// dx : DX scalar or vector format
// vtk : VTK ascii format
// raw : x y z value format for use with e.g. gnuplot ’splot’.
// Note: other formats such as obj, stl, etc can also be written (by proxy)
// but without any values!
surfaceFormat vtk;

// interpolationScheme. choice of
// cell : use cell-centre value only; constant over cells (default)
// cellPoint : use cell-centre and vertex values
// cellPointFace : use cell-centre, vertex and face values.
// 1] vertex values determined from neighbouring cell-centre values
// 2] face values determined using the current face interpolation scheme
// for the field (linear, gamma, etc.)
interpolationScheme cellPoint;

4.3 OpenFOAM® 83

// Fields to sample.
fields
(

p
U

);

// Set sampling definition: choice of
// uniform evenly distributed points on line
// face one point per face intersection
// midPoint one point per cell, inbetween two face intersections
// midPointAndFace combination of face and midPoint
//
// curve specified points, not nessecary on line, uses
// tracking
// cloud specified points, uses findCell
// axis: how to write point coordinate. Choice of
// - x/y/z: x/y/z coordinate only
// - xyz: three columns
// (probably does not make sense for anything but raw)
// - distance: distance from start of sampling line (if uses line) or
// distance from first specified sampling point
// type specific:
// uniform, face, midPoint, midPointAndFace : start and end coordinate
// uniform: extra number of sampling points
// curve, cloud: list of coordinates
sets
(

lineX1
{

type uniform;
axis distance;
start (0 0 0.5);
end (0.1 0 0.5);
nPoints 10;

}
lineX2
{

type face;
axis x;
start (0 20 -20);
end (0 20 10);

}
somePoints
{

type cloud;
axis xyz;
points ((0.049 0.049 0.005)(0.051 0.049 0.005));

}

);
// Surface sampling definition: choice of
// plane : values on plane defined by point, normal.
// patch : values on patch.
//
// 1] patches are not triangulated by default
// 2] planes are always triangulated
// 3] iso-surfaces are always triangulated

84 4 Channel Pipe Flow

surfaces
(

constantPlane
{

type plane; // always triangulated
basePoint (0.0501 0.0501 0.005);
normalVector (0.1 0.1 1);
//- Optional: restrict to a particular zone
// zoneName zone1;

}
interpolatedPlane
{

type plane; // always triangulated
// make plane relative to the coordinateSystem (Cartesian)
coordinateSystem
{

origin (0.0501 0.0501 0.005);
}
basePoint (0 0 0);
normalVector (0.1 0.1 1);
interpolate true;

}
movingWall_constant
{

type patch;
patchName movingWall;
// Optional: whether to leave as faces (=default) or triangulate
// triangulate false;

}
movingWall_interpolated
{

type patch;
patchName movingWall;
interpolate true;
// Optional: whether to leave as faces (=default) or triangulate
// triangulate false;

}
interpolatedIso
{

// Iso surface for interpolated values only
type isoSurface; // always triangulated
isoField rho;
isoValue 0.5;
interpolate true;
//zone ABC; // Optional: zone only
//exposedPatchName fixedWalls; // Optional: zone only
// regularise false; // Optional: do not simplify

}
constantIso
{

// Iso surface for constant values.
// Triangles guaranteed not to cross cells.
type isoSurfaceCell; // always triangulated
isoField rho;
isoValue 0.5;
interpolate false;
regularise false; // do not simplify

}

4.3 OpenFOAM® 85

triangleCut
{

// Cutingplane using iso surface
type cuttingPlane;
planeType pointAndNormal;
pointAndNormalDict
{

basePoint (0.4 0 0.4);
normalVector (1 0.2 0.2);

}
interpolate true;
//zone ABC; // Optional: zone only
//exposedPatchName fixedWalls; // Optional: zone only
// regularise false; // Optional: do not simplify

}
);
// *** //

Listing 4.4: sampleDict

86 4 Channel Pipe Flow

Exercises
4.1 2D mesh for channel pipe flow

The geometry we want to use for the case is shown in figure 4.4.

Figure 4.4: Geometry for channel pipe flow

We model this axisymmetric problem in 2D in order to save computational time. OpenFOAM
always operates in 3 dimensional Cartesian coordinate system and all geometries are
generated in 3D. The case is solved in 3 dimensions by default but can be instructed
to be solved in 2 dimensions by specifying a ’special’ empty boundary condition on
boundaries normal to the (3rd) dimension for which no solution is required. Empty cor-
responds to a ’symmetry’ boundary condition. Furthermore we take advantage of the
fact that the channel pipe is axisymmetric. For this purpose we only need to consider
a slice of the tube and can use the element type wedge. It is suited for axisymmetric
geometries such as tubes and ducts. It is important to model not more than a slice of
5◦ because we model only one cell in the 3rd dimension. We neglect the bending of the
wall, otherwise we could use arc in our blockMeshDict.

Figure 4.5: Wedge patch type used for axi-symmetric geometry

The boundary condition for the center axis will be empty. As in chapter 1 the mesh char-
acteristics are defined in the blockMeshDict using blockMesh. A recommended initial
mesh resolution is 30 points in radial and 100 points in flow direction. Since we want to
study the effect of the wall on the flow we increase the mesh resolution close to the wall
in relation to the mean flow in the center of the channel pipe by setting simpleGrading
for example to 0.35 in x-coordinate.
Finally we define six different boundary conditions, two patches for inlet and outlet,
wall, empty for the axis and front and back as wedge type.

4.3 OpenFOAM® 87

4.2 Physical properties

We want to analyse a laminar flow in the channel pipe. So we need to make sure that the
Reynolds number is in the appropriate range. The kinematic viscosity ν is represented by
nu in the dictionary transportProperties in the constant folder. We use a gaseous
media and set nu to 2e−5kg/(ms). In order to reach a Reynolds number of approx. 50
we define constant inlet velocity of |U | = 0.005m/s according to:

Re =
d|U |
ν

(4.31)

where d is the characteristic length, in our case the diameter of the channel pipe. For the
outlet we specify the kinematic pressure as a fixed value of 0m2/s2. Since we calculate
an incompressible flow the indicated pressure is relative, not the absolute value.

As mentioned above, we define the discretization schemes in fvSchemes. The scheme
used for convective terms is Central Difference indicated by Gauss linear. Since
simpleFoam is a steady-state solver we set the time scheme to steadyState indicated
by ddtSchemes. Linear solvers and algorithms are controlled in the fvSolution dic-
tionary and we use for the velocity U the solver smoothSolver and for the pressure p
GAMG.
simpleFoam is a solver designed for the analysis of turbulent flows. For our laminar case
we need to modify the turbulence modeling method selectable in the turbulenceProperties
dictionary in the folder constant. Here we have to switch off turbulence and set the
turbulenceModel to laminar. For each turbulence model required coefficients called
Coeff are stored below in turbulenceProperties.

4.3 Running the code

Finally the user should modify the controlDict to prepare the run. We set startTime
to 0 and for this iterative solver we can define deltaT to 1. Set the appropriate residualControl
such that the simulation stops when the pressure and the radial and axial components of
the velocity residuals are below 1e-5.

4.4 Postprocessing and validation against analytical solution

After the calculation has finished we check the convergence of the solution by viewing
the log-file. During the run, the user should check the initial residuals at each time step.
The residuals should not change in the latest iterations, otherwise the solution takes
more iterations to converge and needs additional time to run. Please right in the report
the value of the initial residuals after the first iteration and at the latest one. Is the simu-
lation converged?
The next step is to analyze the solution with paraview to get a first impression. Later on
we use the sample command to extract a velocity profile at the end of the channel pipe
flow where we consider the flow to be fully developed. This can be postprocessed for
example with Excel/openOffice, matlab or scilab for visualization. Here we also implement
the analytical solution to validate our numerical results.

88 4 Channel Pipe Flow

4.4 Extra Practice and Background Information

Extra Practice

Increasing the Reynolds number

An increase of the Reynolds number requires an additional entry length to fully de-
velop the flow. It has to be taken into account that our solver is not suited to solve
turbulent flows with the settings made above. Therefore a laminar flow has to be
guaranteed in the boundary conditions.
Increase the Reynolds Number and adapt the length of the domain. Is there a cor-
relation between Reynolds Number and entry length1?

Development of the laminar profile from a block profile

Due to wall friction the flow will reach the laminar profile when a block profile is
defined initially in the whole domain. Initialize the problem to start from a top-hat
profile2 and set the write interval to 20. When does the flow reach the steady state?

Reduction of spatial resolution

In order to save computational resources it is recommended to reduce the grid size,
e.g. the amount of cells, as far as possible. This has a limit since we still want to
compute the right solution. Reduce the spatial discretization successively until the
solution does not match the analytical solution anymore. Which resolution is more
important for this problem, the radial or the axial?

1 The entry length is the distance from the entry of the pipe needed by the flow to reach the parabolic
profile i.e. the fully developed profile.

2 The velocity inside the domain is equal to the one defined at the inlet.

4.4 Extra Practice and Background Information 89

Background Information

4.4.1 Discretization best practice guidelines

One of the key step during the generation of a new case is the choice of discretiza-
tion schemes. The following paragraph is an attempt to provide some guidelines
for those choice3. As primary remark, the settings in the tutorials are appropriate
but not recommended in general. In the opposite of commercial CFD softwares,
OpenFOAM® doesn’t come with default settings optimized on thousands of vali-
dation cases.

The accuracy of a simulation is strongly linked to the mesh quality and the nu-
merical schemes. In particular, the sensible choice are the gradient scheme and the
schemes of bounded scalars. If you want more information on the theory of the dis-
cretization schemes, have a look at the presentation of Prof. Jasak (available on our
server /nfs/public/Numerik/OpenFOAM/HJ_Workshop2011). But as this script focuses
on OpenFOAM® usage only one scheme by configuration will be presented in the
table 4.1.

Operator Restriction Hex mesh Tet mesh

Gradient Gauss linear leastSquares

(with or without limiter) (without limiter)

Convection U linearUpwind reconCentral1

scalar any TVD/NVD schemes (e.g. Gamma)

turbulence upwind2

Laplacian Non-orth < 60◦ Gauss linear corrected Gauss linear limited 0.5

Non-orth > 70◦ Gauss linear limited 0.5

Time derivative non-LES Euler

LES backward or CranckNicholson

Interpolation linear reconCentral1

Table 4.1: Discretization best practice guidelines. 1 Scheme available only in
OpenFOAM-extend. 2 Upwind is very stable. But then you could move to higher
order for better accuracy.

3 Those notes are inspired from a presentation done by Prof. Hrvoje Jasak, main developer of the
OpenFOAM-extend who kindly agrees to shared his knowledge.

Chapter

5 Channel flows with Heat
Transfer

92 5 Channel flows with Heat Transfer

5.1 Introduction

In this chapter we will handle channel flows with heat transfer to the walls. We will
use a compressible solver to solve the flow in a complex geometry. For the mesh-
ing of this complex geometry, an automated mesh generation and refinement tool
called snappyHexMesh will be presented. However, meshing of complex geome-
tries involves a large number of cells and long simulation times. A second more
favorable approach using source terms to model the effects of the complex geome-
try will be subsequently followed. This will be done by considering the heater as a
porous media. A comparison of both methods should prove the interest of model-
ing in CFD as it allows drastic decrease of the computational cost at the expense of
a reduced accuracy in the solution.

5.1.1 Todays problem

Figure (5.1) shows the test case considered in this chapter. Cold air flows through a
rectangular channel and is heated up by a so called "stack". The stack consists of a
copper solid with thin slots along the axial direction and occupies only a part of the
channel. It is electrically heated with a maximum power of Q̇max = 2.2W . Due to
the small dimensions, the slots behave like capillaries, and thus the flow is laminar.
The stationary case will be studied.

Figure 5.1: Channel flow, with a section heated up by a stack with small capillary
slots.

Bibliography

[1] Wäermeübertragung, Polifke and Koptiz, Pearson, 2nd edition, 2009
[2] Analytical methods for heat transfer and fluid flow problems Weigand, B. Springer,

2004
[3] Computational methods for fluid dynamics Ferziger, J.H and Peri, M. Springer

Berlin, 1999
[4] http://foam.sourceforge.net/doc/Guides-a4/ProgrammersGuide.pdf OpenFOAM®

Programmers Guide, Version 1.6, 24th July 2009

5.2 Physics

The resolution of the energy conservation equation forces us to use a compressible
solver: rhoSimpleFoam. However the small variation in temperature allows the

5.2 Physics 93

hypothesis of constant thermophysical properties.

The continuity equation for an compressible fluid is:

∇⃗ · (ρu⃗) = 0 (5.1)

The momentum equation writes:

∂ρu⃗

∂t
+ ∇⃗ · (ρu⃗⊗ u⃗) = −∇⃗p+ ∇⃗(µ∇⃗u⃗− 2/3µ∇⃗ · u⃗I) + S⃗M (5.2)

with the terms named from left to right as: instationary, convection, pressure, dif-
fusion (laplacian) and source term. The momentum source term is weighted by the
density and thus S⃗M represents a volume force with the dimension [N/m3] acting
on the fluid. It can be for example a gravitational force.

For the energy conservation, we start from an enthalpy h balance and a Fourier
approach for the heat fluxes:

∂ρh

∂t
+ ∇⃗ · (ρu⃗h) = ∇⃗ · (λ∇⃗T) + ṠE (5.3)

Introducing the thermal diffusivity a = λ
ρcp

the equation solved in OpenFOAM®

appears:

∂ρh

∂t
+ ∇⃗ · (ρu⃗h) = ∇⃗ · (ρa∇⃗h) + ṠE (5.4)

In analogy to equation (5.2), the terms are again named from left to right as: in-
stationary, convection, diffusion and source term. ṠE represents a temporal energy
volume source with dimensions [W/m3].

5.2.1 Laminar flow in a planar channel

In the previous chapter, the laminar solution for a pipe flow has been presented.
The characteristic length is the channel height 2H . Using Cartesian coordinates
(notice the alignment of the axes in the figure), the hydrodynamically fully devel-
oped flow writes:

u

um
=

3

2

(
1−

(
x−H

H

)2
)

(5.5)

where um is the mean axial velocity and x is the distance to the bottom wall. It is as
well a parabolic profile. The hydrodynamic entrance length can be approximated
as follows:

le ≈ 0.056Re ·H = 0.056
H2um
ν

(5.6)

94 5 Channel flows with Heat Transfer

The solution procedure is very similar to the one in a pipe and can be taken from
[2].

For the heat transfer problem, we will make use of the adiabatic bulk-temperature
[1]:

Tm(z) =
1

Ṁ

∫
A

ρT (z, x)u⃗ · dA⃗ =
1

umH

∫ H

0

T (z, x)u(x)dx (5.7)

For an hydrodynamically developed flow, the axial distribution of Tm can be ana-
lytically determined for the Neumann boundary condition (constant wall heat flux
q̇w = const) by solving equation (5.4) in an integral form. It is a linear profile of the
form:

dTm
dz

=
dTw
dz

=
aq̇w
λumH

(5.8)

For the Dirichlet boundary condition (constant wall Temperature TW = const), an
iterative solution has to be applied. Figure (5.2) shows qualitatively the tempera-
ture profile for both cases [1]:

Figure 5.2: Temperature profile for constant wall heat flux (left) and constant wall
temperature (right).

5.3 OpenFOAM®

5.3.1 Numerics in OpenFOAM®

The majority of physical problems concerning fluid dynamics can be described us-
ing the tensor calculus of up to rank 2, in other words, with operators dealing with
scalars, vectors and second-rank tensors. Notice that in OpenFOAM® scalars are
treated as tensors of rank 0 and vectors as tensors of rank 1. For the tensor repre-
sentation, three basis classes have been created in OpenFOAM®: scalarField,
vectorField and tensorField, which are essentially ordered lists of node val-
ues, however without any geometrical information. OpenFOAM® is build up us-
ing an object-oriented programming methodology in C++, and more complicated
classes were subsequently created encapsulating and inheriting these basis classes.
The next level of tensor classes are referred to as "geometric tensor fields" and, as

5.3 OpenFOAM® 95

their name already suggests, they are enriched with positional information. This
is achieved by a reference to a mesh class called fvMesh and encapsulation of
the basic tensor classes. Again, the three ranks are present: volScalarField,
volVectorField and volTensorField . Furthermore, these classes contain
boundary information, previous time steps necessary for temporal discretization
and dimensional information (SI).

Equation discretization

In the FVM, spatial differential equation for a certain problem are converted into
a set of algebraic equations. The order and form of these equations depend on the
discretization scheme, as explained in section (1.3). OpenFOAM® rearranges this
set of equations into a matrix form:

Ax⃗ = b⃗ (5.9)

A is a square matrix of size n × n, where n is the elements or nodes number, x⃗
is a column vector of the dependent variables and b⃗ is as well a column vector
accounting the source and boundary condition terms. For a cell center mesh, the
vector x⃗ contains the cell center values of searched quantities (T , u⃗, etc.). In other
words, it is a list of values defined at locations in the geometry. Depending on the
quantity, it can be a

volScalarField
volVectorField
volTensorField

For the computation of the terms present in equation (5.9), two types of tensor
derivative classes are implemented in OpenFOAM®: finite volume calculus (fvc)
and finite volume method (fvm). The main difference between them is that fvm
performs the evaluation in an implicit way returning a matrix. Implicit means in
this context, that the matrix can be used to advance the dependent variables by a
time step. Two classes are created to store the matrices: fvMatrixScalar and
fvMatrixVector. On the other hand, fvc performs the evaluation in an explicit
way returning a geometric tensor field (vol<type>Field). Explicit means that the
field values are already known and the derivatives are only geometrical operations.
Thus, fvc performs only a mapping from one tensor field to another.

These two classes are probably the most important ones in OpenFOAM®, since
they inherit all the available discretization schemes of the code. Table (5.1) lists the
main differential operators that are available in fvm and fvc.

Finite volume discretization of each term is formulated mostly by first integrating
the term over a cell volume V, and then converting this volume integral into a
surface integral using Gauss’s theorem [3]:∫

V

∇⃗ ⋆ dV =

∫
S

dS⃗ ⋆ ϕ (5.10)

where ⋆ can be any tensor product and ϕ can represent any geometrical tensor
field (vol<type>Field). Volume and surface integrals are linearized using ap-
propriate interpolation schemes. Specially for the surface integrals and later for the
boundary conditions too, a further set of classes is created: surfaceScalarField

96 5 Channel flows with Heat Transfer

Operator Exp/Imp Formula OpenFOAM® syntax Example

Gradient Exp ∇⃗χ grad(chi) grad(p)

∇⃗ϕ gGrad(phi) gGrad(p)

lsGrad(phi) lsGrad(p)

snGrad(phi) snGrad(p)

snGradCorrection(phi) snGradCorrection(p)

Divergence Exp ∇⃗ ·χ div(chi) div(U)

Curl Exp ∇⃗ × ϕ curl(phi) curl(U)

Convection Exp ∇⃗ ·ψ div(phi) div(U)

Imp / Exp ∇⃗ · (ψϕ) div(psi,phi) div(phi,U)

Laplacian Imp / Exp ∇⃗2ϕ laplacian(phi) laplacian(T)

∇⃗ ·Γ∇⃗ϕ laplacian(Gamma,phi) laplacian(a,T)

Source Imp ρϕ Sp(rho,phi) Sp(CM,U)

Imp / Exp SuSp(rho,phi) SuSp(CM,U)

Time Imp / Exp ∂ϕ
∂t ddt(phi) ddt(U)

derivative ∂ρϕ
∂t ddt(rho,phi) ddt(rho, U)

Second time Imp / Exp ∂
∂t

(
ρ∂ϕ∂t

)
d2dt2(phi) d2dt2(U)

derivative d2dt2(rho,phi) d2dt2(rho,U)

Function arguments can be as follows:

ϕ: vol<type>Field

ψ: surfaceSacalarField

χ: surface<type>Field, vol<type>Field

Γ: scalar, volScalarField, surfaceScalarField, volTensorField, surfaceTensorField

ρ: scalar, volScalarField

Table 5.1: Differential operators offered by OpenFOAM® [4].

and surfaceVectorField, which are nothing else than fields defined on surface
cell centers.

With the previously described classes the operators of the partial differential equa-
tions are evaluated. The matrices returned by the implicit operators are then summed
up into the global matrix A, while the vectors returned by the explicit operators are
summed up to the vector b⃗. For details on the discretization of differential operators
see section (2.3), the programmers guide [4] or [3].

Since we will deal with source terms in this chapter, an explanation of its imple-
mentation will follow here. In OpenFOAM®, source terms can be specified in three
ways:

Explicit: If the source term is not a function of the dependent variables, it can be in-
corporated into an equation simply as a field of variables (vol<type>Field).
This field might be given directly by the user, or it could be as well the output
of any fvc operation of a known field (previous time step, time independent

5.3 OpenFOAM® 97

field,...). The source term will thus have only entries into the vector b⃗ in equa-
tion (5.9).

Implicit: If the source term is a function of the dependent variables, it has to be
incorporated through the fvm class and it will produce entries into the matrix
A of equation (5.9). For its evaluation, an implicit source term is integrated over
a control volume weighted by the density and linearized by:∫

V

ρṠdV = ρpVpṠp (5.11)

where the subscript p denotes the cell average computed by an interpolation
scheme.

Implicit/Explicit: The matrix A is a sparse matrix with diagonal dominance. The
iterative solution of the matrix equation (5.9) might get instable if the diagonal
dominance of the matrix is decreased. Since an implicit source term will change
the coefficients of the diagonal of matrixA, it will affect the diagonal dominance
of the matrix. Negative coefficients decrease diagonal dominance, positive co-
efficients increase diagonal dominance. To assure stability of the whole system,
OpenFOAM® provides a mixed source term discretization procedure. It han-
dles the source term explicit for the negative diagonal coefficients, and implicit
for the positive diagonal coefficients.

Example

Figure 5.3: 1D-domain

To clarify the difference between the two classes fvc and fvm, lets handle a simple
example. Consider a 1-dimensional domain discretized into a mesh of n elements
shown in figure (5.3). Throughout the domain, values of a scalar field ψ are known
and fixed. Suppose we want to calculate a new field ϕ which satisfies the following
condition:

c∇⃗2ϕ = ∇⃗ψ (5.12)

where c is a constant. Expression (5.12) corresponds to our PDE. We can then ar-
range all the values of ϕi in the discretized domain into a vector ϕ⃗. We do the same
for the known values ψi. According to the OpenFOAM® notation described in the
previous sections, the vector of dependent variables ϕ⃗ and the vector of known val-
ues ψ⃗ would be objects of the class volScalarField of size n named phi and
psi respectively. The PDE (5.12) can be then discretized using the fvc and fvm
classes as following:

fvm::laplacian(c,phi) == fvc::grad(psi)

Since the field ψ is known, its gradient can be evaluated explicitly with the class
fvc. The laplacian of the field ϕ has to be evaluated implicitly with the class fvm.

98 5 Channel flows with Heat Transfer

As explained in the previous subsection, the differential operators are integrated
over each cell volume and transformed then to surface integrals through Gauss
theorem. The surface integrals are then expressed as summation over cell surface
values. For the laplacian operator this looks for one cell like:∫

V

∇⃗ · (c∇⃗ϕ)dV =

∫
S

dS⃗ · (c∇⃗ϕ) ≈
2∑

f=1

cS⃗f · (∇⃗ϕ)f (5.13)

Since we are dealing with a 1D-problem, each element has only two relevant faces,
the red colored in figure (5.3). To evaluate the gradient at the surfaces, for simplicity
linear interpolation is chosen in this example, however higher schemes can been
chosen:∫

V

∇⃗ · (c∇⃗ϕ)dV ≈
2∑

f=1

c

[
Sf

(ϕN − ϕp)

∆x

]
(5.14)

where the subscript N denotes the neighboring cell and the subscript p the cell
were the balance is being made. In a similar way, the discretization of the gradient
operator look like:

∫
V

∇⃗ψdV =

∫
S

dS⃗ψ ≈
2∑

f=1

S⃗fψf =
2∑

f=1

S⃗f
ψN + ψp

2
(5.15)

For each of the domain cells, equation (5.12) can be discretized as:

2∑
f=1

c

[
Sf

(ϕN − ϕp)

∆x

]
=

2∑
f=1

S⃗f
ψN + ψp

2
(5.16)

This is a system of equations, which can be written in matrix form as:

Sfc

−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1 −2 1 · · · 0
...

. . .
...

0 0 · · · 0 1 −2

ϕ1

ϕ2

ϕ3
...

ϕn

= Sf

−BCL + ψ3

2 + ψ1

ψ1+ψ3

2 + ψ2

ψ2+ψ4

2 + ψ3

...

−BCR + ψn−1

2 + ψn

(5.17)

where BC stands for the boundary conditions on the left and the right, which can
be of Neumann (fixed gradient) or Dirichlet (fixed value) type. In this simple ex-
ample, the surface cancels out. Now we can compare equation (5.17) with the
OpenFOAM® expression presented above. The implicit evaluation called by the
expression fvm::laplacian(c,phi) returns the matrix on the left hand side of
equation (5.17), and the explicit evaluation fvc::grad(psi) returns the vector
on the right hand side. The vector ϕ on the left hand side is the one declared in the
createFields header file, and is of course mesh dependent. Important to notice
is, that the matrix A is sparse, this means that it has few entries different from zero

5.3 OpenFOAM® 99

on each line, but always one for the diagonal. Depending on the numbering of
the mesh, the other non zero entries might be near to the diagonal or not. Strictly
speaking, the boundary conditions terms are incorporated into vector b⃗ in a sub-
sequently step further in the code. There is a function called correctBC, but it’s
explanation is beyond the scope of this chapter.

5.3.2 Mesh generation with the snappyHexMesh utility

The snappyHexMesh utility provided by OpenFOAM® is an automated mesh gen-
eration tool, that generates 3-dimensional meshes containing hexahedra (hex) and
split-hexahedra (split-hex) from geometries defined by surfaces in a STL format.
Additionally, it can refine existing meshes on volume regions. The specification
of mesh refinement level is very flexible and the surface handling is robust with a
pre-specified final mesh quality.

STL is a file format commonly used in the stereolithography for the representation
of three dimensional objects. It describes the geometry only by a set of raw un-
structured triangulated surfaces, which are themselves defined by their unit normal
vectors and vertices. STL files exist both in ASCII and binary format.

In order to create the mesh, the user needs to provide the following to the utility:

surface data files in STL format, either binary or ASCII, located in a triSurface
sub-folder of the constant directory
a background solely hex mesh usually generated using blockMesh, which de-
fines the extent of the computational domain and a base level mesh density
a snappyHexMeshDict dictionary, located in the system directory of the case

The utility creates the mesh in three main steps displayed in Figure (5.4) with an
example geometry. It starts splitting the cells of the background mesh that are inter-
sected by the STL-surfaces. This splitting already induces a mesh refinement in the
vicinity of the surfaces, and the ratio can be specified in the dictionary. After that,
cell removal starts. Only cells having 50% of their volume in the desired region will
be kept. Thus, the user has to specify a point inside the desired region. That’s why
only closed surfaces make sense for this option. Additionally mesh refinement can
be done on volume regions, e.q. boxes like in this example. The next step is the
morphing of the resulting split-hex mesh to the surface. During the third step, the
tool will optionally insert cell layers adjacent to chosen surface patches before the
mesh quality provement is achieved.

Below, an example of the snappyHexMeshDict dictionary with its main struc-
ture is given. It begins at the top level with switches for the various stages of
the meshing process (the castellatedMesh switch concerns to the mesh refine-
ment and cell removal steps). Individual sub-dictionaries follow for each process.
Below, the main structure of the dictionary is shown. In the geometry subdic-
tionary, all the geometry used by snappyHexMesh is specified through either STL
files or simple bounding geometry entities (boxes and spheres). A geometry in an
STL file might have several patches (portions of a surface), which can be treated
separately in the geometry subdictionary. In the other subdictionaries, several pa-
rameters have to be set. The template dictionary in OpenFOAM® provides a lot
of comments that serve as a help reference. A copy of that file is given in the
/Exercises/Chpt4/snappyHexMesh/ folder, take a look at it.

100 5 Channel flows with Heat Transfer

Figure 5.4: Three main steps of the meshing process when using snappyHexMesh.
Left: cell refinement and removal. Rigth: cell morphing to the given surfaces. Bot-
tom: Boundary layer addition.

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.6
\\ / A nd	Web: http://www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
object snappyHexMeshDict;

}
// * //
castellatedMesh true;
snap true;
addLayers true;

geometry { ... }; // Geometry declaration
castellatedMeshControls { ... }; // Settings for the refinement
snapControls { ... }; // Settings for the snapping
addLayersControls { ... }; // Settings for the layer addition
meshQualityControls { ... }; // Settings for the mesh quality

debug 0; // debug level
mergeTolerance 1E-6; // tolerance
// *** //

Listing 5.1: Extract of snappyHexMeshDict.

5.3 OpenFOAM® 101

5.3.3 Porous media and multiple reference frame (MRF)
modeling

OpenFOAM® comes with a series of solver able to simulate porous media; e.g.
rhoPorousMRFSimpleFoam. A porous media blocks the flow and can exchange
energy with it. The blockage effect always reduces the pressure losses in the system.
This is represented by a sink in the momentum equation. Two models for pressure
losses are currently available:

the power law with 2 coefficients (C0 and C1):

SM = −ρC0 |U | (
C1−1

2)U (5.18)

the Darcy law with 2 coefficients (d and f):

SM = −(µd+
ρ|U |
2

)U (5.19)

The heat transfer models available are:

None: the porous media is adiabatic.
fixed temperature: set the temperature of the flow to a given temperature.

Those models are of low interest. Therefore if you want something more advance,
you will have to code a new thermalModel for porous media. For example, the
exercise of this chapter uses a model with constant heat release.

All those parameters have to be specified in a dictionary constant/porousZones
(see Listing 5.2).

FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "constant";
object porousZones;

}
// * //

1 // Number of porousZone
(

porosity // Name of the porous cell zone
{

// Settings for coordinate system are described in coordinateSystem.H
coordinateSystem system_10; // optional default origin (0 0 0) and cartesian
printCoeffs yes; // optional: feedback for the user

/*
Darcy // coefficients
{

d d [0 -2 0 0 0 0 0] (0 0 1e5);
f f [0 -1 0 0 0 0 0] (0 0 0);

}

*/

102 5 Channel flows with Heat Transfer

powerLaw // coefficients
{

C0 325;
C1 1;

}

thermalModel
{

type fixedTemperature; // or none

// fixedTemperature coefficients
T 500;

}
}

)

// *** //

Listing 5.2: porousZones

A framework to simulate fan in a system (e.g. in air conditioning application) is
also available in some solvers: e.g. rhoPorousMRFSimpleFoam. The model uses
the so-called Multiple reference frame (MRF) to represent the fan in a different ref-
erence than the pipe. A fan creates Coriolis forces to be added in the momentum
equation. The specification for the MRF are to be given in constant/MRFZones
(see Listing 5.3).

FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "constant";
object MRFZones;

}
// * //

1 // Number of MRFZones
(

rotor // Name of the MRF cell zone
{

// Fixed patches (by default they ’move’ with the MRF zone)
nonRotatingPatches ();

origin origin [0 1 0 0 0 0 0] (0 0 0); // Origin of the fan
axis axis [0 0 0 0 0 0 0] (0 0 1); // Axis of rotation
omega omega [0 0 -1 0 0 0 0] 1047.2; // Angular speed

}
)

// *** //

Listing 5.3: MRFZones

To specify a name for a zone in OpenFOAM®, there is a optional keyword that
can be inserted in a block definition in constant/blockMeshDict between the
vertex list and the number of cells:

5.3 OpenFOAM® 103

blocks
(

hex (4 5 6 7 8 9 10 11) porosity (10 1 20) simpleGrading (1 1 1)
);

5.3.4 Convergence to a steady state

In case the flow field is statistically steady or periodic over time it is important
for a meaningful time average whether the simulation has reached this point of
periodicity. Otherwise transient flow development processes from the numerical
and probably unphysical start conditions to the developed flow field adulterate the
quality and correctness of the time average. To determine whether the flow is de-
veloped or not, the values of different appropriate variables at certain points can
be sampled. If the curves show periodic behavior the flow is developed. For this
task the probe-function of OpenFOAM®. This method is also useful to determine
whether a time average is converged, which means that the averaged values does
not change anymore with further averaging. This can be seen if an averaged vari-
able is probed at a position with the most transient flow behavior and does not
change anymore from a certain point on.

A good way to evaluate a real steady state configuration is to look at the residuals
of the fields. When the residuals are stable at a low value (roughly inferior at 10−6),
the system is in a steady state.

In OpenFOAM®, the residuals can be analyzed if the output information are stored
in a log file. Then by using a tool to analyze that log file, the residuals can be plotted
or stored in separated files.

There are 3 main tools :

gnuplot

foamLog

pyFoamPlotRunner.py

The latest tool won’t be described in this hand-out. But you can find more informa-
tion about it on http://www.openfoamwiki.net/index.php/Contrib_PyFoam.

foamLog tool

foamLog is a standard tool shipped with OpenFOAM® to analyzed the log file.

The syntax of the tool is :

foamLog [-n][-s] <log>
extracts xy files from log

foamLog -l <log>
lists the variables but does not extract

foamLog -h
for a help message

104 5 Channel flows with Heat Transfer

The default is to extract for all the ’Solved for’ variables the initial residual, the
final residual and the number of iterations.

The program will write a set of files, logs/<var>_<subIter>, for every <var>
specified, for every occurrence inside a time step with the initial residual named
<var>.

The files are a simple xy format with the first column Time (default) and the second
the extracted values. Options :

-n creates single column files with the extracted data only
-s suppresses the default information and only prints the extracted variables

After you have run foamLog, you can plot the residuals by typing for example for
the pressure residuals :

gnuplot
gnuplot> plot ’logs/p_0’

To visualize the time evolution, a bash script that runs foamLog with some period
has to be used. Here is an example :

#!/bin/sh
#
Run the foamLog tool periodically
and then launch gnuplot to visualize the results
#
This script accepts two optional parameters :
$1 = name of the log file (default = "log.*Foam")
$2 = save in a file the residuals - value : "on" or "off" (default = "off")
#
author Frederic Collonval
version 2011.02.24
email collonval@td.mw.tum.de

SAVE="off"
LOG="log.*Foam"

if [$# -ge 1]; then
LOG=$1

fi
echo "The log file is $LOG"
if [$# -ge 2]; then

if [$2 = "on"]; then
SAVE=$2
echo "The residuals will be save in \"Residuals.png\""

fi
fi

Look if foamLog was not previously executed
if [! -e ./logs/foamLog.awk]; then

echo "Execute foamLog"
foamLog -s $LOG

Move each residual you want to plot to a file name ./logs/res_*

5.3 OpenFOAM® 105

for f in $(ls ./logs/?_0 ./logs/??_0 ./logs/ep*on_0); do
name=‘echo $f | cut -d’/’ -f3‘
mv $f ./logs/res_$name

done
fi

create a gnuplot script to plot the residuals
if [! -e plot.gnu]; then

echo "Generate the gnuplot script"

if [$SAVE = "on"]; then
echo "set terminal png; set output \"Residuals.png\"" > plot.gnu

else
echo " " > plot.gnu

fi

echo -n "set logscale y; set ylabel \"Residuals\"; set xlabel \"Time\"; plot " >> plot.gnu
K=0
for f in $(ls ./logs/res_*); do

if [$K -eq 0]; then
echo -n "\"$f\" w l" >> plot.gnu
K=1

else
echo -n ", \"$f\" w l" >> plot.gnu

fi
done
Introduce a break before closing the window
echo -n "; pause 3;" >> plot.gnu
if [! $SAVE = "on"]; then

Loop inside the gnuplot script except if output is a file
echo -n "reread;" >> plot.gnu

fi
fi

Run in an external parallel process the script to extract the parameters
(

J=0
while [$J -lt 1]; do

echo "Execute the awk script on $LOG"
awk -f ./logs/foamLog.awk $LOG

Move each residual you want to plot to a file name ./logs/res_*
for f in $(ls ./logs/?_0 ./logs/??_0 ./logs/ep*on_0); do

name=‘echo $f | cut -d’/’ -f3‘
mv $f ./logs/res_$name

done
J=‘tail $LOG | grep -c -e End -e Exit -e exiting‘

done
) &

echo "Subprocess launched"

Plot the residuals (need to type Ctrl+C to stop gnuplot because of the command reread)
gnuplot plot.gnu

remove the gnuplot script
rm plot.gnu

Listing 5.4: Example of bash script to run periodicaly foamLog.

106 5 Channel flows with Heat Transfer

Using gnuplot

The following script could be used with gnuplot to draw the evolution of different
parameters contained in the log file. To launch the script, write the following in the
folder containing the script and the log file :

gnuplot <name of the script file>

The example of the Listing 5.5 plots the initial residuals for p, Ux, Uy and Uz.

Set the scale of y in logarithmic scale
set logscale y
Set the title
set title "Residuals"
Set the y label
set ylabel ’Residual’
Set the x label
set xlabel ’Iteration’
Read the log file and plot the residuals for rho, Ux, Uy and Uz
plot "< cat log.icoFoam | grep ’Solving for p’| cut -d’ ’ -f9 | tr -d ’,’" title ’p’ with lines, \
"< cat log.icoFoam | grep ’Solving for Ux’| cut -d’ ’ -f9 | tr -d ’,’" title ’Ux’ with lines, \
"< cat log.icoFoam | grep ’Solving for Uy’| cut -d’ ’ -f9 | tr -d ’,’" title ’Uy’ with lines, \
"< cat log.icoFoam | grep ’Solving for Uz’| cut -d’ ’ -f9 | tr -d ’,’" title ’Uz’ with lines
Break the execution during 1s
pause 1
Start again this script
reread

Listing 5.5: Script to visualize the residuals

Here is the description of the reading process :

cat reads the file log
grep filters the file to keep only the lines in which ’Solving for ’ appears
cut keep only the 9th element of those lines. The separator is specified with the
option d. Here it is the blank character.
tr suppresses the character specified by the option d, here the coma.
The title option defines the legend for the data
with lines, it is the command to draw a line between the data instead of
plotting a symbol for each value.

5.4 Exercises 107

5.4 Exercises

Approach 1: fine geometry

In this first approach, you will try to model the problem with a relatively exact ge-
ometry. However, you will still approximate it to a quasi 2-dimensional domain
marked with the green doted lines in figure (5.1). Furthermore, you will take ad-
vantage of the symmetry, and model only the bottom part of the channel. Copy the
case Approach1/fineStack.

Meshing

You will mesh the geometry with the snappyHexMesh utility presented in section
(5.3.2). The strategy is to use the mesh of the channel without stack as the back-
ground mesh, and to remove the cells occupied by the stack with the automated
tool. Use the dictionary Approach1/fineStack/constant/polyMesh/blockMeshDict
to create the background mesh with the blockMesh utility. The utility works bet-
ter if the background mesh is uniform, and thus no mesh grading near the wall has
been made.

A peculiarity has to be mentioned here. Even if the background mesh has only one
cell in the z direction, it has been defined as 3-Dimensional. The boundaries on
y = 0.5mm and y = −0.5mm have been attached to the symmetry patch. Thus they
are not treated with the empty type of the previous sections. This is because the
snappyHexMesh refines the mesh in all directions, and we will have more than 1
cell in the y direction after the refinement.

The geometry of the stack will be represented with a STL file created with ICEM1.
Create a subfolder triSurface in the constant case folder, and copy the STL file
from Approach1/stack.stl. It is in this case an ASCII file. Since all the surfaces
of the stack will have later the same boundary conditions and mesh options, only a
patch with the name stack_WALL has been declared (see the file with a text editor).
You can view the mesh in paraFoam but, since we don’t have yet initial fields, do
not load the variable fields. ParaFoam can display STL geometries too. With the
background mesh opened, load additionally the STL geometry with file -> open ->
./constant/triSurface/stack.stl.

You have provided the snappyHexMeshDict dictionary with the proper entries
in the Approach1/fineStack/system directory. Take a look at it. The three op-
tions are switched on. In the geometry subdictionary, the STL file is loaded. Fur-
thermore, two rectangular regions (box1 and box2) with the type searchableBox
have been declared too. They will help to refine the mesh near the channel wall.
For simplicity, no comments have been printed in the dictionary.

You have now everything to create the fine mesh. In the case folder fineStack
execute the command snappyHexMesh. As explained before, each step of the pro-
cess shown in figure (5.4) will be separately stored in the folders 1, 2 and 3 each of
them with a polyMesh subdirectory. Take a look of all steps with paraFoam. You
only need to execute paraFoam in the case folder, and the meshes will be treated

1 Most CAD programs offer the option to export STL files. An open-source tool called Blender exists
too. http://www.blender.org/

108 5 Channel flows with Heat Transfer

as different time steps. Use the next and back frame buttons to change between
them. You will of course only use the third one. Create a temporary folder TEMP
and move the three folders into it. In the constant folder, rename the polyMesh
folder with the background mesh to bak_polyMesh and substitute it with a copy
of the polyMesh subdirectory of the folder TEMP/3/.

You can check the created Mesh with the utility checkMesh. It displays several
information about the Mesh, like cell number and cell type.

Meshing and setting up

You can now set the boundary conditions in the initial field files on the \0 folder
for pressure, velocity and temperature. Use polyMesh\boundary file and figure
(5.1) to set the p,U and T initial files with the proper patch names and types. The
channel wall is adiabatic. For the stack walls you will define a constant heat flux.
Due to the good heat conduction of copper, the heating power of the stack can be
homogeneously distributed over the whole surface:

q̇w =
Q̇max
As

= λ
dT

dy∗
(5.20)

where y∗ is here the local direction perpendicular to the stack walls.

The surface of the stack in contact with the fluid counts ca. 0.0197m2 and the max-
imum power of the stack is 2.2W . Calculate and set the temperature gradient on
the surface of the stack.

After setting the boundary conditions, you have to specify the thermodynamic
properties. For that update the constants in thermophysicalProperties with
the values given in the Table 5.2

Properties name Keyword value

Mean molecular weight molWeight 28.9kg/kmol

Specific heat capacity Cp 1005 J
KgK

Enthalpy of formation Hf 2.544 · 106 Jkg
Dynamic viscosity mu 1.8 · 10−5Pa.s

Prandtl number Pr 0.7

Table 5.2: Averaged transport properties of air.

Finally adapt the controlDict and fvSolution files. The convergence criteria
to be used is 1e-6 for all variable (i.e. pressure, enthalpy and velocity). The maxi-
mum number of iterations will be set to 500. The data will be stored the solution
each 50 iterations. We will use the same discretization schemes as in the previous
exercise.

You can now run the solver rhoSimpleFoam.

Questions

Which value did you use for the heat flux boundary condition? How many cells
had the mesh? How long took the solver to solve the problem?

5.4 Exercises 109

Analyze the axial temperature and pressure profiles. Use the plot over line op-
tion of paraFoam along one of the thin slots of the stack. Do they make sense
compared with the classical patterns of laminar flow?
What is the pressure drop ∆p through the stack at this velocity?

Approach 2: modeling with porous media

In this second approach, we will use another strategy. The idea is to simulate the
effects caused by the stack by adding source terms in the transport equations. The
stack can be seen, due to its thin slots, as a porous medium. The walls of the stack
induce friction forces through the viscosity on the fluid, which can be approximated
as volume forces. Similarly, the wall heat fluxes can be homogenized into energy
volume sources too.

ṠE =
Q̇max
Vs

(5.21)

SM =
∆pA⊥

Vs
=

∆p

ls
≈ f(u⃗) (5.22)

The energy source term is more or less constant, without dependency of the flow
field. The momentum source term is more complicated. Since the pressure drop is
a function of velocity, the source term is generally flow field dependent too.

With the proper source terms, we will not need to mesh the complex geometry of
the stack. Instead, a simple mesh created with blockMesh can be used. Figure
(5.5) shows a sketch of the described domain divided into three blocks.

Figure 5.5: Simplified domain

Meshing and setting up

Copy the previous test case and rename the folder to sourceStack. Remove all
time steps other than the initial one, the constant/bak_polymesh folder and the
TEMP folder too. Change the blockMeshDict dictionary to create the simplified
mesh with the block for the stack named porosity. The patch names correspond
to the ones given in figure (5.5). The recommended mesh resolution is 5 to 10 cells

110 5 Channel flows with Heat Transfer

per millimeter with a grading towards the wall. Using expressions (5.21) and (5.22)
and the pressure drop calculated in the previous approach, estimate the values of
the coefficients SE and the coefficients of the power law C0 and C1 (see equation
5.18). The thermophysicalProperties and turbulenceProperties files
are already set correctly. You have now to add two dictionaries for the porousZones
(see Listing 5.2) and the MRFZones (see Listing 5.3).
Remark: the thermalModel is a non-standard one, named fixedHeatRelease
that requires one parameter dQ, the volumetric heat release. The code is provided
in Approach2/thermalModel. To compile it, go in the directory and type wmake
libso. Then to use it, add in the controlDict the following entry:

libs ("libuserthermalPorousZone.so");

In the folder sourceStack/0 modify the files for pressure, temperature and ve-
locity applying the boundary conditions displayed in figure (5.5). The same applies
for the solution accuracy and discretization schemes, so leave the fvSchemes and
fvSolution as they are.

In the controlDict set the timestep to 1 and the maximum number of iterations
to 500. Store the solution each 50 iterations and don’t forget to specify the right
solver. The convergence criteria will be the same as before (1e-6 for p, h and U). The
case can now be solved by running rhoPorousMRFSimpleFoam.

Questions

Check the independence of the results with the mesh used. For that plot the
velocity profile before the porous zone for 2 meshes. If they are similar, you
have reached mesh independence. If not refine the mesh up to the point, the
profile is constant.
For the channel wall section occupied by the stack, a slip condition has been
chosen, why?
How many cells composed the final case?
Which values do you get for SE , C0 and C1?
Use paraFoam to analyse the results and make some plots for the temperature,
velocity and pressure. Compare the plots with the ones of the previous ap-
proach. Do they look qualitatively similar? What about the pressure drop and
temperature increase through the stack?
Compare the time needed to solve the real geometry and the modeling one.

5.5 Extra Practice and Background Information

You could trim the values for C0, C1 and SE to get the same pressure drop and
temperature increase as with the exact geometry.

Chapter

6 The Backward Step

112 6 The Backward Step

Figure 6.1: Todays problem - The mesh has to be cartesian and uniform with a size
of the cells being 12.5 cmx 12.5 cm

6.1 Todays Problem

To test the capability of OpenFOAM® a flow problem with separation and reat-
tachment is analyzed. The flow over a backward facing step is one of the simplest
geometries that allows this kind of test even if, when the flow is turbulent, the flow
structure is very complex. To ensure the quality of the simulation, a comparison
with the experimental data of [1] is proposed.

Bibliography

[1] Three-dimensional particle-tracking velocimetry measurement of turbulence statis-
tics and energy budget in a backward-facing step flow, Kasagi, N. and Matsunaga
A., Heat and Fluid Flow, Year 1995 vol 16 477-485

[2] The numerical computation of turbulent flows Launder, B.E. and Spalding, D.B.
Comp. Meth. Appl. Mech. Eng. Year 1974 vol 3 269-289

[3] Development of turbulence models for shear flows by a double expansion tech-
nique Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B. and Speziale, C.G. Physics
of Fluids A, Year 1992 vol. 4, No. 7, pp1510-1520

[4] Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
Menter, F. R. AIAA Journal, Year 1994 vol. 32, pp. 269-289.

[5] OpenFOAM® User Guide-1.6 2009
[6] 3-D PTV Database of Turbulent Flows, Turbulence and Heat Transfer Laboratory

- University of Tokyo, 2004. URL : http://www.thtlab.t.u-tokyo.ac.jp/ (seen on
20-06-2010)

6.2 Physics

The todays problem concerns a fully developed flow reaching a step. When a 2D
turbulent flow gets in a channel, the formation of the boundary layers can be ob-
served. They modify the cross section of the channel and, therefore the velocity
profile is changed. If x is the flow direction, the thickness of a boundary layer δ on
a horizontal plate grows as:

δ ∝ x0.5

Due to the interaction of the different boundary layers within the channel, it is not
so easy to define this growing function. When this interaction reaches a steady state

6.2 Physics 113

the boundary layers do not grow anymore and the velocity profile does not change.
This condition is the so called fully developed state. Its mathematical formulation is,
being u and v, velocity respectively in x and y direction:{

v = 0
∂u
∂x = 0

The equations required for this numerical simulation are the equations of Navier-
Stokes (for a viscous incompressible flow neglecting the gravity force)

Continuity

∇⃗ · u⃗ = 0 (6.1)

Momentum
Du⃗

Dt
=
∂u⃗

∂t
+ u⃗ · ∇⃗ ⊗ u⃗ = −1

ρ
∇⃗p+ ν∇2u⃗ (6.2)

and those of the turbulence model.

6.2.1 Turbulence Models

The aim of the turbulence modeling is to introduce the effect of the turbulence fluc-
tuations in the equations for the mean quantities. Solving the turbulence is still a
controversial issue, since more than one hundred years of experience have shown
that neither simple analytic theory, nor solution can be achieved. The main issues
for a turbulent flow are the three dimensionality, the unsteadiness, and the ran-
domness of the velocity field, as well as the large range of time and length scales.
Moreover, the largest turbulent motions are usually almost as large as the charac-
teristic width of the flow, being directly affected by the boundary conditions and
therefore not universal. The first approach to solve the turbulent flow is the Direct
Numerical Simulation (DNS). In this case all length scales and time scales have to be
resolved. Consequently the computational resources needed are enormous. DNS
computation can be considered as a numerical experiment and it is not affordable
for high Reynolds configurations.

The Reynolds Averaged Navier Stokes equations (RANS)1 takes its origin from the
decomposition of the instant value of velocity and pressure into a mean and a fluc-
tuating part. The mean flow equations are the averaged equations:

ui = Ui + u′i

∂Ui
∂t

+ Uj
∂Ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2Ui
∂xj∂xj

−
∂u′iu

′
j

∂xj

where Ūi is the mean value of u⃗ in the i direction and u′i is its fluctuation. The
Reynolds stress tensor, ρu′iu

′
j , represents the mean flux of momentum due to the

turbulent fluctuations, and analytically they appear as additional unknown in the
Reynolds equations and should be determined by a turbulence model (called the

1 Remark : OpenFOAM® uses the abbreviation RAS for the Reynolds Averaged Navier Stokes equa-
tions.

114 6 The Backward Step

closure problem). The closure formulation for the RANS equations can be carried
out by :

a turbulent viscosity model: according the Boussinecq’s hypothesis
−ρu′iu′j = ϵij(

∂Ūi

∂xj
+

∂Ūj

∂xi
) where ϵij = νt

The constant νt can be computed from different kind of models.
modeled Reynolds-stress transport equations

Model testing has a large number of possible error sources, and the accuracy of
one model or another is only determined by a comparison between measured and
calculated flow properties only if numerical errors, measurement errors, and dis-
crepancies in boundary conditions are small.

An intermediate approach between DNS and RANS is the Large Eddy Simulation
(LES), where the time dependence is taken into account and a spatial averaging
is done. The objective of the LES is to explicitly compute the largest length scales
(larger than the mesh size) of the phenomena, and try to model the small ones.

The turbulence models2 used in this chapter are described below:

The k−ϵmodels provide a good compromise between robustness, computational
cost and accuracy. They are generally well suited to industrial-type applications
that contain complex recirculation, with or without heat transfer. A k− ϵ turbu-
lence model is a two-equation model in which transport equations are solved
for the turbulent kinetic energy k and its dissipation rate ϵ. The definition of the
turbulent kinetic energy is, if ui = Ūi + u′i :

k =
1

2
(u′2 + v′2 + w′2)

The standard k − ϵ model [2] requires the solution of the following equations3 :

∂k

∂t
+ (Ū ·∇)k −∇ ·

νt
Cmu

∇k = Pk − ϵ (6.3)

∂ϵ

∂t
+ (Ū ·∇)ϵ−∇ ·

νt
σeps

∇ϵ = C1
ϵ

k
Pk − C2

ϵ2

k
(6.4)

withCi being model coefficients and the production rate of the turbulent kinetic
energy Pk is defined as:

Pk = 2νt(
1

2
(∇⃗Ū + ∇⃗ŪT))2

In this model only a turbulent length scale is taken into account. It means that
the turbulent diffusion is the one that occurs only at this specific length. Taking
into account the contribution of all the turbulent length scales, thanks to the
modification of the production term, leads to a modified version of the model
so called RNG-k − ϵ. The mathematical formulation of this model can be found
in [3].

2 The equations solved in OpenFOAM® for a particular turbulent model can be found in the function
correct of the model. For example for the k−ϵ model for incompressible flow, the equations are found
in the file $FOAM_SRC/turbulenceModels/incompressible/RAS/kEpsilon/kEpsilon.C.

3 The equation are written as implemented in OpenFOAM® in particular for the name of the coeffi-
cients.

6.2 Physics 115

The k − ω models are similar to k − ϵ models, solving also two transport equa-
tions, but differ in the choice of the second transported turbulence variable : the
specific dissipation of k. The performance differences are likely to be a result of
the subtle differences in the models, rather than a higher degree of complexity
in the physics being captured. The SSTk − ω model combines the insensitiv-
ity to free-stream conditions of the k − ϵ model in the far-field, with retains the
advantages of the k − ω model near walls. As drawback it produces a bit too
large turbulence levels in regions with large normal strain, like stagnation re-
gions and regions with strong acceleration. The formulation of the model can
be found in [4].

6.2.2 Law of the wall

Figure 6.2: The three regions of the velocity boundary layer.

In wall attached boundary layers, the normal gradients become large as the wall
distance reduces to zero, furthermore viscous effects become important. The diffi-
cult near-wall region is usually not explicitly resolved with the numerical model,
but it is bridged using a so-called law of the wall4.

The law of the wall are usually expressed using non-dimensional expressions of the
velocity and the distance normal to the wall.

The non-dimensional velocity is u+ = u
uτ

where uτ , the wall friction velocity, is
defined as:

u2τ =
τW
ρ

, with τW is the shear stress at the wall. And calling y the normal distance from the
wall, the dimensionless wall distance y+ is defined as:

y+ =
ρyuτ
µ

In case of flow re-attachment or point of impingement, due to the vanishing of τW ,
this definition of the dimensionless wall distance is not longer useful; therefore an
alternative formulation, based on the turbulent kinetic energy, k, instead of the wall
shear stress is performed :

y+ =
C0.25
µ k0.5y

ν

4 The wall functions available for incompressible flow in OpenFOAM® are in the folder
$FOAM_SRC/turbulenceModels/incompressible/RAS/derivedFvPatchFields/wallFunctions.

116 6 The Backward Step

The boundary layer close to the wall is composed of three parts cf. Figure (6.2) :

The viscous sublayer for y+ < 5 in which u+ = y+

The buffer sublayer for 5 < y+ < 30 in which no law exists
The turbulence sublayer for 30 < y+ < 300 in which u+ = 1

κ ln(Ey
+)

Unfortunately the wall functions do not free the user from the need to adequately
resolve the turbulent portion of the boundary layer. A lower limit for y+ ensures
that the first point does not fall into the viscous sublayer, commonly the meshing
should be arranged so that the values of y+ at all the wall-adjacent integration
points is between 20 and 30. Also an upper limit is present, due to the requirement
of adequate boundary layer resolution, it requires at least 8-10 points in the layer.
For moderate Re, y+ should not be higher than 100.

In OpenFOAM® this can be easily checked after the simulation typing :

yPlusRAS

in the case directory. This function calculates the y+ values and stores it in the
solution files at each time step. N.B.: the flow has to be solved prior running that
tool. So the value of y+ can only be checked at posteriori.

Concretely, in OpenFOAM® the logarithmic law is used for y+ > 11.53 with the
default value of κ and E. And the linear law is used if y+ < 11.53.

OpenFOAM® allows you to tune the value of the two constants in the law of the
wall by given specific values in the RASProperties dictionary as shown in the
Figure (6.4).

6.3 OpenFOAM®

To simulate an unsteady turbulent flow a good option is to use the pisoFoam for
incompressible flows (as in this case) or the rhoPimpleFoam solver5 for a com-
pressible test. In this chapter the incompressible one is explained. It solves the
equations (6.1) and (6.2) as written above inside a PISO loop.

6.3.1 pisoFoam

The PISO (Pressure Implicit with Splitting of Operators) algorithm is a predictor cor-
rector method like the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations
4.2.6); both PISO and SIMPLE can be used for steady-state and transient problems,
whereas SIMPLE was originally designed for steady-state flows and PISO for tran-
sient flows. PISO performs at every time step a “steady-state SIMPLE” algorithm
in which the velocity-pressure coupling is solved.

The algorithm performs the following steps:

5 PIMPLE is abbreviation for a combined PISO-SIMPLE algorithm.

6.3 OpenFOAM® 117

An initial guess of the velocity is computed from the momentum equation : the
Momentum predictor step6.
Enter the PISO loop

– Estimate the velocity from the moment equation without the pressure gra-
dient effect

– Interpolate the mass flux on the cell faces (with a correction to insure the
mass conservation)

– Solving the pressure equation nNonOrthCorr times (the flux is updated at
each iteration).

– Correct the velocity (and correct the field the boundary conditions)

The PISO loop will be solved nCorr times.
Solve the turbulence model

Figure 6.3: PISO algorithm

6 If the flag momentumPredictor in the block PISO of fvSolution is false, this step is not carried
out. If this flag is not specified, it is set to true.

118 6 The Backward Step

while (runTime.loop())
{

Info<< "Time = " << runTime.timeName() << nl << endl;

#include "readPISOControls.H"
#include "CourantNo.H"

// Pressure-velocity PISO corrector
{

// Momentum predictor

fvVectorMatrix UEqn
(

fvm::ddt(U)
+ fvm::div(phi, U)
+ turbulence->divDevReff(U)

);

UEqn.relax();

if (momentumPredictor)
{

solve(UEqn == -fvc::grad(p));
}

// --- PISO loop

for (int corr=0; corr<nCorr; corr++)
{

volScalarField rAU(1.0/UEqn.A());

U = rAU*UEqn.H();
phi = (fvc::interpolate(U) & mesh.Sf())

+ fvc::ddtPhiCorr(rAU, U, phi);

adjustPhi(phi, U, p);

// Non-orthogonal pressure corrector loop
for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)
{

// Pressure corrector

fvScalarMatrix pEqn
(

fvm::laplacian(rAU, p) == fvc::div(phi)
);

pEqn.setReference(pRefCell, pRefValue);

if
(

corr == nCorr-1
&& nonOrth == nNonOrthCorr

)
{

pEqn.solve(mesh.solver("pFinal"));
}
else

6.3 OpenFOAM® 119

{
pEqn.solve();

}

if (nonOrth == nNonOrthCorr)
{

phi -= pEqn.flux();
}

}

#include "continuityErrs.H"

U -= rAU*fvc::grad(p);
U.correctBoundaryConditions();

}
}

turbulence->correct();

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

}

Listing 6.1: Time loop of pisoFoam

120 6 The Backward Step

After describing the key part of the pisoFoam solver, the full structure of the solver
will be presented.

#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulenceModel.H"

// * //

int main(int argc, char *argv[])
{

#include "setRootCase.H"

#include "createTime.H"
#include "createMesh.H"
#include "createFields.H"
#include "initContinuityErrs.H"

// * //

Info<< "\nStarting time loop\n" << endl;

while (runTime.loop())
{

Info<< "Time = " << runTime.timeName() << nl << endl;

#include "readPISOControls.H"
#include "CourantNo.H"

// Pressure-velocity PISO corrector
{
...
}

turbulence->correct();

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

}

Info<< "End\n" << endl;

return 0;
}

Listing 6.2: pisoFoam source code. Transient solver for incompressible flow. Tur-
bulence modelling is generic, i.e. laminar, RAS or LES may be selected.

After loading the standard header file fvCFD.H, turbulenceModel.H will be
read. This header allows the definition in the case directory of the desired turbulence
model. Consequently the choice of a laminar, RAS or LES model is done indepently
of the solver.
Remark : all solvers don’t get this flexibility. But nearly all of them are suitable to
use a RAS or LES model.

6.3 OpenFOAM® 121

In the createFields.H all the required fields are defined:

p: a field of scalar representing the kinematic pressure p/ρ
U: a vector field representing the velocity U
phi: the velocity flux
pRefCell and pRefValue: in a closed incompressible system the pressure
is relative. The pressure difference and not its absolute value is important. For
this reason the solver sets a reference level by pRefValue in the cell pRefCell.
Changing this value become important in the compressible case.
laminarTransport: is the transport model from which the laminar viscos-
ity can be taken. In this case a single phase is transported, it means that the
coexistence of a two phase (liquid-gas for example) is not allowed.
turbulence: is the general reference to the turbulence model (incompressible
in this case).

Info<< "Reading field p\n" << endl;
volScalarField p (...);

Info<< "Reading field U\n" << endl;
volVectorField U (...);

include "createPhi.H"

label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("PISO"), pRefCell, pRefValue);

singlePhaseTransportModel laminarTransport(U, phi);

autoPtr<incompressible::turbulenceModel> turbulence
(

incompressible::turbulenceModel::New(U, phi, laminarTransport)
);

Listing 6.3: Sample of createFields.H for pisoFoam

After reading the controls for the PISO loop and computing the Courant number,
the pressure-velocity PISO corrector is applied. And finally before outputting the
data, the turbulence model is solved.

6.3.2 Set up a turbulent flow

The turbulence model

In the constant folder there is the file turbulenceProperties where the key-
word simulationType is specified. The options for simulationType are laminar,
RASModel and LESModel. With RASModel selected, the choice of RAS modelling
is specified in a RASProperties file, also in the constant directory. The turbu-
lence model is selected by the RASModel entry from a long list of available models,
that are listed in [5]

RASModel: is the name of the chosen model

122 6 The Backward Step

turbulence: it is a flag that can be on or off, i.e. if a turbulent simulation has
to be done
printCoeffs: it is a flag that print on the screen, at the beginning of the sim-
ulation, the coefficients of the model

The coefficients of the turbulence model are set by default in the source code of
OpenFOAM®. But they can be overwritten by setting them in the RASProperties
file, as can be seen in listing (6.4)

RASModel RNGkEpsilon;
turbulence on;
printCoeffs on;

RNGkEpsilonCoeffs // optional
{

Cmu 0.0845;
C1 1.42;
C2 1.68;
sigmak 1.39;
sigmaEps 1.39;
eta0 4.38;
beta 0.012;

}

wallFunctionCoeffs // optional
{

kappa 0.4187;
E 9;

}

Listing 6.4: RASProperties

When you are using a turbulent model, additional fields have to be created : the tur-
bulent kinetic energy, k, the other fields used by the model (e.g. ϵ or ω) and the tur-
bulent kinematic viscosity, nut. The latter is computed from the fields used in the
turbulent model. Consequently its boundary conditions have the type calculated
except for the boundaries of type wall. Indeed for those boundaries, the law of the
wall has to be used by using here the default law nutkWallFunction. An exam-
ple of such boundary condition is:

Wall
{

type nutkWallFunction;
Cmu 0.09; // [optional] default value 0.09
kappa 0.41; // [optional] default value 0.41
E 9.8; // [optional] default value 9.8
value uniform 0;

}

For the turbulent fields, there are specific boundary conditions when the boundary
is a wall :

Field Name boundary condition Mandatory parameters

k, q or R kqRWallFunction value

epsilon epsilonWallFunction value

omega omegaWallFunction value

6.3 OpenFOAM® 123

The other difficult boundary condition for turbulent fields is at the inlet. Indeed,
usually the profiles of k, ϵ, etc. are unknown. But the level of turbulence is specified
by its intensity, I , a turbulence length scale, l or the turbulent viscosity ratio, µt

µ . The
table below lists formula that could be used to set the turbulent fields.

Variable Formula

Turbulence intensity, I if ReDH
is the Reynolds number I = u′

uavg

based on the hydraulic diameter DH I = 0.16(ReDH)−1/8

Turbulence length if L is the relevant dimension of the inlet l = 0.07L

scale, l DH is a good guess

Turbulent kinematic a typical value of Cµ is 0.09 νt = Cµk
2/ϵ

viscosity, νt νt = k/ω

Turbulent kinetic k = 3
2 (uavgI)

2

energy, k

Turbulent dissipation ϵ = C0.75
µ

k1.5

l

rate, ϵ ϵ = Cµ
k2

ν

(
µt

µ

)−1

Turbulent specific ω = k
ν

(
µt

µ

)−1

dissipation rate, ω
Remark : By definition, the hydraulic diameter, DH = 4A

P where A is the area of the
section and P is perimeter.

As you will use an unsteady turbulent solver, in the fvSchemes file the temporal
derivative schemes and the divSchemes and laplacianSchemes concerning the
turbulent quantities are required. An example of these terms can be seen in Listing
6.5.

ddtSchemes
{

default backward;
}

divSchemes
{

...
div(phi,k) Gauss upwind;
div(phi,epsilon) Gauss upwind;
div(R) Gauss linear;
div((nuEff*dev(T(grad(U))))) Gauss linear;
div(nonlinearStress) Gauss linear;

}

laplacianSchemes
{

laplacian(nuEff,U) Gauss linear corrected;
laplacian(DkEff,k) Gauss linear corrected;
laplacian(DepsilonEff,epsilon) Gauss linear corrected;
laplacian(DREff,R) Gauss linear corrected;
laplacian(DnuTildaEff,nuTilda) Gauss linear corrected;

}

Listing 6.5: fvSchemes

124 6 The Backward Step

In fvSolution, the solvers for the transport equations concerning the turbulence
model (for example k and ϵ or k and ω) as well as the solver for pFinal (the solver
used to solve the pressure in the last iteration for each time step) have to be de-
fined. For this kind of solver, the PISO options has to be chosen carefully. An
example of all the parameters available can be seen in Listing 6.6. The user have to
specify the number of correctors within a time step in the PISO dictionary by the
nCorrectors keyword. The algorithm requires this number to be more than 1,
but typically not more than 4. An additional correction to account for mesh non-
orthogonality is available, the number of non-orthogonal correctors is specified by
the nNonOrthogonalCorrectors keyword. The number of non-orthogonal cor-
rectors should correspond to the mesh for the case being solved, i.e. 0 for an orthog-
onal mesh and increasing number with the degree of non-orthogonality up to 20 for
the most non-orthogonal meshes. If the user doesn’t specify a value, the default is
0.

solvers
{

...
pFinal
{

solver PCG;
preconditioner DIC;
tolerance 1e-06;
relTol 0;

}
k
{

solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;

};
epsilon
{

solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;

};
R
{

solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;

};
nuTilda
{

solver PBiCG;
preconditioner DILU;
tolerance 1e-05;
relTol 0;

};
}

PISO
{

6.3 OpenFOAM® 125

// number of correction loop by time step (advice : 1<nCorrectors<=4)
nCorrectors 2;
// number of loop to correct for the non-orthogonality of the mesh
// [optional] default : 0 (ok if cartesian mesh)
nNonOrthogonalCorrectors 0;
// flag to compute a first guess of the velocity from the momentum equation
// [optional] default : true
momentumpredictor true;
// not used in the pisoFoam solver
// [optional] default : false
transonic false;
// not used in the pisoFoam solver
// [optional] default : 1
nOuterCorrectors 1;

}

Listing 6.6: Sample of fvSolution for a PISO solver.

Set up the geometry and the boundary conditions

The skeleton of blockMeshDict is provided. The geometry is a 2D case with the
following patches:

inlet
outlet
Wall: all the horizontal walls
VerticalWall: the step’s wall
frontAndBack

To set the inlet, the setDiscreteFields tool will used. This tool can set a scalar or
vector field on patches and/or inside of the mesh from a 1D profile. You can find
it on http://openfoamwiki.net/index.php/Contrib_setDiscreteFields. But it is also ship
with the today exercise. To install it, copy the setDiscreteFields folder in
$WM_PROJECT_USER_DIR/applications/preprocessor. Then execute wmake
in the folder of the tool.

In the system folder there is the setDiscreteFieldsDict. An example of this
file can be seen in the Listing 6.7, its entries are explained after this paragraph.

field is the target field, i.e. the field for which the profile is specified
type is the type of the target field, i.e. scalar or vector
direction [optional] is the direction in which the interpolation to the mesh is
done : "x", "y", or "z" (default "x")
For example, if you know the profile of the pressure in the y direction, the
direction parameter has to be set to y.
internal [optional] sets internal field or not : true or false (default true)
patchNames [optional] is the the list of the patches where the field has to be set
(default empty)
profile is the list of the value to set

126 6 The Backward Step

Fields
(

keyword1
{

field U; //target field
type vector;//type "scalar" or "vector"
direction "x"; //direction "x","y", or "z"

//in which the interpolation is done
internal true; //set internal field or not, true or false
patchNames
(

patch1
patch2

); //patchNames to set value
profile //if type is vector (x y z Ux Uy Uz)
(

(0 0 0 1.0 0.0 0.0)
(1 0 0 0.5 0.5 0.0)
(2 0 0 0.0 1.0 0.0)

);
}

keyword2
{

field p; //the target field is p
type scalar;
direction "y";
internal true;
patchNames
(

patch1
);
profile //if type scalar (x y z p)
(

(0 0 0 -1.0)
(0 1 0 -0.5)
(0 2 0 0.0)

);
}

);

Listing 6.7: setDiscreteFieldsDict

Typing setDiscreteFields in the case directory sets the fields.

For the todays problem, the inlet has to be set with a fully developed flow. So the
velocity, the turbulent kinetic energy and the dissipation rate profiles at the inlet
are given. You will have to use the relation described before to compute the profile
at the inlet for the specific dissipation rate, ω. Then using setDiscreteFields,
you will set the profile at the inlet.

6.3 OpenFOAM® 127

The function objects

At the end of the controlDict file a block called functions can be specified.
The elements defined in this block carried out a post-process on the case at the end
of each time step. The non-exhaustive list of the functions is :

faceSource (cellSource) compute a given operation on a set of faces (cells).
The available operations are: none, sum, average, integrate, weighted average.
And exclusively for the faceSource: min and max.
fieldAverage calculates the field averages and variances.
fieldMinMax calculates scalar minimim and maximum field values.
forces calculates the forces and moments by integrating the pressure and skin-
friction forces over a given list of patches.
forcesCoeffs creates a specialisation to calculate lift and drag force coeffi-
cients.
probes sets of locations to sample.
sets sets of sets to sample.
surfaces sets of surfaces to sample.
staticPressure converts kinematic pressure to static pressure, from the name
of the pressure field, and density, i.e. pstatic = density ∗ pkinematic.
systemCall executes system calls at every step, at every write step or when
exiting the time-loop. The system calls have to be entered in the form of a string
list.
writeRegisteredObject takes over the writing of registered IO objects.

In this paragraph, four functions will be described : fieldAverage, probe,
writeRegisteredObject and sets. But first the general definition of a function
will be described.

functions
{

name // Name to differentiate the defined functions
{

type < nameFunctions >; // type of the function : e.g. fieldAverage
// name of the library containing the compiled version of the function
functionObjectLibs ("< libraryName >");
enabled true; // [optional] default = true

// Control the output of the function depending on the
// number of time steps calculated or at each write step
outputControl timeStep; //outputTime;
// Needed only if the outputControl is timeStep. Frequency of output
outputInterval 1;

... // The entries needed for the specified function
}

}

Listing 6.8: General definition of the block functions in controlDict.

128 6 The Backward Step

1. fieldAverage
This function calculates the average (in time or in number of iteration) of a de-
sired scalar/vector field and the variance around the mean. The parameters
are :

type : fieldAverage
functionObjectLibs : "libfieldFunctionObjects.so"
cleanRestart : [optional] whether to perform a clean restart, or start from
previous averaging info if available (default : false)
resetOnOutput : [optional] whether to reset the averaged fields after they
have been written.Used to average over only the preceding write interval
for transient cases (default : false)
fields : fields to be averaged (runTime modifiable). For each the follow-
ing sub-entries have to be specified :

– mean : it is a flag, if activated the mean value on the base is calculated
– prime2Mean : it is a flag, if activated the value (f − f̄)2 is calculated
– base: it is the base on which the mean is calculated, it can be time or

iteration

functions
{

fieldAverage1
{

type fieldAverage;
functionObjectLibs ("libfieldFunctionObjects.so");
enabled true;
outputControl outputTime;
cleanRestart false;
resetOnOutput false;
fields
(

U
{

mean on;
prime2Mean on;
base time;

}
);

}
}

Listing 6.9: Example of use for the fieldAverage function.

6.3 OpenFOAM® 129

2. probe
This function sets specific points where fields can be probed. The entries for this
function are:

type : probes
functionObjectLibs : "libsampling.so"
fields : list of fields to be sampled at the probe locations
probeLocations : Locations to be probed. runTime modifiable. It is a list
of the points with the x, y and z coordinates.

Here is an example of the probes function.

functions
{

probes
{

type probes;
functionObjectLibs ("libsampling.so");
outputControl timeStep;
outputInterval 10;

probeLocations
(

(x1 y1 z1)
(x2 y2 z2)

);
fields (p U);

}
}

Listing 6.10: Example of use of the probes function.

3. writeRegisteredObject
This function allows to change the output parameters of fields used in the simu-
lation (overwrites the parameters of controlDict for the specified fields). The
entries for this function are :

type : writeRegisteredObject
functionObjectLibs : "libIOFunctionObjects.so"
objectNames : list of objects for which the output parameters have to be
changed

The listing below shows an example of use of this function.

functions
{

intermediateSave
{

type writeRegisteredObject;
functionObjectLibs ("libIOFunctionObjects.so");
outputControl timeStep;
outputInterval 10;
objectNames
(

U
);

}
}

Listing 6.11: Example of use of the function writeRegisteredObject.

130 6 The Backward Step

4. sets
This function is similar to run the block sets of the sample. The advantage of
using it as a function is to output data for time steps that are not stored due to
the output parameters of the controlDict. The entries of this functions are :

type : sets
functionObjectLibs : "libsampling.so"
setFormat : xmgr, jplot, gnuplot or raw
interpolationSchemes : cell, cellPoint or cellPointFace ([op-
tional] default value cell)
fields : list of fields to be sampled
sets : list of sets to sample
The available types are uniform, face, midPoint, midPointAndFace,
curve and cloud.

The listing below shows an example of use for this function.

functions
{

setsTosample
{

type sets;
functionObjectLibs ("libsampling.so");
outputControl timeStep;
outputInterval 10;

setFormat raw;
interpolationScheme cell;
fields (p U);
sets
(

line1
{

type midPoint;
axis distance;
start (0.05 0.0 0.005);
end (0.05 0.1 0.005);

}
);

}
}

Listing 6.12: Example of use for the function sets.

6.3 OpenFOAM® 131

Exercises

6.1 Set up the case :

1. Write blockMeshDict7 and generate the mesh
2. Fulfill the controlDict: set endTime to reach the steady state and deltaT to have

a Courant number around 0.8
3. Set the boundary conditions for the velocity and the pressure (at the inlet fixed the

value of the velocity to an arbitrary constant).
4. Set the different dictionaries in the constant folder. N.B. : nu has to be set to

obtain ReH = UcH/ν = 5540 where H is the height of the step and Uc, the maximal
velocity at the inlet.

5. Use setDiscreteFields to set the velocity, U, the turbulent kinetic energy, k and
its dissipation rate, epsilon.

6. Run the tool setDiscreteFields

6.2 Prepare the post-processing :

1. Calculate the average of the velocity and turbulent kinetic energy using a function
defined in controlDict.

2. Write sampleDict to be able to compare the average velocity and the average tur-
bulent kinetic energy of the simulation with the experimental data (files : kasagiEx-
pUMean.txt and kasagiExpURMS.txt8 [6]). The comparison has to be done for 3 axial
positions where experimental data are available (see below for the axial positions).
The experimental data are non-dimensional by using H for the lengths and Uc for
the velocities.

6.3 Run the case with the three different turbulence models described in the text : k − ϵ,
RNGk − ϵ and k − ω.

The ω boundary conditions are not defined. To do so,
Copy 0/epsilon and change each espilon by omega; even in the name of the
boundary conditions.
To set the inlet boundary condition, first define it as a fixed value boundary with the
value equal to zero.
Add an entry to setDiscreteFieldsDict to set the profile of omega at the inlet.
As no experimental data are provided for omega use the relation described previ-
ously to evaluate it.
Set the parameters for solving omega in fvSolution as well as the numerical
schemes in fvSchemes. Hint: take inspiration from the parameters used for epsilon.

6.4 For one model, check the position of the cells close to the wall with the tool yPlusRAS.
This can’t be done a priori because y+ needs the value of the velocity and the turbulent
variables to be computed.

6.5 How long does the simulation take to reach a steady state for k and for U? For that use
the script scriptsResiduals.

6.6 Compare the mean velocity and turbulent kinetic energy profiles with the experimental
data for 3 positions x = 1m, 3m and 5m. Remark: Using the URMS of the experiment
you should be able to reconstruct the turbulent kinetic energy.

6.7 How does the recirculation zone change using the three different methods?

7 The geometry is shown in the figure (6.1)
8 URMS = U Root Mean Square = (u’, v’, w’)

132 6 The Backward Step

6.8 Which model achieves the best performance for this case? How could you improve the
results

6.4 Extra Practice and Background Information 133

6.4 Extra Practice and Background Information

The vertical wall is now heated to a constant temperature of 800K. To take into ac-
count the density variation due to the temperature, the compressible version of the
solver is required. To run a compressible simulation a thermo-physical model has
to be specified through the definition of a thermophysicalProperties file in
the constant directory. A thermophysical model is constructed in OpenFOAM®

as a pressure-temperature p−T system, from which other properties are computed.
There is one compulsory dictionary entry called thermoType which specifies the
complete thermophysical model that is used in the simulation. The thermophys-
ical modeling starts with a layer that defines the basic equation of state and then
adds more layers of modeling that derive properties from the previous layers. The
naming of the thermoType reflects these multiple layers of modeling as listed in
[5] Table 7.1 . The basic thermophysical properties are specified for each species
from input data. The data is specified using a compound entry with the following
format for a specie accessed through the keyword mixture:
mixture <specieCoeffs> <thermoCoeffs> <transportCoeffs>
An example of entry for the thermophysicalProperties can be seen in Listing
6.13. All the possible entries are listed in [5], Chapter 7.

// *** //
thermoType hPsiThermo<pureMixture<sutherlandTransport<specieThermo

<hConstThermo<perfectGas>>>>>;

mixture
{

specie
{

nMoles 1; // number of moles
molWeight 28.9; // Molecular weight

}
thermodynamics
{

Cp 1007; // Heat capacity
Hf 0; // Heat formation

}
transport
{ // Sutherland law coefficients

As 1.4792e-06;
Ts 116;

}
// *** //

Listing 6.13: thermophysicalProperties

Mapping

The mapFields utility maps one or more fields related to a given geometry onto
the corresponding fields for another geometry within the time directory specified
by startFrom/startTime in the controlDict of the target case, reading the
data from the equivalent time directory of the source case. If the geometry and the
boundary conditions are identical the fields are consistent, and the mapping

134 6 The Backward Step

operation is performed by typing in the target directory
mapFields <source dir> -consistent

When the fields are not consistent, a mapFieldsDict is required. The mapFieldsDict
dictionary contain two lists that specify mapping of patch data (an example can be
found in [5], Chapter 5):

patchMap specifies mapping of data between pairs of source and target patches
that are geometrically coincident;
cuttingPatches contains names of target patches whose values are to be
mapped from the source internal field through which the target patch cuts.

If one or both of the source and target cases are decomposed for running in parallel,
additional options must be supplied when executing mapFields:

parallelSource: if the source case is decomposed
parallelTarget: if the target case is decomposed

Exercises
6.1 Use the final solution of the incompressible case as start solution for the compressible

one;

6.2 Run the case with the three turbulence models;

6.3 How long did it take to reach a steady state for k and for U?

6.4 Compare the numerical solutions. Which turbulence model has the best performance?

6.5 How does the stagnation point change in presence of the heated wall?

6.6 Which model did achieve the best performance for this case?

Chapter

7 Combustion

136 7 Combustion

7.1 Todays problem

Figure 7.1: Sketch of an internal combustion engine with prechamber

Today we take a look at the processes taking place in an internal combustion en-
gine. The engine under consideration is natural gas (largely composed of methane,
CH4) driven and used for medium-scale power production. In order to reduce NOx

emissions, the combustion chamber of such an engine is separated into a precham-
ber and a main chamber (see Fig. 7.1). The gas in the main chamber is very lean and
thus burns with a minimum of emissions. However, to ensure a stable ignition, the
mixture in the prechamber is richer. After ignition in the prechamber, flame streaks
will shoot into the main chamber and ignite the gas there.

We want to simulate the combustion process inside prechamber and main chamber.
In order to handle this problem with a minimum of numerical capacities, we will
have to make several simplifications:

We do the simulation in 2D, not 3D
on a relatively coarse grid.
We use a very simple combustion model (the "Schmid Model").
We also ignore the different stoichiometry in prechamber and main chamber.
We assume the geometry to be fixed, i.e. the piston is not moving.

All these simplifications are done because we want to focus on the usage of OpenFOAM®,
not on the exact description of the physics happening in such a complex process.

Bibliography

[1] http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf
OpenFOAM® Users Guide, Version 1.6, 24th July 2009

[2] http://foam.sourceforge.net/doc/Guides-a4/ProgrammersGuide.pdf
OpenFOAM® Programmers Guide, Version 1.6, 24th July 2009

7.2 Physics 137

[3] S.R. Turns: An Introduction to Combustion, McGraw-Hill, 2nd edition, 2000
[4] A. Eder et al.: Investigation of the Transient Flame Development Using a Com-

bination of Advanced Optical Measurement Techniques, 8th International Sym-
posium on Flow Visualisation, 1998

[5] H.-P. Schmid et al.: A Model for Calculating Heat Release in Premixed Turbu-
lent Flames, Combustion and Flame 113, 1998

7.2 Physics

7.2.1 Combustion fundamentals

So far, the flow problems we solved were all dealing with inert flows. Now, we
have to deal with a flow whose composition changes during the run, i.e. not only
the fluid properties change but also chemical energy is converted to heat.

Consider the energy equation

ρ
∂h

∂t
+ ρv⃗ ·∇h+∇⃗̇q = Dp

Dt
(7.1)

The specific enthalpy h of one species can be written as the sum of the enthalpy
of formation hf and the sensible enthalpy hs. In perfect gases, enthalpy does not
depend on pressure. hf represents the enthalpy that is stored in the chemical bonds
at some reference state (e.g. a temperature of 298K), hs is the enthalpy due to the
deviation from the reference state (e.g. due to a higher temperature):

h(T) = hf + hs(T) = hf +

T∫
Tref

cp(T
′)dT ′ (7.2)

The specific enthalpy h of a gas mixture consisting of N different species is defined
as

h(T) =
N∑
i=1

yi

hf,i + T∫
Tref

cp,i(T
′)dT ′

 (7.3)

where yi denotes the mass fraction of the respective species:

yi =
mass of species i in the mixture

mass of the mixture

[
kg

kg

]
(7.4)

The mass fractions of all species must always sum up to unity:

N∑
i=1

yi = 1 (7.5)

The absolute value of the enthalpy of formation does not matter. What is impor-
tant is the relative change in a chemical reaction. Consider for example the simple
reaction

2H2 +O2 → 2H2O (7.6)

For convenience, the enthalpy of formation of H2 and O2 can be set to zero. Then,
the enthalpy of formation of H2O can be quantified to −241 845 kJ/kmol. If we

138 7 Combustion

assume that the reaction takes place under isobaric conditions in an adiabatic re-
actor (H=constant), we can compute the temperature after the reaction. We use
molar quantities (indicated by a the subscript m) instead of specific quantities, so
that we can derive the enthalpy balance directly from Eqn. 7.6. For simplicity, let
us assume that the initial temperature equals the reference temperature and that
cp,m,H2O = 50 kJ/kmolK=constant. This renders the enthalpy of the reactants to
exactly zero. From the condition H=constant we get:

Hreact = Hprod (7.7)

1 ·hm,H2 +
1

2
·hm,O2 = 1 ·hm,H2O (7.8)

0 + 0 = hf,m,H2O + cp,m,H2O · (T − Tref) (7.9)

T = Tref −
hf,m,H2O

cp,m,H2O
= 298K− −241 845 kJ/kmol

50 kJ/kmol−K
= 5135K (7.10)

We see that the change of the chemical composition of the mixture leads to a huge
temperature rise. Of course, the temperature changes we usually encounter in tech-
nical systems are much lower because there is a lot of non-reacting gas to be heated
as well (e.g. nitrogen or excess oxygen), heat losses to the surrounding have to
be taken into account and the heat capacity is very sensible to the temperature for
non-diatomic molecules.

Another convenient way to express the heat generated in a combustion process is
the heating value hu. From Eq. 7.6 and the knowledge of all enthalpies of forma-
tion we can conclude that the conversion of 1 kmol of hydrogen releases a chemical
energy of 241 845 kJ:

hu,m,H2 = 241 845 kJ/kmol or, based on mass (7.11)

hu,H2 =
hu,m,H2

MH2
=

241 845 kJ/kmol

2,016 kg/kmol
= 119 963 kJ/kg (7.12)

However, the open question is: how fast does a gas burn? Actually, the combustion
of hydrogen does not work the way described in Eqn. 7.6, but a variety of different
elementary reactions occur and produce a chain reaction. We do not look at the
elementary reactions here, but we know from experience that if the gas (fuel and
oxidant) is perfectly premixed, this results in a constant burning velocity in laminar
flow: the laminar flame speed sL. Typical flame speeds for stoichiometric mixtures
are listed in Table 7.1.

Methane CH4 0,40m/s

Acetylene C2H2 1,36m/s

Hydrogen H2 2,10m/s

Table 7.1: Laminar flame speeds in air; stoichiometric mixtures at standard pres-
sure; taken from Turns[3]

7.2 Physics 139

7.2.2 Turbulent Combustion

Actually, the flame velocity observed in technical systems is usually much higher.
The reason is the turbulence. In turbulent flow, the heat and mass exchange over
a flame front can be many times higher than in laminar flow. Imagine a laminar
flame front as a very thin, but finite layer, moving at a certain velocity and turning
fuel+oxidizer into products. If this flame "sheet" is subject to a moderately turbu-
lent flow field, the turbulent flow will wrinkle the flame and thereby increase its
surface. If we assume, that in every point on the flame surface, the flame proceeds
at laminar flame speed into the direction perpendicular to the flame surface, it is
obvious that the net fuel consumption rate will increase, the more the surface in-
creases. There is a direct dependence between turbulent intensity (quantified by
the turbulent velocity fluctuation u′) and turbulent flame speed sT which is often
modeled by the following approach:

sT = sL · (1 + f(u′)) (7.13)

If turbulence continues to increase, the flame surface begins to break apart so that
distributed reaction zones appear. Finally, in highly turbulent flows the flame can
no longer be described as a surface, but rather as a perfectly stirred reactor, as tur-
bulent eddies quickly level out all inhomogeneities in the flow.

A good way of classifying the nature of premixed-flames encountered in turbulent
flow is the so-called Borghi diagram, depicted in Fig. 7.2. Based on the turbulent
quantities u′ and L and the chemical quantities sL and δL the flame regime can be
found in the diagram.

Figure 7.2: Borghi Diagram [4]

140 7 Combustion

7.3 Numerics

Resolving the turbulent scales that are present in technical systems is out of ques-
tion (and still will be for several decades, if computing power continues to increase
at the pace it did in the past). Therefore, we have to do simulation with a RANS ap-
proach, using simple two-equations turbulence models like the k− ε or k− ω−SST
model.

In order to model the interaction between turbulent flow and laminar chemistry,
there are a nearly infinite number of combustion models, varying from very simple
to very sophisticated models. Many of them are adapted to a specific flame regime
(e.g. flamelets, well-stirred flames) or even to specific applications. A very simple
turbulent combustion model was presented by Schmid et al. in 1998 [5] ("Schmid
model"). The authors claim it to be valid for nearly the whole Borghi diagram.

In order to model a reacting flow (like a burner or an engine), in addition to the
Reynolds-Averaged Navier-Stokes equations, an equation has to be solved for the
mass fraction conservation of each species needed by the chemical reactions. If Yk
is the mass fraction of the material k, the transport equation is:

∂(ρYk)

∂t
+∇(ρu⃗Yk) +∇ (αeff∇ρYk) = ω̇k

where ω̇k is a source term depending on the chemical reaction. For example, to
solved the reaction (7.6), three additional equations have to be solved for YH2, YO2

and YH2O.

The Schmid model has an interesting hypothesis: the advancement of the reaction
(7.6) can be evaluated using a so-called reaction progress variable c with 0 ≤ c ≤
1, where c = 1 means completely burnt, c = 0 means completely unburnt gas.
Consequently the temperature and the composition of the flow can then be derived
from the local value of c. And only one more transport equation has to be solved: a
transport equation for a reaction progress variable.

The link between the reaction progress variable, the composition and the tempera-
ture will be now explain. For premixed flames, the flow is composed of two mix-
tures : the reactants (e.g. H2 and O2) and the products (e.g. H2O). The progress
variable can be seen has the state of the real mixture between those two known
states. Furthermore, remembering that

∑
k Yk = 1:

Yreactants = 1− c (7.14)
Yproducts = c (7.15)

Consequently all the thermodynamical properties, xmixture can be computed from
the values of those properties for the reactants and the products:

xmixture =
(1− c)

Wreactant
xreactants +

c

Wproducts
xproducts (7.16)

where Wi is the molecular weight of the mixture i.

The change in temperature is a bit more subtle. Indeed the energy equation solved
for reacting flow is the total enthalpy conservation; equation (7.1). In this equation,

7.3 Numerics 141

there is no source term. So the increase of temperature is not due to that equation
but due to the change in composition. If we consider the hydrogen combustion, the
hydrogen and the oxygen burn to produce steam water that has a heat formation
lower. Consequently as the total enthalpy is constant, the decrease in heat forma-
tion is compensated by the increase in sensible enthalpy, hs. And so an growth in
temperature; equation (7.2).

We end up with the following equations to solve for a compressible flow:

mass:
∂ρ

∂t
+∇(ρ · u⃗) = 0 (7.17)

momentum:
∂(ρv⃗)

∂t
+∇(ρu⃗v⃗)−∇ (µeff∇v⃗) = −∇p (7.18)

energy (total enthalpy):
∂(ρh)

∂t
+∇(ρu⃗h)−∇ (αeff∇T) =

Dp

Dt
(7.19)

equation of state: p = ρrT (7.20)

reaction progress:
∂(ρc)

∂t
+∇(ρu⃗c)−∇ (αeff∇c) = ω̇c (7.21)

turbulence: e.g. k-ε-model (2 equations) (7.22)

Schmid et al. formulate the source term for the reaction progress, ω̇c, with the
following relation:

ω̇c = 4,96 ·
ε

k
·

(
sL√
2/3k

+ (1 + Da−2)−1/4

)2

· c · (1− c) · ρ0 · yfuel (7.23)

ρ0 is the density of the unburnt gas and yfuel is the mass fraction of fuel in the gas
mixture. The dimensionless number Da (Damköhler number) indicates the com-
bustion regime. It is defined as the ratio of the integral turbulent time scale tT and
the chemical time scale tC . tT depends only on the flow and tC only on the gas
mixture:

Da = tT /tC (7.24)
tT = k/ε (7.25)
tC = ν0/s

2
L (7.26)

A high Damköhler number corresponds to low turbulence, e.g. a mildly wrinkled
flame, and a low turbulent flame speed. A low Damköhler number means high
turbulence, consequently a high burning velocity. The Damköhler number can also
be found in the Borghi diagram in Fig. 7.2. Eqn. 7.23 blends smoothly between
high and low values of the source term ω̇C (that means between a high and low
turbulent flame speed).

As mentioned previously, the heat release is due to the water formation. And in
this case it can be explicitly computed thanks to:

q̇C = ω̇C · yfuel ·hu (7.27)

The value of the heat release is interesting because it’s a good way to visualize
where is the flame (= where the heat is released).

142 7 Combustion

7.4 OpenFOAM®

7.4.1 Preparing the solver files

We would like to design a solver to solve the problem described in section 7.1 using
the Schmid model. It would be very laborious to start programming a solver from
scratch. So we better look for a solver which comes very close to our desired solver
so that we have to implement as few additional code as possible. The OpenFOAM®

solver rhoPimpleFoam can serve as such a starting point. It solves Eqns. 7.17-7.19
and the turbulence equations for a compressible flow.

Before you start working on your own solver, you should have a thorough look at
the source code of rhoPimpleFoam, i.e. at what it does. For example, locate the lines
in the code where the equations just mentioned are solved. You might also want to
run the tutorial located in
$FOAM_TUTORIALS/compressible/rhoPimpleFoam/ras/cavity

(copy it to your local directory before you run it).

To get started, copy the rhoPimpleFoam solver files to your local solver directory.
Then rename the folder (e.g. to SchmidFoam) and the C++ file (e.g. to SchmidFoam.C).
Then change the Make/files file

SchmidFoam.C
EXE = $(FOAM_USER_APPBIN)/SchmidFoam

Now you can compile the solver for the first time - it should work without prob-
lems, as the code was not changed from rhoPimpleFoam
You can now also run the cavity tutorial mentioned above with SchmidFoam which
should make no difference to running it with rhoPimpleFoam.

7.4.2 Exploring the case setup

Property files

Before we start working on the solver, let’s explore some of the files given in today’s
engine case (we recommend to work on a copy of the original files).

constant/turbulenceProperties: RASModel is selected.
constant/RASProperties: kEpsilon
constant/thermophysicalProperties:
thermoType
hPsiMixtureThermo<homogeneousMixture<sutherlandTransport
<specieThermo<janafThermo<perfectGas>>>>>;
Let’s analyze this starting from right:

– perfectGas: The perfect gas equation p = ρrT is used as equation of state
– janafThermo: cp is changing with the temperature according a polynomial

law1.

1 Two sets of coefficients are provided: one for the lower range of temperature and one for the high
temperature.

7.4 OpenFOAM® 143

– specieThermo: A class template that provides function for cp, hs etc.
– sutherlandTransport: The molecular transport properties (k, µ,D) are

assumed are function of the temperature.
– homogeneousMixture: A class template if you want to derive material

properties via a mixing law (7.16) from two species (reactants and products).
– hPsiMixtureThermo: T is derived from h (not the other way round) and

the mixture is pressure based (ρ is computed from p and psi= p/ρ =
1/(rT))

Hint: A easy way to check which properties are available you can misspell the thermo-
Type and start the solver. OpenFOAM® will come up with an error message and a list
of all possible settings.

products
{

specie
{

nMol 1;
molWeight 28.2176;

}
thermodynamics
{

Tlow 200.0;
Thigh 5000.0;
Tcommon 1000.0;
highCpCoeffs (3.0547E+00 1.6364E-03 -5.8903E-07 1.0131E-10

-6.6422E-15 -6.1931E+03 5.4434E+00);
lowCpCoeffs (3.2481E+00 2.005E-03 -4.1765E-06 5.3968E-09

-2.2766E-12 -6.2449E+03 4.3344E+00);
}
transport
{

As 1.6721e-6;
Ts 170.672;

}
}

We use a mixture that has two components. The typical structure for a material
will be described using products as example. The first sub-dictionary specifies
species parameters: nMol, the number of moles and molWeight, the molecu-
lar weight. Then come the thermodynamics properties. If the Janaf model is
chosen, five entries must be given:

– Tlow: the low bound of the temperature
– Thigh: the high bound of the temperature
– Tcommon: the temperature threshold to switch between the two sets of co-

efficients
– highCpCoeffs: the 7 polynom coefficients for the high temperature range
– lowCpCoeffs: the 7 polynom coefficients for the low temperature range

Finally the parameters of the transport model are written. As and Ts, are used
by the Sutherland law:

µ = As

√
T

1 + Ts/T

144 7 Combustion

Mesh definition

Figure 7.3: The geometry in paraFoam

In order to save computational time, we want to set up the 3D combustion problem
in the engine as a 2D case with rotational symmetry. This means that we cannot
model the small holes in the wall of the prechamber (see Fig.7.1). Instead, we de-
fine a slit running around the whole circumference of the prechamber. We define
the geometry as a wedge with an opening angle of approximately 5 degrees. If we
set it up in blockMeshDict as a block structured mesh we would have to define a
large number of vertices and blocks. Take a look at the 2D view of the wedge geom-
etry in Fig. 7.3 and try to draw the blocks in it - you should end up with at least 9
blocks. Fortunately, there is a much more convenient way to set up such a mesh in
OpenFOAM® without using a graphical meshing tool. We set up the full wedge ig-
noring the walls of the prechamber and deactivate the cells located at the precham-
ber walls afterwards. In this case we have to define only 6 vertices and 1 block.
(The definition of a wedge is also described in the OpenFOAM® User Guide [1],
section 5.3.3.) The first entries in constant/polyMesh/blockMeshDict should
be in the following way:

convertToMeters 0.001;

vertices
(

(0 -30 0)
(32 -30 -1.5)
(32 0 -1.5)
(0 0 0)
(32 -30 1.5)
(32 0 1.5)

);

blocks
(

hex (0 1 2 3 0 4 5 3) (64 60 1) simpleGrading (1 1 1)
);

7.4 OpenFOAM® 145

edges
(
);

This results in a mesh grading of 0.5mm. The boundary patches should be defined
the following way:

boundary
(

wand
{

type wall;
faces
(

(1 2 5 4)
(0 1 4 0)
(3 5 2 3)

);
}

wedge1
{

type wedge;
faces
(

(0 4 5 3)
);

}

wedge2
{

type wedge;
faces
(

(1 0 3 2)
)

}
);

You can run blockMesh and get a wedge mesh. In order to cut out the cells that
form the prechamber walls, we use the setSet and the subSetMesh utilities. In
the file prechamber.setSet the respective cells are defined:

an empty cellSet named "newWall" is defined
cellSet newWall new
it is inverted. So now it contains all cells of the mesh
cellSet newWall invert

the cells within the following boxes are deleted form the set:
cellSet newWall delete boxToCell (0.000 -0.017 -1) (0.013 -0.016 1)
cellSet newWall delete boxToCell (0.012 -0.017 -1) (0.013 -0.012 1)
cellSet newWall delete boxToCell (0.012 -0.011 -1) (0.013 0.000 1)

N.B. : A box is defined by the two corners of one box diagonal.

We can run setSet to create a set of cells that contains all cells but the ones that
form the prechamber walls:

146 7 Combustion

setSet -batch prechamber.setSet

Here the actions to be done are stored in a file. Consequently you have to use the
option batch to specify the file. Another possibility is to type only setSet to enter
in console mode.

We then reduce the mesh to this cell set by using the subSetMesh utility. All cell
faces that are now turned into an exterior face (because they are now touching the
prechamber walls) are added to the patch named wand.

subsetMesh newWall -patch wand -overwrite

Start paraFoam, choose Display → Style/Representation → Surface With Edges. Your
mesh should look like in Fig. 7.4.

Figure 7.4: The mesh in paraFoam

7.4 OpenFOAM® 147

7.4.3 Implementing the Schmid Model

Incorporating changes in the existing solver structure

Now that the geometry is set, the solver can be created. If we look at the solver in
its current state we have to make 4 modifications:

1. We have to include the transport equation for reaction progress.
That part is a little bit tricky in OpenFOAM® because it isn’t the progress vari-
able that have to be used but the regression variable, b = 1− c

2. Therefore, we need to calculate the source term ω̇C in every time step (and we
will computed also q̇c)

3. Therefore, we need to know some more fluid properties: hu, sL and yfuel of the
gas mixture (constant in the whole domain)

4. We have to create fields for new quantities that are not constant in the whole
domain (b, ω̇C , q̇C , Da)

In order to keep the solver well-readable, we do this by putting the additional code
for the first 3 items into header files that are called in SchmidFoam.C (the 4th task is
done by adding some code to createFields.H). Let’s copy in our SchmidFoam
solver directory the 3 files: readChemistryProperties.H, burn.H and bEqn.H.
Include them in SchmidFoam.C at the correct position (indicated by comments).
And change the thermodynamical class from basicPsiThermo.H to hCombustionThermo.H
because now reactions take place inside the flow:

#include "fvCFD.H"
//#include "basicPsiThermo.H" // Comment this line
#include "hCombustionThermo.H" // Add this line
#include "turbulenceModel.H"
#include "bound.H"
#include "pimpleControl.H"

// * //

int main(int argc, char *argv[])
{

#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
// read values for hu, sL and yfuel
#include "readChemistryProperties.H" // HERE
#include "createFields.H"
#include "initContinuityErrs.H"

pimpleControl pimple(mesh);

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())
{

#include "readTimeControls.H"
#include "compressibleCourantNo.H"
#include "setDeltaT.H"

runTime++;

148 7 Combustion

Info<< "Time = " << runTime.timeName() << nl << endl;
// compute source terms before solving the transport equations

#include "burn.H" // HERE
#include "rhoEqn.H"

// --- Pressure-velocity PIMPLE corrector loop
for (pimple.start(); pimple.loop(); pimple++)
{

if (pimple.nOuterCorr() != 1)
{

p.storePrevIter();
rho.storePrevIter();

}
// solve first the reaction progress equation

#include "bEqn.H" // HERE
#include "UEqn.H"
#include "hEqn.H"

// --- PISO loop
for (int corr=0; corr<pimple.nCorr(); corr++)
{

#include "pEqn.H"
}

if (pimple.turbCorr())
{

turbulence->correct();
}

}

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

}

Info<< "End\n" << endl;

return 0;

Listing 7.1: fig:schmidFoamC

As a new class is used for the thermodynamics, new entries has to be specified in
Make/options to let the compiler know where are the header file and the library.
So you need to add in the first section after the entry for thermophysicalModels/basic:

-I$(LIB_SRC)/thermophysicalModels/reactionThermo/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \

And in the second section after -lbasicThermophysicalModels:

-lreactionThermophysicalModels \

We will start doing the 4 modifications mentioned above by defining the
readChemistryProperties.H file.
Remark : each time there is a series of ?, that implies that an element is missing.

7.4 OpenFOAM® 149

readChemistryProperties.H: Reading the combustion properties from a
dictionary

Instead of fixing the fluid properties hu, sL and yfuel at solver level, we read them
from a dictionary called chemistryProperties in the constant folder. This
allows the user to modify them for any run without having to recompile the solver.

The skeleton readChemistryProperties.H is :

Info << "????????????" << nl << endl; // Change it

IOdictionary chemistryProperties
(

IOobject
(

"????", // name of the dictionary
runTime.constant(), // folder where to find the file
mesh,
????, // reading option : IOobject::MUST_READ or

// IOobject::READ_IF_PRESENT or IOobject::NO_READ
????, // writing option : IOobject::NO_WRITE or

// IOobject::AUTO_WRITE
false

)
);

// fuel mass fraction, yFuel :
????? // constant scalar with dimension in chemistryProperties
// heating value, hu :
????? // constant scalar with dimension in chemistryProperties
// laminar burning velocity, sL :
????? // constant scalar with dimension in chemistryProperties
// convenient for switching off the reaction for debugging purposes
const Switch combustion(chemistryProperties.lookup("combustion"));

// Maximal heat released if all the fuel burnt
dimensionedScalar q=yFuel*hu;
// If the combustion is turn off the
if(! combustion) {q *= 0.0;}

The solver will look for a file chemistryProperties where the quantities can be read
from. The heat added to the gas if it burns completely is not hu but q = yfuel ·hu
as only the mass fraction yfuel releases heat. We also add a switch with the name
"combustion". Using this switch, the user can decide at run time if he wants to do
a simulation with or without combustion. A switch in OpenFOAM® is comparable
to a boolean variable and can have the values on or off where on corresponds to
the boolean value true.

Go back to our case and check that there is a file called constant/chemistryProperties
where the three parameters and the combustion switch are defined. The values there
are for a lean methane/air mixture. The elevated laminar burning velocity (com-
pared to table 7.1) is due to a higher initial pressure. Make sure that the combustion
switch is turned on.

Next, we will create the additional fields.

150 7 Combustion

createFields.H: Creating the required fields

Go back to the solver directory. We need fields for b, ω̇C , q̇C and Da - the quantities
that are not constant inside the domain. b and Da are dimensionless, ω̇C has the
unit kg/m3s, q̇C has the unit W/m3.

But first the class to manage the thermodynamic has to be changed. Update the
begin of createFields.H like that:

/* Old code
autoPtr<basicPsiThermo> pThermo
(

basicPsiThermo::New(mesh)
);
basicPsiThermo& thermo = pThermo();

*/

autoPtr<hCombustionThermo> pThermo
(

hCombustionThermo::New(mesh)
);
hCombustionThermo& thermo = pThermo();

We add the following lines at the end of createFields.H:

// Get the regression variable field from the thermodynamics object
volScalarField& b = thermo.composition().Y("b");

volScalarField omegaC
(

IOobject
(

????? // This field isn’t read and has to be written with the other fields.
),
mesh,

// set the initial value and the dimension of the field:
dimensionedScalar("zero", dimMass/dimVolume/dimTime, 0.0)

);
omegaC.write();

volScalarField dQ
(

IOobject
(

?????? // This field isn’t read and has to be written with the other fields.
),
mesh,
dimensionedScalar("zero", dimEnergy/dimVolume/dimTime, 0.0)

);
dQ.write();

volScalarField Da
(

IOobject
(

?????? // This field isn’t read and has to be written with the other fields.
),
mesh,

7.4 OpenFOAM® 151

dimensionedScalar("zero", dimless, 0.0)
);
Da.write();

The write() command is used to save the values at the beginning of the run.
They are still zero as they have not been computed yet. However, saving them is
convenient for postprocessing routines - otherwise the fields will not be present in
the 0 directory. Compile the solver to check for errors.

burn.H: Computing the source terms in each timestep

In each timestep we have to recompute the values for ω̇C and q̇C . This is done in
the newly created file burn.H. In order to calculate ω̇C according to Eqn. 7.23 we
first compute the Damköhler number according to Eqns. 7.24 to 7.26. Therefore,
we need to know two more quantities: density ρ0 and kinematic viscosity ν0 of
the unburnt mixture. They need to be computed only once, at the beginning of
the run. Therefore, we can add the necessary lines (for example) at the end of
createFields.H:

dimensionedScalar rho0 = max(rho);
dimensionedScalar nu0 = min(thermo.mu())/rho0;

The maximum and minimum values are used in case that the ignition area in the
domain is patched with a higher temperature than the unburnt mixture.

With these values, we can compute the Damköhler number. For ω̇C we still need
the turbulent quantities k and ε. They cannot be accessed directly, as they are
private objects of the turbulence class. However, this class offers public member
functions that return the respective fields. turbulence is defined as a pointer in
createFields.H:

autoPtr<compressible::turbulenceModel> turbulence

So we get k and ε by invoking the respective member function using the dereference
operator -> on the pointer. The file burn.H should get the following entries:

if(combustion)
{

Da = ??????;
omegaC = 4.96*turbulence->epsilon()/turbulence->k()

*pow(sL/pow(2.0/3.0*turbulence->k(),0.5)
+pow(1.0+pow(Da,-2),-0.25),2)

b(1.0-b)*rho0*yFuel;
}
else
{

omegaC *= 0.0;
}

dQ = ?????;

You have to specified the expression of the heat release dQ and Da:

Da =
s2L
ν0

k

ϵ

152 7 Combustion

The combustion switch defined in readChemistryProperties.H can be used
here: If the user sets it to "false", the source term will always be zero.

Now that we know ω̇C , we still have to include the regression variable transport
equation into the solver.

bEqn.H: Regression variable transport equation

We can use the enthalpy transport equation as a template for the reaction progress
transport equation:

cp hEqn.H bEqn.H

Compare Eqns. 7.19 and 7.21 to make the appropriate changes to bEqn.H:

{
solve
(
fvm::ddt(rho, b)

+ fvm::div(phi, b)
- fvm::laplacian(turbulence->alphaEff(), b)
==
???????
);
b.max(0.0);
b.min(1.0);

}

The latter two lines limit b to stay between 0 and 1. The min and max function
might be a bit confusing. b.max(0.0) actually means: go through all values of b,
and replace them with the maximum value of b and 0.0.

Now our solver is complete and we can compile it.

7.4.4 Running the case
You can go to the engine directory and run the case using the SchmidFoam solver.
Before, we still need to model the ignition of the gas by patching a part of the
domain with a value b < 1. For that the tool setFields will be used. It requires
a dictionary called system/setFieldsDict that is provided. In this case the
dictionary is presented in the listing below.

defaultFieldValues
(

volScalarFieldValue b 1.0
);

regions
(

boxToCell
{

box (0.0 -0.006 -1) (0.004 0.0 1);

fieldValues
(

7.4 OpenFOAM® 153

volScalarFieldValue b 0.99
);

}
);

Listing 7.2: Extract of setFieldsDict.

The defaultFieldValues sets the default value of the fields, i.e. the value the
field takes unless specified otherwise in the regions sub-dictionary. That sub-
dictionary contains a list of subdictionaries containing fieldValues that override
the defaults in a specified region. The region is expressed in terms of a topoSetSource
that creates a set of points, cells or faces based on some topological constraint. Here,
boxToCell creates a bounding box within a vector minimum and maximum to de-
fine the set of cells in which the combustion has started. The regression variable b
is defined as 0.99 in this region. The user should execute setFields as any other
utility is executed.

Patch the field and then run the solver by typing

setFields
SchmidFoam

The computation will take several minutes. When it is finished, have a look at the
case in paraFoam. Visualize the reaction progress (use the play button to see how
it develops over time). You will realize that the reaction progress proceeds in a
very unrealistic way. The gas burns fastest along the wall and at some spots starts
to burn even before it is reached by the actual flame (cf. Fig. 7.5).

This is a known problem of the Schmid model. It overpredicts the reaction next
to a wall. Have a look at Eq. 7.23. Next to a wall, k is necessarily very low while
ε is very high. This leads to a very high reaction rate. We will try to remedy this
problem in the Extra Practice section.

Figure 7.5: Reaction progress in the engine after 0.1 s.

154 7 Combustion

7.5 Extra Practice and Background Information

Extra Practice

Reducing the source term next to walls

Hint: For frequent rerunning of the case as it will be required in the Extra Practice section
there is a script called Allrun in the case directory. You can use this script to redo all the
things required to start the case again from the beginning.

As noted above, we will try to find a way to remove the over-prediction of the
reaction rate next to the engine walls. We realized that one part of the problem is
the high value of ε/k next to walls. However, from Eq. 7.23 it should be clear that
ω̇C can only be different from zero if c is different from zero.

The problem is that next to the walls a high value for ε/k can be sufficient to start
the reaction. A simple "quick and dirty" solution to suppress this is to switch the
reaction off in each cells close to the wall.

We can uncomment the following lines in burn.H (after the computation of ω̇C):

forAll(mesh.boundary(), patchi) // loop over the patches
{

// test if the patch is a wall
if(Foam::isType<Foam::wallFvPatch>(mesh.boundary()[patchi]))
{// loop on the faces of the patch

forAll(mesh.boundary()[patchi], facei)
{

// get the index of the cell limited by the facei
label faceCelli = mesh.boundary()[patchi].faceCells()[facei];

omegaC[faceCelli] = 0.0;
}
// set the value of omegaC to zero on the wall
omegaC.boundaryField()[patchi] = 0.0;

}
}

And in SchmidFoam.H, a new header file has to be add before the function main:

#include "wallFvPatch.H"

This will result in a more realistic flame propagation, but not solve the problem
completely. Compile the modified solver and run the case again.

Think of other possible ways of suppressing the excess source term next to the
walls.

Refining the mesh

You might already have realized that the connecting hole between prechamber and
main chamber is discretized with only two cells in y direction. This is not advisable
for a good CFD simulation. Of course we could define a finer mesh grading in
blockMeshDict. However, doubling the cell number in each direction leads to

7.5 Extra Practice and Background Information 155

a huge increase in computational time. It would be much nicer to refine the mesh
only where necessary.

This can be done using the refineMesh utility. For this utility, we have to define
the region in the mesh where refining should take place and the directions of re-
fining (e.g. in our 2D case it is sufficient to refine only in the x and y directions).
The refineMesh utility will then double the number of vertices in the respective
directions within this mesh region. In the system directory of our case you will
find a file called cellSetDict. It is used to define a cell set consisting of regular
box surrounding the connection hole between prechamber and main chamber:

name toBeRefined;

action new;

topoSetSources (
boxToCell
{

box (0.010 -0.014 -0.1) (0.015 -0.009 0.1);
}

);

Listing 7.3: cellSetDict

The cell set is named toBeRefined. The second dictionary we need is
system/refineMeshDict. It should look like this:

// Cells to refine; name of cell set
set toBeRefined;

// Type of coordinate system:
// - global : coordinate system same for every cell. Usually aligned with
// x,y,z axis. Specify in globalCoeffs section below.
// - patchLocal : coordinate system different for every cell. Specify in
// patchLocalCoeffs section below.
coordinateSystem global;
//coordinateSystem patchLocal;

// .. and its coefficients. x,y in this case. (normal direction is calculated
// as tan1^tan2)
globalCoeffs
{

tan1 (1 0 0);
tan2 (0 1 0);

}

patchLocalCoeffs
{

patch outside; // Normal direction is facenormal of zero’th face of patch
tan1 (1 0 0);

}

// List of directions to refine
directions
(

tan1
tan2

156 7 Combustion

);

// Whether to use hex topology. This will
// - if patchLocal: all cells on selected patch should be hex
// - split all hexes in 2x2x2 through the middle of edges.
useHexTopology true;

// Cut purely geometric (will cut hexes through vertices) or take topology
// into account. Incompatible with useHexTopology
geometricCut false;

// Write meshes from intermediate steps
writeMesh false;

Listing 7.4: refineMeshDict

This dictionary tells the refineMesh utility to refine only the cells contained in the
set toBeRefined. The globalCoeffs tell the utility in which direction to pro-
ceed along the cell edges when cutting. Our mesh is aligned with the principal axes,
so we can use these. It is getting more complicated if you use other meshes. With
the directions option we tell the utility to define only in the x and y direction.

To execute the utility we have to invoke two commands:

cellSet
refineMesh -dict -overwrite

The dict option tells the utility not to refine the whole mesh but to use the
refineMeshDict dictionary. The overwrite option tells the utility to overwrite
the current mesh instead of saving the new mesh to a new folder. As the number of
cells in the mesh now changes, you have to do the mesh refinement before starting
the setFields utility. You can also include the commands in the Allrun script.

1. Run the case with the refined mesh. What differences do you see? How can
they be explained?

2. Why should the time step of the simulation be changed when the mesh is re-
fined?

3. You might also start on an even coarser grid in the beginning and do multi-stage
refinement. Write a script to do this.

Using a detailed chemistry

As an example of a full detailed chemistry solver, you can try the tutorial case:
$FOAM_TUTORIALS/combustion/reactingFoam/ras/counterFlowFlame2D.
To run the case, execute blockMesh and then reactingFoam. So you can quickly
try the case, look at the results and at the files required to define the case. Have es-
pecially a careful look to the constant/thermo..compressibleGas and constant/reactions
in which the thermodynamical properties and the chemical reactions are defined.

7.5 Extra Practice and Background Information 157

Background Information

7.5.1 Tools to handle the mesh

This paragraph will introduce a series of tools included with OpenFOAM® in order
to manipulate a mesh.

In the following those tools will be shortly described:

transformPoints: Transform the mesh (combination of scaling, translation
and rotation of the mesh).
rotateMesh: rotate the mesh and the vector and tensor fields.
setSet: allow to select points, faces and/or cells.
subsetMesh: select a sub part of the mesh.
refineMesh: refine locally the mesh.
createPatch: Create new patches from existing patches and/or set of faces.

The complete set of tools to manipulate a mesh is available by looking in the direc-
tory:

$FOAM_UTILITIES/mesh/manipulation

setSet

This tool allow you to select a group of points, of faces or of cells to treat them later
using an other tool. For example you could create a vent in a wall by assigning a
couple of faces to a new boundary condition.

You can use this tool interactively or by providing a script.
To run it interactively, just type setSet in a terminal positioned in the case direc-
tory. Then a short help is provided (as well as examples) by typing simply help.
By typing quit you will quit the program. And list will print a list of all current
sets. The syntax is always the same:

<sort of set> <name> <action> <source>

The sort of set available are cellSet, faceSet and pointSet. Then the
name will characterized the selected elements. The third parameter indicates the
action to carried out:

new <source>: create a new set (empty if no source is specified)
add <source>: add elements to an existing set
delete <source>: remove elements from an existing set
subset <source>: combines current set with the source set
list: prints the contents of the set
clear: clears the set
invert: inverts the set
remove: remove the set

158 7 Combustion

The source is a function (type topoSetSource) selecting from some parameters
cells, faces or points. The full list is quite long and depend of the kind of elements
you are dealing with. But the full list can be found in the source code documen-
tation in $FOAM_SRC/meshTools/sets. You used one of them when calling the
tool setFields: boxToCell. That function selects all the cells that have their
center in the specified box.

subsetMesh

This tool selects a sub-part of the current mesh specified by a cellSet to use it at
the next time step.

The command is:

subsetMesh <cellSet> [-overwrite] [-parallel] [-patch <patch name>]
[-case <dir>]

List of the options:

overwrite: overwrite the current mesh instead of creating the mesh for the
next time step.
parallel: if the case is run in parallel and so the mesh distributed.
patch <patch name>: add the new external faces to the specified patch.
case <dir>: path to the case directory.

refineMesh

This tool allow to refine partially or totally the mesh along 1, 2 or 3 directions.

The command is:

refineMesh [-dict] [-overwrite] [-parallel] [-case <dir>]

List of the options:

dict: refine only the cell specified by the dictionary system/refineMeshDict.
overwrite: overwrite the current mesh instead of creating the mesh for the
next time step.
parallel: if the case is run in parallel and so the mesh distributed.
case <dir>: path to the case directory.

An example of dictionary is presented in the listing 7.4. The required keywords
are:

set: the subset of cells that have to be refined.
coordinateSystem: global if the coordinate system is global otherwise patchLocal.
Both need additional coefficients

– globalCoeffs: list the 3 directions (name + vector)
– patchLocalCoeffs: list the patch used to determine the normal and an-

other direction.

7.5 Extra Practice and Background Information 159

directions: list of directions to refine
useHexTopology: boolean, true if the mesh is composed of hexaedra.
geometricCut: boolean, if true cut purely the geometry
writeMesh: boolean, if true write meshes from intermediate steps

transformPoints

The command is

transformPoints -translate "vector" -rotate "(vector vector)"
-scale "vector" -rotateFields

The three available options are:

1. translate: Translate the mesh according the specified vector
2. rotate: Rotate the mesh according the rotation needed to turn the first vector

in the direction of the second.
Alternatively you can use -yawPitchRoll (yawDegrees pitchDegree rollDegree)
or -rollPitchYaw (rollDegrees pitchDegrees yawDegrees) where
yaw is the rotation around the z axis, pitch around y and roll around x.
When rotating the mesh, you can make use of the option -rotateFields to
rotate the vector and tensor fields as well as the mesh.

3. scale: Scale the mesh in the three coordinates direction using each component
of the given vector.

The action are done in the order specified above (translation, then rotation and
finally scaling). Consequently if you want to change the order you have to execute
more than one time transformPoints.

rotateMesh

This tool rotate the mesh and the fields at all time steps. The rotation is defined by
the rotation to bring the vector n1 to n2.

The command is

rotateMesh <n1> <n2> [-latestTime] [-time <ranges>] [-parallel]
[-noZero] [-case <dir>]

The list of options are:

latestTime: Apply the rotation of the mesh at the latest time step only.
time <ranges>: Apply the rotation of the mesh at the time steps specified by
the ranges2.
parallel: if the case is run in parallel and so the mesh distributed.
noZero: exclude the time folder 0 from the selected time steps.
case <dir>: path to the case directory.

2 More information about the specification of time ranges is available at http://openfoamwiki.
net/index.php/Tip_Advanced_Time_Selection_Options

http://openfoamwiki.net/index.php/Tip_Advanced_Time_Selection_Options
http://openfoamwiki.net/index.php/Tip_Advanced_Time_Selection_Options

160 7 Combustion

createPatch

Utility to create patches out of selected boundary faces. Faces come either from
existing patches or from a faceSet.
More specifically it:

creates new patches (from selected boundary faces). Synchronise faces on cou-
pled patches.
synchronises points on coupled boundaries
remove patches with 0 faces in them

The action are specified in a dictionary, system/createPatchDict. The full de-
scription of it is shown in the listing below.

// This application/dictionary controls:
// - optional: create new patches from boundary faces (either given as
// a set of patches or as a faceSet)
// - always: order faces on coupled patches such that they are opposite. This
// is done for all coupled faces, not just for any patches created.
// - optional: synchronise points on coupled patches.

// 1. Create cyclic:
// - specify where the faces should come from
// - specify the type of cyclic. If a rotational specify the rotationAxis
// and centre to make matching easier
// - always create both halves in one invocation with correct ’neighbourPatch’
// setting.
// - optionally pointSync true to guarantee points to line up.

// 2. Correct incorrect cyclic:
// This will usually fail upon loading:
// "face 0 area does not match neighbour 2 by 0.0100005%"
// " -- possible face ordering problem."
// - in polyMesh/boundary file:
// - loosen matchTolerance of all cyclics to get case to load
// - or change patch type from ’cyclic’ to ’patch’
// and regenerate cyclic as above

// Do a synchronisation of coupled points after creation of any patches.
// Note: this does not work with points that are on multiple coupled patches
// with transformations (i.e. cyclics).
pointSync false;

// Patches to create.
patches
(

{
// Name of new patch
name cyc_half0;

// Dictionary to construct new patch from
patchInfo
{

type cyclic;
neighbourPatch cyc_half1;

// Optional: explicitly set transformation tensor.

7.5 Extra Practice and Background Information 161

// Used when matching and synchronising points.
transform rotational;
rotationAxis (1 0 0);
rotationCentre (0 0 0);
// transform translational;
// separationVector (1 0 0);

// Optional non-default tolerance to be able to define cyclics
// on bad meshes
//matchTolerance 1E-2;

}

// How to construct: either from ’patches’ or ’set’
constructFrom patches;

// If constructFrom = patches : names of patches. Wildcards allowed.
patches (periodic1);

// If constructFrom = set : name of faceSet
set f0;

}
{

// Name of new patch
name cyc_half1;

// Dictionary to construct new patch from
patchInfo
{

type cyclic;
neighbourPatch cyc_half0;

// Optional: explicitly set transformation tensor.
// Used when matching and synchronising points.
transform rotational;
rotationAxis (0 0 1);
rotationCentre (0.3 0 0);

}

// How to construct: either from ’patches’ or ’set’
constructFrom patches;

// If constructFrom = patches : names of patches. Wildcards allowed.
patches (periodic2);

// If constructFrom = set : name of faceSet
set f0;

}
);

Listing 7.5: createPatchDict

The command is
createPatch [-overwrite] [-parallel] [-case <dir>]

List of the options:

overwrite: overwrite the current mesh instead of creating the mesh for the
next time step.

162 7 Combustion

parallel: if the case is run in parallel and so the mesh distributed.
case <dir>: path to the case directory.

Chapter

8 Multiphase Flow

164 8 Multiphase Flow

8.1 Todays problem

Figure 8.1: Geometry of the collapsing column test case.

This week incompressible air-water flow will be solved in two examples:

1. A column of water falling due to the gravitational acceleration (cf. Figure 8.1).
This case will be an opportunity to run a case in parallel using OpenFOAM®.

2. A simplified collector of water droplets will be used to test a homemade bound-
ary condition.

But before introducing the exercises, the physics of incompressible two-phase flow
will be presented.

8.2 Physics

A large number of flows in nature and industry involve free surfaces. Their ap-
plications range from environmental sciences to numerous engineering problems.
Several examples can be cited such as the interface between liquid water and air in
the Earth’s atmosphere or cargo slosh in ships and trucks transporting liquids.

Flows with free surfaces are a special class of flows with moving boundaries. The
position of the boundary is known only at the initial time; its location at later times

8.2 Physics 165

Figure 8.2: Slosh phenomenon at laboratory scale.

has to be determined as a part of the solution. There are several methods dedicated
to find the shape of the free surface. They can be classified into two major groups:

Surface Methods
These methods treat the free surface as a sharp interface whose motion is fol-
lowed. Either boundary fitted grids are used and advanced each time step,
which normally requires complex mesh motion and topology change schemes
in order to track the position of the interface, or the interface is marked by in-
terconnected massless particles and followed in a Lagrangian manner with the
local flow velocities.

Volume Methods
Under this category are the methods which do not define the interface as a sharp
boundary. The computation is performed on a fixed grid, which extends beyond
the free surface. The shape of the free surface is determined by computing the
(volume) fraction of each near-interface cell that is partially filled.

Figure 8.3: Surface vs. Volume schemes.

166 8 Multiphase Flow

The Volume-Of-Fluid (VOF) approach is the most popular Volume-based method
due to its simplicity. A set of conservation equations is constructed for the phase
mixture, not for the individual phases, yet the fluid properties (air and water, for ex-
ample) are blended smoothly and the position of the interface is identified with
help of the phase volume fractions. This approach has been shown to be very suc-
cessful for a wide range of applications, and simple examples will be used here to
demonstrate the main ideas of VOF. Its implementation in OpenFOAM® will be
presented next.

8.3 Numerics

8.3.1 Volume-Of-Fluid in OpenFOAM®

As mentioned above, the basic idea of the VOF approach is that the two-phase sys-
tem can be represented as a mixture of the phases in which the volume fraction
distribution includes sharp yet resolved transitions between the phases. The com-
plete system of equations of the VOF approach for incompressible two-phase flow
without phase change are presented below.

The volume fraction equation (continuity) is defined as

∂α

∂t
+∇ · (Uα) = 0, (8.1)

which is solved for the volume fraction α. The momentum equation is given by

∂ρU

∂t
+∇ · (ρU⊗U) = −∇P +∇ · τ + Fσ, (8.2)

which is solved for the velocity U. The definition of the mixture density is

ρ = αρα + βρβ (8.3)

in which the constraint β = 1−α is implicit, and the two phase densities are ρα and
ρβ . A model for the stress in the momentum equation is given as:

τ = µ(∇U+∇UT − 2

3
I∇ ·U), (8.4)

with the following definition of the mixture viscosity for laminar flow:

µ = αµα + βµβ . (8.5)

It may be augmented by the turbulent viscosity either from a RANS or LES model
as appropriate.

The source term Fσ is given by

Fσ =
1

V

∫
S(t)

σ κn dS, (8.6)

which represents surface tension effects due to the existence, locally, of two the
phases simultaneously. However, since the interface position is not explicitly tracked
within the VOF context, this integral can not be calculated explicitly. To overcome
this problem, a continuum surface force model is used. This approach considers
the surface tension force as a continuous volumetric source. The effective region of

8.3 Numerics 167

the surface force is limited to the transition between the phases and can be approx-
imated by the following expression:

Fσ ≃ σκ∇α, (8.7)

where κ denotes the interfacial curvature, which reads:

κ = ∇ ·
(

∇α
|∇α|

)
. (8.8)

In addition to these equations it is necessary to define an equation for the pressure
which is present in the momentum equation. For incompressible flow it is tradi-
tional to construct a Poissons equation for the pressure based on the divergence-free
constraint

∇ · U = 0 (8.9)

which is obtained from the continuity equation and is valid for single and two-
phase flow as in this case.

8.3.2 Counter-Gradient transport

Given that the interface disperses due to numerical diffusion it might appear that
a good approach would be to limit this effect by including a diffusion operator
into the volume fraction equation with a negative diffusion coefficient. While this
approach would be conservative it would also be unbounded and unstable; nega-
tive diffusion is always problematic. An alternative to negative diffusion which is
also conservative is to apply some kind of additional convection-based term which
compresses the interface, maintains boundedness and is reduced as the mesh is re-
fined. OpenFOAM® makes use of a so called "counter-gradient" convective term in
the continuity equation, such that:

∂α

∂t
+∇ · (Uα) +∇ · (Urαβ) = 0. (8.10)

Note that the product of the volume fractions guarantees that the compression term
vanish in regions where only one phase is present. In order to ensure the compres-
sion term does not bias the solution in anyway it should only introduce flow of
alpha normal to the interface, i.e. in the direction of the unit normal vector ∇α

|∇α| .
The compression rate should be set to ensure interface sharpness but more than that
might introduce unnecessary numerical difficulties or expense. The worst possible
interface dispersion speed is at the fluid velocity |U|. These considerations suggest
a model for Ur of the form:

Ur = cα |U| ∇α
|∇α|

(8.11)

where the compression coefficient cα should be of order 1.

Another alternative currently being tested is to use max(|U|) as a limiter on Eq.
(8.11) when cα is chosen to be larger than 1 to enhance compression

Ur = min(cα |U|,max(|U|)) ∇α
|∇α|

. (8.12)

Note in this expression max(|U|) returns the largest value of |U| anywhere in the
domain whereas min(cα |U|,max(|U|)) returns the minimum value of the cα |U|

168 8 Multiphase Flow

field, limited by max(|U|). In practice values of 1 ≤ cα ≤ 4 give good behaviour
although for some cases it might be useful to use cα ≥ 4.

8.4 OpenFOAM®

8.4.1 Implementation of the volume of fluid model

Equations are to be implemented using a second-order finite-volume discretisation
approach with special attention paid to conservation and boundedness of the vol-
ume fraction. The first two terms of Eq. (8.10) can be discretised in the same manner
as the equivalent terms in other transport equations provided a bounded convec-
tion scheme is used, UDS (Upwind Differencing Scheme) or any NVD (Normalized
Variable Diagram) based or TVD (Total Variation Diminishing) scheme available
for general transport equations should suffice. Discretisation of the remaining term
requires the phase compression flux:

ϕcα = −βf(−ϕc,Λ,) ϕr (8.13)

where Λ represents any bounded interpolation scheme and

ϕr = cα |ϕ|
(

(∇α)f
|(∇α)f |

)
·

Sf
|Sf |

(8.14)

which is used in the volume fraction equation

[[∂[α]
∂t

]] + [[∇ · (ϕ [α]f(ϕ,Λ,))]] + [[∇ · (ϕcα [α]f(ϕcα ,Λ,)
)]] = 0, (8.15)

OpenFOAM®’s VOF solver is called interFoam. The implementation of the vol-
ume fraction equation can be found in the alphaEqn.H file, which is shown below:

{
word alphaScheme("div(phi,alpha)");
word alpharScheme("div(phirb,alpha)");

surfaceScalarField phic(mag(phi/mesh.magSf()));
phic = min(interface.cAlpha()*phic, max(phic));
surfaceScalarField phir(phic*interface.nHatf());

for (int aCorr=0; aCorr<nAlphaCorr; aCorr++)
{

surfaceScalarField phiAlpha
(

fvc::flux
(

phi,
alpha1,
alphaScheme

)
+ fvc::flux

(
-fvc::flux(-phir, scalar(1) - alpha1, alpharScheme),
alpha1,
alpharScheme

)
);

8.4 OpenFOAM® 169

MULES::explicitSolve(alpha1, phi, phiAlpha, 1, 0);

rhoPhi = phiAlpha*(rho1 - rho2) + phi*rho2;
}

Info<< "Liquid phase volume fraction = "
<< alpha1.weightedAverage(mesh.V()).value()
<< " Min(alpha1) = " << min(alpha1).value()
<< " Max(alpha1) = " << max(alpha1).value()
<< endl;

}

Listing 8.1: alphaEqn.H

The first two entries found in this file, "div(phi,alpha)" and "div(phirb,alpha)"
are assigned to the variables "alphaScheme" and "alpharScheme", respectively.
They define the convection discretization schemes of the volume fraction equation
in the file fvSchemes.

"cAlpha" is a scalar expression for limiting the artificial compression velocity. It
can be found in the PIMPLE sub-dictionary of the file fvSolution and is defined
in

.../src/transportModels/interfaceProperties/interfaceProperties.C

and

.../src/transportModels/interfaceProperties/interfaceProperties.H.

phic and phir are given by Eqs. (8.13) and (8.14). In the expression for phir,
nHatf is the projection of the interface unit normal vector at the direction normal
to the cell face: nHatf = nHat & Sf (defined in the interfaceProperties
files).

flux is a member function of the class fvc and is called by fvc::flux. It will
calculate explicit values of phi and phir defined above.

The solution of the volume fraction equation is performed by calling the Multi-
dimensional Universal Limiter with Explicit Solution (MULES) solver. It is spe-
cially designed to limit the flux of the variables and guarantee a bounded solution.
MULES requires 5 entries:

1. The actual variable which is being solved for, alpha1 (the volume fraction)
2. The volumetric flux at the cell face (which is the usual convective flux), phi
3. The actual explicit flux of the variable, phiAlpha
4. The upper bound of the variable to solve for
5. The lower bound of the variable to solve for

After the equation is solved, the total mass-flux (rhoPhi) required by the momen-
tum balance is computed such that the limited fluxes employed to solve the volume
fraction equation are accounted for in the PIMPLE-Loop.

170 8 Multiphase Flow

8.4.2 Structure of a class folder

This week you will have to create a new boundary condition. In OpenFOAM® a
boundary condition is a special class. Consequently before focusing on the typical
function of a boundary condition, the general structure of a class will be described.

Source code

The source code of class is contained in a folder having the same name as the class
itself. And in this folder, you will find usually a header file in which the members
and the functions of the class are defined as well as a source file in which the imple-
mentation of the functions are written. Those two files have the name of the class
but a different extension: .H for the header file and .C for the source file. Each class
possesses at least one function: the constructor (explains how to create an object of
the class). That function has the same name as the class itself as shown in the listing
8.2.

class heatTransferFvPatchScalarField:
public fixedGradientFvPatchScalarField
{

// Private data
scalar k_;
scalar h_;
scalar Tfluid_;

public:
// Constructors

//- Construct from patch, internal field and dictionary
heatTransferFvPatchScalarField(

const fvPatch&,
const DimensionedField<scalar, volMesh>&,
const dictionary&

);

// Member functions

//- Update the coefficients associated with the patch field
virtual void updateCoeffs();

//- Write
virtual void write(Ostream&) const;

};

Listing 8.2: Extract of an boundary condition header file.

The last element in the folder is a sub-folder Make used by the compilation tool of
OpenFOAM®.

The Figure 8.4 shows an example of that structure (This example is the boundary
condition used in the chapter 3).

Make folder

The Make folder contains two files files and options. The former contains the
list of source files to be compiled in the library as well as the location and the

8.4 OpenFOAM® 171

-- heatTransferFvPatchScalarField
|- heatTransferFvPatchScalarField.H
|- heatTransferFvPatchScalarField.C
|- Make

|- files
|- options

Figure 8.4: Structure of the folder for the heatTransferFvPatchScalarField
class

name of the library. For a user defined class the path in which the library is stored
should look like that LIB = $(FOAM_USER_LIBBIN)/libMyClasses . In the
latter, you will have to write the folders containing the header files needed and the
libraries to be included/linked with the new library.

Compilation of a library

To compile a library, the following command has to be executed :

wmake libso

This command will compiled the class into a dynamic library (extension .so). And
during this compilation, new elements will be generated :

a file with the name of the class and the extension .dep. That file contains the
paths to all header files needed by the current class.
a folder lnInclude that contains a symbolic link to the header files of the
classes contained in the compiled library
a folder Make\linux64GccDPOpt1 that contains the temporary files created
during the compilation

It is recommended to clean those elements before compiling again the libraries. To
do so, use the command :

wclean libso

8.4.3 Class for boundary conditions

This section will highlight the major functions defined for a boundary conditions.

As you can see in the listing 8.2, a boundary condition contains an important con-
structor using a dictionary (i.e. the parameters defined in the boundary condi-
tions file for the current patch and the current field). This constructor should conse-
quently interpret the values of the specified keywords in order to initiate the bound-
ary condition. For example, for the heatTransfer BC the thermal conductivity k, the
heat transfer coefficient h and the temperature of the surrounding fluid Tfluid are
read from the dictionary (see lines 12-14 in the listing 8.3).

1 That name can change according to the specification of the computer

172 8 Multiphase Flow

1 #include "heatTransferFvPatchScalarField.H"
2 #include "volFields.H"
3

4 // * * * * * * * * Constructors * * * * * * //
5 heatTransferFvPatchScalarField::heatTransferFvPatchScalarField
6 (
7 const fvPatch& p,
8 const DimensionedField<scalar, volMesh>& iF,
9 const dictionary& dict

10):
11 fixedGradientFvPatchScalarField(p, iF),
12 k_(readScalar(dict.lookup("k"))),
13 h_(readScalar(dict.lookup("h"))),
14 Tfluid_(readScalar(dict.lookup("Tfluid")))
15 {
16 fvPatchField<scalar>::operator=(patchInternalField());
17 gradient() = 0.0;
18 }
19

20 // * * * * * * * Member Functions * * * * * //
21 void heatTransferFvPatchScalarField::updateCoeffs()
22 {
23 if (updated())
24 {
25 return;
26 }
27

28 const fvPatchField<scalar>& T =
29 patch().lookupPatchField<volScalarField, scalar>("T");
30

31 gradient() = h_/k_*(Tfluid_-T);
32

33 fixedGradientFvPatchScalarField::updateCoeffs();
34 }
35

36 void heatTransferFvPatchScalarField::write(Ostream& os) const
37 {
38 fixedGradientFvPatchScalarField::write(os);
39 os.writeKeyword("h") << h_ << token::END_STATEMENT << nl;
40 os.writeKeyword("k") << k_ << token::END_STATEMENT << nl;
41 os.writeKeyword("Tfluid") << Tfluid_ << token::END_STATEMENT << nl;
42 writeEntry("value", os);
43 }

Listing 8.3: Extract of a boundary-condition source code.

The second important function is updateCoeffs. It is read every time the bound-
ary condition have to be applied. In the example, this function tests if the patch
was already updated previously. Then if not the temperature on the patch is ob-
tain by the command lookupPatchField<Type1, Type2>. In the third step
the gradient of temperature is determined. And finally the called to the top func-
tion fixedGradientFvPatchScalarField::updateCoeffs() set the proper
value to the boundary condition.

The last important function is write. This function defined what to write in the
field file when an output is required. In the example, first a called to the write
function of the mother class is done (consistency purpose only). Then the key pa-

8.4 OpenFOAM® 173

rameters are written with first the keyword entry, then the value of it and finally
the semi-column. The last thing written is the value of the field on the patch.

Other functions have to be implemented (especially other constructors). But in
general their content is not as important as the three previous ones.

174 8 Multiphase Flow

8.4.4 The groovyBC boundary condition

This boundary condition is an unofficial boundary condition part of the toolbox
swak4Foam (for more information see http://www.openfoamwiki.net/index.
php/Contrib/swak4Foam). Basically it allows the user to defined easily a new
boundary condition without having to implement a new class. In addition it comes
with most of the characteristics of the funkySetFields tool (cf. chapter 3): e.g.
expressions could be used to compute values depending on fields solved in the
simulation.

To used it with a case, you have to add the following entry in the controlDict of
the case:

libs ("libOpenFOAM.so" "libgroovyBC.so");

To defined a boundary condition using that boundary condition, you have to spec-
ify groovyBC as type. The parameters that you can set are:

Parameter Description

valueExpression String with the value to be used if a Dirichlet-condition

is needed. Defaults to zero

value is used for the first timestep/iteration if

valueExpression is specified or all the time if no

valueExpression is given.

Remark: If valueExpression is specified without

setting "value", 0 is taken for the first timestep/iter-

ation. (might cause an floating point exception)

gradientExpression String with the gradient to be used if a Neumann

conditon is needed. Defaults to zero

fractionExpression Determines whether the face is Dirichlet (1) or

Neumann (0). Defaults to 1

variables List with temporary variables separated by a semicolon.

May make the writing of expressions shorter. Defaults

to empty. Names defined here "shadow" fields of the

same name

timelines List with subdictionaries that specify interpolation

tables over time. See the original

timeVaryingUniform-condition. Currently only

scalars are allowed. The parameter name specifies

the name under which this may

be accessed. The name "shadows" fields of the same

name.

http://www.openfoamwiki.net/index.php/Contrib/swak4Foam
http://www.openfoamwiki.net/index.php/Contrib/swak4Foam

8.4 OpenFOAM® 175

Here are two examples:

outlet
{

type groovyBC;
valueExpression "vector(0,0,0)";
gradientExpression "vector(0,0,0)";
fractionExpression "(phi > 0) ? 0 : 1";
value uniform (0 0 0);

}

forced
{

type groovyBC;
value uniform (0 0 0);
timelines (

{
name impulse;
outOfBounds clamp;
fileName "$FOAM_CASE/impulse.data";

}
);
valueExpression "-impulse*normal()";
gradientExpression "vector(0,0,0)";
fractionExpression "(time()<5) ?

((pos().x>0.45 && pos().x<0.55) ? 1 : 0) : 0";
}

Listing 8.4: Examples of groovyBC usage.

8.4.5 Running in parallel

The mesh and fields are decomposed using the decomposePar utility. They can
be broken up according to a set of parameters specified in a dictionary named
decomposeParDict that must be located in the system directory of the case of
interest. The dictionary entries for the present exercise are reproduced below:

numberOfSubdomains 4;

method simple;

simpleCoeffs
{

n (2 2 1);
delta 0.001;

}

hierarchicalCoeffs
{

n (1 1 1);
delta 0.001;
order xyz;

}

manualCoeffs
{

dataFile "";

176 8 Multiphase Flow

}

distributed no;

roots ();

// *** //

Listing 8.5: Extract of decomposeParDict.

The user has a choice of four methods of decomposition, specified by the method
keyword as described below:

simple

Simple geometric decomposition in which the domain is split into pieces by direc-
tion.

hierarchical

Hierarchical geometric decomposition which is the same as simple except the user
specifies the order in which the directional split is done.

scotch

Scotch decomposition which requires no geometric input from the user and at-
tempts to minimize the number of processor boundaries. The user can specify a
weighting for the decomposition between processors, through an optional keyword
called processorWeightswhich can be useful on machines with differing perfor-
mance between processors. The decomposition strategy can be specified with the
optional keyword entry strategy. The following source code file provides more
information: $FOAM_SRC/decompositionMethods/decompositionMethods/
scotchDecomp/scotchDecomp.C

manual

Manual decomposition, where the user directly specifies the allocation of each cell
to a particular processor.

For each method there are a set of coefficients specified in a sub-dictionary of de-
compositionDict, named <method>Coeffs as shown in the dictionary listing. The
full set of keyword entries are explained below.

The

Compulsory Entries

numberOfSubdomains N

method simple, hierarchical, scotch, metis, manual

simpleCoeffs

n Number of subdomains in x,y,z (nx, ny, nz)

delta Cell skew factor Typlically, 10−3

8.4 OpenFOAM® 177

hierarchicalCoeffs

n Number of subdomains in x,y,z (nx, ny, nz)

delta Cell skew factor Typically, 10−3

order Order of decomposition xyz, xzy, ...

scotchCoeffs

processorWeights List of weighting factors for allocation (<wt1><wtN>)

of cells to processors; <wt1> is the

weighting factor for processor 1, etc.; weights

are normalised so can take any range of values

strategy Decomposition strategy; defaults to "b"

manualCoeffs

dataFile Name of file containing data of allocation of cells to processors "<fileName>"

The

Distributed Data Entries

distributed Is the data distributed across several disks? yes/no

roots Root paths to case directories; (<rt1><rtN>)

<rt1> is the root path for node 1, etc

decomposePar utility is executed in the usual way with the command decomposePar.
A set of subdirectories will be then created, one for each processor, in the case di-
rectory. The directories are named processorN, where N = 0, 1... represents a
processor number and contains a time directory, with the decomposed field de-
scriptions, and a constant/polyMesh directory with the decomposed mesh de-
scription.

A decomposed OpenFOAM® case is run in parallel using the openMPI implemen-
tation of the standard Message Passing Interface (MPI). The execution line with the
command mpirun is given by:

mpirun --hostfile <machines> -np <nProcs>
<foamExec> <otherArgs> -parallel > log &

where <nProcs> is the number of processors; <foamExec> is the executable, e.g.
interFoam; and, the output is redirected to a file named log. The <machines>
file contains the information on where the case is actually going to be run.

Once the case has completed running, the decomposed fields and mesh must be
reassembled for post-processing using the reconstructPar utility.

178 8 Multiphase Flow

Parallel running in the computer lab

To run a case in parallel in the computer lab, you will use a script based on the
following one:

1 #!/bin/sh
2 #
3 #This is an example script to execute a parallel job with OpenFOAM
4 # ! Be sure to have decompose using decomposePar before submitting this script
5 #
6 #These commands set up the Grid Environment for your job:
7 # Output folder for the journal file
8 #PBS -o /nfs/home/ofoam/OpenFOAM/ofoam-2.0.1/run/Chpt9/interFoam/experiment
9 #PBS -j oe

10 # Name of the job
11 #PBS -N experiment3procs
12 #PBS -q batch
13 # After ppn= write (2 * number of processors to use)
14 # Here 6 for using 3 processors (this is due to the hyperthreading technology)
15 #PBS -l nodes=1:ppn=6:buddies
16 # E-mail address at which notification will be sent
17 #PBS -M neo@matrixReloaded.de
18 #PBS -m abe
19

20 # Load OpenFOAM-2.0.1
21 source /nfs/etc/bashrc
22 OF201
23 # Change the current directory to the case directory
24 cd /nfs/home/ofoam1/OpenFOAM/ofoam-2.0.1/run/Chpt9/interFoam/experiment
25 # Execute interFoam on the current case directory
26 mpiexec interFoam -parallel > log.interFoam

Listing 8.6: Script to run in parallel an OpenFOAM® case.

This script will be sent to a queue in which it will wait until the required resource
will be free to run it. To submit the script, jobScript, type the command:

qsub jobScript

This command will print a line containing the job-ID of your job. It is important to
find your job in the queue. And eventually delete it.

If you want to a have look to the queue and the status of your job, type:
qstat -u <username>

If you want to delete a job, type:
qdel <job-ID>

In order to adapt it to your case the following lines have to be modified:

At the line 8, you specify the path of the journal file of the job.
At line 11, you can give a name to your job
At line 15, you can change the number of processors you need. It is the latest
number
At line 24, you specify the path of the test case.
At line 26, you specify the OpenFOAM® solver you want to run and the name
of the log file.

8.5 Exercises 179

8.5 Exercises

Collapse of a liquid column

A classical case used in the validation of mathematical modelling of free-surface
flows is the collapse of a liquid column. Gravitational acceleration causes the water
column in the left of the tank to seek the lowest possible potential energy level.
Thus, the column will collapse and eventually come to rest at the bottom of the
tank2.

The tank is considered with a base length of 0.584 m. At t = 0 s, the water column
has a base length of 0.146 m and a height of 0.292 m (cf. Figure 8.1).

A non-uniform initial condition for the volume fraction shall be specified here. This
will be done by running the setFields utility. It requires a setFieldsDict
dictionary, located in the system directory, whose entries for this case are shown
below.

defaultFieldValues
(

volScalarFieldValue alpha1 0
);

regions
(

boxToCell
{

box (0 0 -1) (0.1461 0.292 1);
fieldValues
(

volScalarFieldValue alpha1 1
);

}
);

Listing 8.7: Extract of setFieldsDict.

The top boundary is free to the atmosphere so needs to allow both outflow and
inflow according to the internal flow. We therefore use a combination of boundary
conditions for pressure and velocity that does this while maintaining stability. They
are:

totalPressure, which is a fixedValue condition calculated from specified
the total pressure and the local velocity;
pressureInletOutletVelocity, which applies zeroGradient on all com-
ponents, except where there is inflow, in which case a fixedValue condition
is applied to the tangential component;
inletOutlet, which is a zeroGradient condition when flow outwards, fixedValue
when flow is inwards. The keyword to specified the constant inwards value is
inletValue.

2 The flow scales can be considered to be large when compared to the capillary length, so that surface
tension effects are negligible

180 8 Multiphase Flow

At all wall boundaries, the buoyantPressure boundary condition is applied to
the pressure field, which calculates the normal gradient from the local density gra-
dient. The no-slip condition is used for the velocity and zeroGradient is used
for α. The defaultFaces patch representing the front and back planes of the 2D
problem, is, as usual, an empty type.

Running of the code has been described in detail in previous tutorials.

The default mesh given for this exercise is fairly coarse. However, as outlined be-
fore, the nature of the VOF method means that an interface between the fluids is
not explicitly computed, but rather emerges as a property of the volume fraction
field. Since the volume fraction can have any value between 0 and 1, the interface
is never sharply defined, but occupies a volume around the region where a sharp
interface should exist. In order to achieve a resolution that resembles that of a real,
sharp, interface, normally much finer mesh levels are required than the one used,
increasing the costs of running in a single processor considerably. The method of
parallel computing used by OpenFOAM® is known as domain decomposition, in
which the geometry and associated fields are broken into pieces and allocated to
separate processors for solution.

Questions

Preliminary remark: the execution time needed for this first exercise is quite high.
So it’s advised that you start the second exercise when waiting for the results.

Run the collapsing column case for two successively finer grid levels (2x and 4x
the total number of cells) and compare the solutions qualitatively, analysing the
interface resolution. For grid level with 2 times more cells, run the case with 1,
2 and 3 processors. For the coarsest and finest meshes, use 3 processors. Com-
pare the CPU time for each run. Is a linear speed-up observed in the parallel
computations?
Advice: Make advantageous use of a grading mesh within the blockMeshDict
or use the refineMesh tool.
Then compare qualitatively the results for the form of the interface with the
experimental images available at time instants t = 0, 0.2, 0.4, 0.6, 0.8 and 1 s
(see Fig. 8.5). In paraview, consider the interface as the geometrical entity
connecting the regions with α = 0.5.

8.5 Exercises 181

Figure 8.5: Experimetal observations of a collapsing water-column without obsta-
cle (Ubbink, 1997).

182 8 Multiphase Flow

Droplets collector

In this second exercise, a new boundary condition will be implemented to generate
random droplet appearing at the bottom of the domain and falling in a opened tank
below as described in the figure 8.6.

Figure 8.6: Droplet collector geometry.

To be able to simulate this case, a new boundary condition has to be implemented
for the velocity: rainDropletInletVelocity. This function will reproduce the
behavior of droplet falling in the domain. The switch between a status with and
without droplet will be described using a Poisson process: i.e. the velocity value
switches for the nth time at the time t when the following statement is true:

U[0,1] > exp(−λ(t− Tn−1)) (8.16)

where U[0,1] is a random number uniformly distributed on [0, 1], λ is the frequency
of the process.
The value of the velocity, U , is computed from a given volume flow rate (as the flow
is incompressible).
The skeleton of this function is provided. So some elements have to be added:

1. The members of the class: two scalars frequency_ and flowRate_ and a

8.5 Exercises 183

Random variable rnd_3.
2. The constructor base on a dictionary has to be fulfilled. For that you have

to

Read flowRate_ and frequency_ from the dictionary
The command to read a scalar value is readScalar(dict.lookup("keyword"))
Initialize the random variable with a integer (the one you want)

3. In the function updateCoeffs, the condition for which the value of the veloc-
ity switch between 0 and a certain value (cf. equation 8.16) (Hint : to know how
to generate an uniform random variable have a look at the documentation of
the Random class4).

4. The write function has to be completed to output flowRate_, frequency_,
lastSwitch_ and the value of the velocity on the patch.

Hint: As source of inspiration, you can have a look at the boundary condition
flowRateInletVelocity. Location of the sources :
$FOAM_SRC/finiteVolume/fields/fvPatchFields/
derived/flowRateInletVelocity

When the changes are made, you can try to compiled the boundary condition.

Before running the test case, the droplet boundary condition for alpha has to be
given. As the droplet is there only if the velocity is greater than zero, the groovyBC
will be used to set alpha1 to one when U > 0 and zero otherwise.
Remark: You need to change the boundary condition in the file alpha1.org. Then
run Allclean that will overwrite alpha1 with alpha1.org.

You can now run the case using the script Allrun. Or if you want to parallelize it,
run the commands prior to runApplication $application in Allrun. Then
the cluster can be used to run the case in parallel.

3 By convention in OpenFOAM® the member names end with an underscore
4 See background information for more details about the source code documentation.

184 8 Multiphase Flow

8.6 Extra Practice and Background Information

Extra Practice

Droplets collector: advanced level

If you have a look in the script Allrun, you will see that the geometry is generated
using two blocks defined in blockMeshDict. Then using the tool setSet some
faces of the top boundary are selected in a faceSet. Then using createPatch
those faces are converted in a new boundary condition called droplet.

For this advanced exercise, you will have to create first two additional positions
at which the droplets appeared inside of the domain. Then using timeVarying
FlowRateInletVelocity instead of your customized boundary condition, you
will create a time variation of the velocity to simulate droplet appearing at the top
of the domain.

Remark:

Here is an example of use of the time varying boundary condition.

inlet
{

type timeVaryingFlowRateInletVelocity;
flowRate 0.2; // Volumetric/mass flow rate [m3/s or kg/s]
value uniform (0 0 0); // placeholder
fileName "$FOAM_CASE/time-series";
outOfBounds repeat; // (error|warn|clamp|repeat)

}

Note: The value is positive inwards
The structure of the time series looks like:

// Time FlowRate
(
(0.0 0.12)
(0.1 0.14)
(0.2 0.0)
);

Slosh phenomena in a tank truck

As additional exercise, the slosh phenomena in a tank truck will be studied. The
tank will be half full of water. And the slosh phenomena will be initiated by pre-
suming that the truck brakes.

For that, only the tank will be modeled as a 2D geometry with the dimensions
specified in the Figure (8.7). The cell size will be 10 cmx 10 cm.

The k-epsilon turbulence model will be used (not laminar as for the damBreak
case). So the boundary conditions as to be set for the pressure, p, the velocity, U,
the volume fraction, alpha1, the turbulent kinetic energy, k, its dissipation rate,
epsilon and the dynamic viscosity, mut. As the system is closed, all the boundary

8.6 Extra Practice and Background Information 185

Figure 8.7: Tank truck.

conditions are similar and correspond to the wall condition.
For mut, the name of the wall boundary condition is mutWallFunction.
For k, don’t forget to set the values to something small but non zero.

As the system is closed, you need to provide two additional entry in the PISO dic-
tionary (in system/fvSolution):

1. pRefValue: reference for the pressure (here 0).
2. pRefPoint: the point where the reference pressure is set (here you can set the

upper right corner).

The last parameters to set are the numerical schemes and the solver parameters for
k and epsilon. For that, copy the parameters used in the tutorial case:
$FOAM_RUN/multiphase/interFoam/ras/damBreak.

Use then setFields to set alpha1 to 1 in the down half of the tank.

The scenario is a truck braking uniformly from 80 km/h to 56 km/h in 3 seconds.
Consequently the contain of the tank will be move due to mass inertia. Physically
this is translated in a source term in the momentum equation, Struck:

Struck = −ma

, where a is the vector acceleration of the truck.

In finite volume model this is equivalent to add a volume source term of −ρa like
for the gravitation. So you don’t have to modify the solver. Only the gravitation
acceleration has to be changed to take this acceleration into account.
Remark: the acceleration of the truck is horizontal and the gravitation is vertical.

Run then this case on 4 processors. Be aware that it will take some time.
In a second step, the truck stabilizes its speed to 56 km/h (a = 0m/s2). Starting for
the state after 3 s, run the case for an additional 3 s.

186 8 Multiphase Flow

Background Information

8.6.1 Source code documentation

The code source of OpenFOAM® contains formatted comments that are gathered
by a software called Doxygen. The output is a documentation in html accessi-
ble from the official website of OpenCFD® (http://www.openfoam.com/docs/
cpp/).

The main page looks like this:

Figure 8.8: C++ Source Guide: main page

If you are looking for a solver documentation, the best documentation is generally
the code itself. To have a look to it, you can either navigate to $FOAM_SOLVERS or
in the Doxygen documentation look in the tab Directories. The beginning is the list
of the solvers.

To describe the structure of the documentation for a model or a class, we will look
for the k-epsilon model for incompressible flow as an example. For that, type in the
search box the key word kEpsilon.

Figure 8.9: C++ Source Guide: search box

Click on the first link kEpsilon Foam::incompressible::RASModels.

You are now on the page describing the Foam::incompressible::RASModels class. The
description of a class is divided into 6 sub-parts:

The inheritance and the collaboration diagrams
The public member functions list
The detailed description of the class (the element usually missing in OpenFOAM®).
The documentation for the constructor and the destructor
The documentation for all the member functions
The list of files corresponding to the documentation of the class

http://www.openfoam.com/docs/cpp/
http://www.openfoam.com/docs/cpp/

8.6 Extra Practice and Background Information 187

Figure 8.10: C++ Source Guide: inheritance and collaboration diagrams

Figure 8.11: C++ Source Guide: legend of the diagrams

The inheritance and collaboration diagrams

The inheritance diagram presents the mother classes of the current class (with the
arrows starting from the class name) and the children (arrows ending on the class
name). In this case the kEpsilon class inherits directly only from the RASModel.

The collaboration diagram highlights the relations between the classes due to in-
heritance or due to members.

188 8 Multiphase Flow

The description of the symbols (arrow, color,...) used in those two diagrams is avail-
able by clicking on the link legend below each diagram. For easiness, it’s reproduced
in the figure (8.11).

The public member functions list

This is a short list of the public functions (meaning accessible outside of the class)
implemented in the current class. This list is followed by a detailed description of
the class. In this case, as many others, it says nothing... It is preceded by a link

Figure 8.12: C++ Source Guide: public member functions

List of all members to display the full list of the public member functions including
the inherited public member functions. For example at the end of the figure (8.13),
you can see that an inherited function of kEpsilon is the function coeffsDict() from
RASModel.

Constructor and Destructor documentation

The only interesting additional element of this part of the documentation is a di-
rect link to the code implementation of the function. For example here (see figure
(8.14)), you can access directly at the line 40 of kEpsilon.C where the constructor
is implemented.

Member functions documentation

As for the constructor and destructor documentation, the only interest here is the
direct link to the implementation in the code of the function.

8.6 Extra Practice and Background Information 189

Figure 8.13: C++ Source Guide: all public member functions

List of files

For information or to get access to the source code.

Figure 8.14: C++ Source Guide: detailed documentation

Chapter

9 Lagrangian Particle
Tracking

192 9 Lagrangian Particle Tracking

Figure 9.1: von Karman street pattern

9.1 Todays problem

The exercise of this chapter will be to highlight the von Karman street pattern ap-
pearing behind a cylinder when the Reynolds number of the flow is moderate. To
make the pattern clearer small particles will be injected in the flow upward of the
cylinder. Consequently a lagrangian solver is required to solve the movement of
those particles.

Bibliography

[1] Euler/Lagrange simulation method for particle-laden flows, Verlag 1996
[2] Fluid dynamics and transport of droplets and sprays, W.A.Sirignano, Cambridge

University Press 1999

9.2 Physics 193

9.2 Physics

Multi-fluid and multi-phase flows play a dominant role in a wide range of natural
processes and industrial applications. Considering the field of particle-laden or
bubbly flows, which means that particles with a low volume fraction are dispersed
in a continuous fluid, examples can be categorized as (not complete):

particles/continuous phase

solid/gaseous: sandstorm, snowfall, sand brush, coal combustion, centrifuges,
etc.
liquid/gaseous: rain, ocean surface, airbrush, drying processes, fuel sprays, etc.
gaseous/liquid: ocean surface, cavitation, chemical processes, etc.

Assuming that the density of the surrounding fluid is much less than the particle
material density and considering only the friction force between continuous phase
and the particles (drag), and the gravitational acceleration, the lagrangian equation
of particle motion reads:

du⃗p
dt︸︷︷︸

inertia

= −18
µg
ρpD2

p

(u⃗g − u⃗p)︸ ︷︷ ︸
friction

+ g⃗︸︷︷︸
gravity

, (9.1)

where subscript d stands for dispersed phase properties and subscript c for contin-
uous phase properties. Rearranging the equation in terms of the drag coefficient, it
becomes

du⃗p
dt

= −3

4

ρg
ρp

cD
Dp

|u⃗g − u⃗p|(u⃗g − u⃗p) + g⃗ . (9.2)

cD is given by cD = 24
Rep

for Stokes flow (Rep ≪ 1) and for Rep ≫ 1 the drag
coefficient can be assumed following Schiller and Naumann as:

cD = 24/Rep
(
1 + 0.15Rep

0.687
)

(9.3)

Rep is the particle Reynolds number built with the particle diameter and the relative
velocity between fluid and particle.

To calculate the particle trajectory Eqn. 9.4 must be integrated.

x⃗p(x⃗, t) =

t+∆ t∫
t

u⃗p(x⃗, t)dt . (9.4)

Besides the drag, other particle-fluid interaction forces are described below. Apart
from special cases which gives optimal conditions to evoke these forces, they are
negligible in most of situations. To keep simplicity all following described forces
are neglected in our simulations.

194 9 Lagrangian Particle Tracking

Lift or Magnus force: force which results from pressure gradient perpendicular
to the motion, evoked by particle rotation or velocity gradients for example in
boundary layers.
Saffmann force: special case of the Magnus force for very small particles with
creeping flow (Rep ≪ 1)
Virtual mass and Basset force: unsteady forces which occur during particle ac-
celeration or deceleration

9.3 Numerics

In most of relevant cases which are object of numerical simulation, the particle di-
ameter is much smaller than the typical cell size of the computational grid. This
means that the flow scales in size order of the particle diameters can not be re-
solved. The particles are assumed therefore as mass points, where the flow around
the particle is not resolved but modeled in terms of the drag coefficient for exam-
ple. Since the particle-phase is not a continuous fluid the Navier-Stokes equations
are not valid. Two mathematical approaches are common in describing the par-
ticle motion. The more intuitively method is the Euler/Lagrange method where
the particles are represented by numerical particles for which the equation of sin-
gle particle motion is solved. For efficiency reasons these numerical particles are
used instead of real particles where each numerical particle or parcel (of particles)
represents numerous real particles. Each numerical particle is created during the
simulation and its trajectory calculated. Within every iteration of the continuous
phase, several iterations for the particle equation are executed, because the parti-
cle trajectory has to be resolved in scales smaller than the grid scale. This method
is very accurate in predicting polydispersity (diameter dependency) and particle
trajectory crossing, however, drawbacks are the stability behavior, computational
cost (time and storage) and parallelization. Following each individual particle one
have to know where it is, within which cell, who are the neighbor particles, their
locations, whether a collision is probable, etc. This lead to the further development
of other techniques. The most important alternative approach is to treat the parti-
cles also as a continuous phase described by (parts of) the Navier-Stokes equations
which interacts with the surrounding phase via exchange terms (mass, momen-
tum, energy). This grid-based method is less expensive in computational cost and
storage but also does not resolve the particle dynamics in the detailed resolution
as the Euler/Lagrange methods. It is for example more difficult to describe poly-
disperse effects as particles having different velocities and flow directions within
one cell, which includes phenomena as crossing particle trajectories and different
inertia behavior of particles with different diameters. In this chapter we focus on
the Euler/Lagrange method.

9.4 OpenFOAM®

9.4.1 Lagrangian Particle Tracking in OpenFOAM®

Several solvers are available in OpenFOAM® for particle-laden flows, especially for
evaporating and reacting particles (coalChemistryFoam, reactingParcelFoam,
etc.). Unfortunately the only solver to transport particles without interaction with

9.4 OpenFOAM® 195

the gas flow are post-processing solver; meaning that they will read the velocity
field at the latest time step and transport the cloud of particles using that velocity
field. A cloud in OpenFOAM® is a "cloud of parcels or numerical particles", which
means that every cloud is a <particleType>-cloud of <particleType>-particles. Since we
are interested in solving neither the thermal properties of the particles nor the com-
pressibility of the continuous fluid, we need to create a new solver. As a start point
we use the solver pisoFoam, which provides the framework for solving an incom-
pressible continuous fluid either laminar or with RANS/LES. The aim is now to
insert the additional functions and definitions for solving the particle tracking and
the momentum exchange between the two phases. Following steps are needed:

Definition and initialization of the particle cloud
Solving for the particle motion
Introduction of source terms in the flow equations due to the particles (momen-
tum, energy, species conservation,...)

The last step will be skipped for this exercise as the particles do not interact with the
carrier flow. For that kind of particles, we can use the type <basicKinematicCollidingCloud>
for cloud definition. The post-processing solver icoUncoupledKinematicParcelFoam
is a good example to find the key functions required by such cloud class.

while (runTime.loop())
{

Info<< "Time = " << runTime.timeName() << nl << endl;

Info<< "Evolving " << kinematicCloud.name() << endl;

laminarTransport.correct();

mu = nu*rhoInfValue;

kinematicCloud.evolve();

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

}

Listing 9.1: Time loop of icoUncoupledKinematicParcelFoam

The function evolve() of kinematicCloud calculates the particle motion in-
cluding the complete particle tracking solver. That function doesn’t require any
arguments. Therefore all the useful fields should be given to kinematicCloud at
its creation as can be seen in Listing 9.2.

Info<< "Constructing kinematicCloud " << kinematicCloudName << endl;
basicKinematicCollidingCloud kinematicCloud
(

kinematicCloudName,
rhoInf,
U,
mu,
g

);

196 9 Lagrangian Particle Tracking

Listing 9.2: Definition of a basicKinematicCollidingCloud

9.4.2 Postprocessing of Particle Trajectories

Using foamToVTK

The OpenFOAM® related version paraFoam of the software paraView can not post-
process the lagrangian particle tracks directly. Therefore a trick has to be used when
working with paraView. First the results have to be converted from the OpenFOAM®

files into VTK files using the tool foamToVTK. A folder VTK will be created with
several subfolders and a single .vtk file at the same folder level. This contains
the variables as we usually use with paraFoam. They can be opened by loading
this file in paraView. After that, these data can be handled in the same way as in
paraFoam. Plotting the contours on a slice with z = 0 (3rd dimension) instead on the
"volume" ensures the visibility of the particles, because particles have z-values of
z = 0 and the depth of the artificial cell in the z-direction is larger than the particle
sizes, which are appropriate for visualization. Within the folder lagrangian the
particle trajectories and related information are stored. Opening the corresponding
.vtk file and creating a glyph object choosing scalar=d, vector=U, type=sphere, scale
mode=scalar and scale factor of about 2 in our case will create spheres which repre-
sents the particles. By time animation of the files, the movement of the particles
and the transient flow field contours can be made visible.

Using paraFoam

It is also possible to use the traditional tool paraFoam. However it has to be used
in two times. First execute the command as usual and load only the geometry
and the fields linked to the continuous phases (i.e. select nothing in the Lagrangian
fields section neither some lagrangian geometry in the Mesh parts section.). And like
usually finish by clicking on the Apply.

Then click on the Open button (or in the menu File -> Open) and select in the case
folder the file with the extension .OpenFOAM. It will let you load again all the data
of the simulation. So this time select only the geometry (in the Mesh Parts section)
of type lagrangian and only fields in the Lagrangian Fields section. Finally click on
the Apply button.

As the particle are very small, we advice you to used a slice of the domain on the
plan z = 0. Then to visualize the particles apply the Glyph filter to the particles
fields (cf. previous paragraph for more information).

9.4.3 Boundary conditions for external flows

Up to now, the flows simulated where contained in a channel or in a closed ge-
ometry. In this exercise, you will simulate another kind of flow known as external
flow. In external flow an object in submerged in the atmosphere. The main goal is
usually to know the forces acting on the object and the flow distortion introduced

9.5 Exercises 197

by it. Typical examples are flows around wings, planes, cars,... .
For such kind of flows, the boundary conditions have to be computed from the
freestream state. That means from the know velocity, pressure and turbulence char-
acterizing the flow far from the submerged object1.

To simplified the settings of the boundary conditions in such cases when the flow
is subsonic, OpenFOAM® provides simple boundary types:

Field Name boundary condition Mandatory parameters

All except the pressure freestream freestreamValue

Pressure, p freestreamPressure none

The freestream corresponds to an inletOutlet boundary condition with the
inward value specified by the keyword freestreamValue. That value has to be
set with the value of the farfield velocity.
The freestreamPressure boundary conditions corresponds to a zeroGradient
boundary condition for the pressure. And the mass flux through the patch faces, ϕ,
is computed using:

ϕ = ρS⃗f · U⃗freestreamValue

9.5 Exercises

A classical configuration is the flow around a cylinder, where the very interesting
flow structures which can be made visible with so-called tracer particles. Tracer
particles should follow the fluid flow perfectly and their impact on the continuous
phase should be negligible to ensure accurate visualization of the single-phase flow.
Injected at appropriate locations the tracer particles concentrate at the vortex cores
of the cylinder wake and make the vortex shedding well visible. For simplification
we use here the infinite long cylinder configuration which can be approximated ac-
curately as a 2D flow around a circle. Dependent on the Reynolds number (built
with the diameter of the cylinder) different types of the von Karman vortex street
occur. For very low Reynolds numbers the recirculation downstream of the cylin-
der is axisymmetrical and becomes instable for increasing Re. At Reynolds num-
bers around Re = 3.e + 05 the flow changes from laminar to turbulent. We choose
a moderate Reynolds number of

Re =
c d

ν
=

0.13062ms · 0.01m
1.7894e−06

m2

s
= 730 ,

where the flow is laminar but with a nice and clearly periodic vortex shedding. In
figure 9.2 a typical snapshot of this flow structure is shown.

With given velocity and cylinder diameter a vortex shedding frequency according
to Strouhal (with Sr = 0.216) can be calculated with

f =
Sru

d
.

1 A tutorial using those boundary conditions is available there:
$FOAM_TUTORIALS/incompressible/simpleFoam/airFoil2D

198 9 Lagrangian Particle Tracking

Figure 9.2: Particle-laden flow around a cylinder at low Reynolds numbers, vorticity
magnitude and polydispersed particles

This is valid for the single-phase flow. Heavy particles may influence this frequency
due to their acceleration or deceleration effect on the gas flow.

To ensure that the injected particles follow the continuous flow exactly we choose a
Stokes number of St ≪ 1. The particles then behave like tracer particles to visualize
the flow structure. Therefore we set their mean diameter to a low value, arbitrarily
to 50 microns. With this characteristics the impact of the particles on the flow is
negligible. We only have the momentum flux from the gas phase to the particles
(one-way coupling).

For the solver kinematicParcelFoam as also for the other particle solvers the
injection can be realized by different injection types. These are amongst others
ConeInjection, PatchInjection, ManualInjection, etc. We use in a first
step the ConeInjection, which is a multi-points source creating a spray cone,
where the inner and outer cone angle can be specified. The relevant section of the
kinematicCloudProperties is shown below.

solution
{

// Boolean to active this cloud of particles
active true;
// If true, two-way coupling
coupled false;
// If true, the simulation is transient
transient yes;
cellValueSourceCorrection on;

sourceTerms
{ // Source terms schemes

schemes
{
}

}
// Interpolation schemes used when solving the particle motion
interpolationSchemes
{

rho cell;
U cellPoint;
mu cell;

}
// Time integration scheme for solving the particles motion
integrationSchemes
{

U Euler;

9.5 Exercises 199

}
}

constantProperties
{ // Id of the particle type

parcelTypeId 1;
// Minimal density of particle material per cells
rhoMin 1e-15;
// Minimal mass of a particle
minParticleMass 1e-15;
// Density of the particle material
rho0 964;
// Young’s modulus of the particle material
youngsModulus 6e8;
// Poisson’s ratio of the particle material
poissonsRatio 0.35;

constantVolume false;
}

subModels
{ // List of the forces acting on the particles

particleForces
{

sphereDrag;
gravity;

}
// Injection model
injectionModel coneInjection;
// Dispersion model / modification of the particles velocity due to the turbulence
dispersionModel none;
// Interaction with the patches model
patchInteractionModel standardWallInteraction;
// Heat transfer model
heatTransferModel none;
// Surface film model
surfaceFilmModel none;
// Collision between particles model
collisionModel none;
// Radiation model
radiation off;

// Sub-dictionary with the coefficients for the chosen model
standardWallInteractionCoeffs
{

type rebound;
}
// Properties of the injection model (<InjectionModel>Coeffs)
coneInjectionCoeffs
{

massTotal 0.0002;
parcelBasisType mass;
SOI 10; // Start Of Injection
duration 3;
// List of position and direction of the conical injectors
positionAxis
(

((-0.02 0.0 0.0) (1 0 0))

200 9 Lagrangian Particle Tracking

);
parcelsPerInjector 3000;
parcelsPerSecond 1000;
flowRateProfile constant 0.01;
Umag constant 0.13026;
thetaInner constant 0;
thetaOuter constant 30;

sizeDistribution
{

type RosinRammler;
RosinRammlerDistribution
{

minValue 2.5e-05;
maxValue 7.5e-05;
d 5e-05;
n 0.5;

}
}

}
}
// Functions for the cloud particles (similar to functions in controlDict for the flow)
cloudFunctions
{}

Listing 9.3: Section of kinematicCloudProperties

In the constant folder also a file called transportProperties is included,
which provides the air properties needed for particle cloud creation. As OpenFOAM®

can only create cloud of particles for compressible flow, the density of the carrier
flow has to be specified in the transport dictionary.

Create the solver

The exercise will be to create the solver for the von Karman street case.

Exercises

9.1 Create a new folder kinematicParcelFoam in your own solver folder. Copy the .C,
.H file and the Make folder of the solver pisoFoam into this folder and rename the files
and the phrase pisoFoam to kinematicParcelFoam everywhere in the code. Do not
forget to modify the entries in the files file. Compile it.

9.2 Create an object of type basicKinematicCollidingCloud. Name it kinematicCloud.
Refer to the code of the solver $FOAM_SOLVERS/lagrangian/icoUncoupledKinematicParcelFoam.
Do not forget the header files needed for cloud definition. The constructor of the cloud
object requires the density rho not existing in pisoFoam. Use the trick of icoUncoupled
KinematicParcelFoam to create a density field based on a constant value read in the
dictionary transportProperties.

9.3 Include the call in the main file of the solver for the particle transport function.

9.4 Use the options file given with the case for the compilation.

9.6 Extra Practice and Background Information 201

9.5 Start running the code for verification. Use the tutorial’s example. It should be possible
to eliminate the occurring errors applying the knowledge learned in the chapters before.
Make yourself familiar with the additional files in the constant folder needed for cloud
properties and injection definitions.

9.6 Before running the complete simulation, define appropriate probe location(s) and vari-
ables in order to determine the vortex shedding frequency. Start the simulation using the
single-phase solution after 10 s as start condition (! This simulation requires a long time.)

9.7 For postprocessing animate simultaneously the vorticity2 contours on a slice with z = 0
and the particle motion.

9.8 Compare the vortex shedding frequency of the simulation with the theoretical one. Use
Sr = 0.216 (d = 0.01m).

9.6 Extra Practice and Background Information

Extra Practice

In this tutorial we considered a laminar particle-laden flow around a cylinder. What
changes with turbulence? Assuming that we use RANS or LES there is always an
amount of turbulent scales, which is smaller than the cell size. These fluctuations
we can not resolve and have to model their impact on the large scale flow. In two-
phase flows we have to consider also the effect of these turbulent scales on the par-
ticle motion and vice versa. The so called turbulent dispersion can be explained as
the amount of the physical drag force which results from the interaction of the tur-
bulent subgrid-scale velocity fluctuations with the particles. For RANS simulations
the model of Gosman and Ionnides is often used, because it is computational cheap
and uses the kinetic energy and dissipation rate which are provided by most of the
RANS turbulent stress models. The idea is that particles cross several subgrid-scale
eddies, which modify their trajectory. The resulting deviation from the mean veloc-
ity is determined by the time which a particle need to cross an eddy or by the eddy
lifetime.

Within this tutorial we neglected particle-particle (four-way-coupling) since we use
particles with low Stokes numbers which follow the flow almost exactly, and be-
cause we have a very low loading which makes particle-particle collisions not prob-
able. The map shown in Figure 9.3 gives the different regimes of gas-particle and
particle-particle interaction, dependent on the volume fraction and on the relation
between particle response times and characteristic turbulence times.

In the framework of the Euler/Lagrange solver in OpenFOAM®, four-way cou-
pling can be considered. Details, however, can be found only directly in the code.

Play around with the cloud-properties dictionary

For a more homogeneous distribution of the particles a line injection would be
better than the point behavior of the ConeInjection. Therefore we want to
use the KinematicLookupTableInjection.This injection model allows us

2 To compute the vorticity of a flow, execute the post-processor vorticity on the case.

202 9 Lagrangian Particle Tracking

Figure 9.3: Conditions for the different types of particle-particle and particle-
turbulence interaction.

to define more than one injection point and, in addition, each with individual
velocity components and individual diameter. For application appropriate en-
tries within the kinematicCloudProperties are necessary. Find out all en-
tries needed and specify them by using the corresponding settings of the cone
injection. Specify 5 injection points with x = -0.015 and y=-0.005, 0.0025, 0.0,
0.0025, 0.005 and u=0.13. Start the simulation again for a check of the settings.
If you see only one injection stream, the flow rate of particles by time step is
to low to add a particle at each injection point at each time step. To change
that, switch parcelBasisType from mass to number and tune the parameter
parcelsPerSecond.

9.6 Extra Practice and Background Information 203

Create the new injection model

The goal here is to create an injection model that has a certain number of injection
points (specify in a file). And for each of them the particles introduced have a size
distribution specified by a probability density function.
This injection model is close to ManualInjection model. So you will start from
the code of that model.

Exercises
9.1 First copy the provided folder MultipleInjection in $WM_PROJECT_USER_DIR/

src/InjectionModel. Then go with a terminal inside MultipleInjection and
copy there ManualInjection.H and ManualInjection.Cwith the new name MultipleInjection.
For that you will used advantageously the following command:

export KINEMATIC=$FOAM_SRC/lagrangian/intermediate/submodels/Kinematic
sed s/Manual/Multiple/g \
$KINEMATIC/InjectionModel/ManualInjection/ManualInjection.C \
> MultipleInjection.C
sed s/Manual/Multiple/g \
$KINEMATIC/InjectionModel/ManualInjection/ManualInjection.H \
> MultipleInjection.H

Try to compile the class to check that the rename process is correctly done.

9.2 Remove the unused member diameters_ from the header file and add the three fol-
lowing members:

//- Injection duration - common to all injection sources
const scalar duration_;

//- Number of parcels per injector - common to all injection sources
const label nParcelsPerSecond_;

//- Volume flow rate of parcels to introduce relative to SOI [m^3]
const autoPtr<DataEntry<scalar> > volumeFlowRate_;

Because a new class DataEntry is used, you have to include its definition DataEntry.H
at the top of the header file and add before starting the definition of template<class
CloudType> class MultipleInjection the following lines:

template<class Type>
class DataEntry;

9.3 Now go the source file and comment the content of the following functions: parcelsToInject,
volumeToInject, the constructor, timeEnd, setPositionAndCell and setProperties.
Then remove the initialization of diameters_ in the constructor and add after the ini-
tialization of sizeDistribution_ these lines to initialize the new members from the
dictionary:

duration_(readScalar(this->coeffDict().lookup("duration"))),
nParcelsPerSecond_
(

readScalar(this->coeffDict().lookup("parcelsPerSecond"))
),
injectorCells_(positions_.size()),
volumeFlowRate_
(

204 9 Lagrangian Particle Tracking

DataEntry<scalar>::New
(

"volumeFlowRate",
this->coeffDict()

)
)

Check the changes made up to now by compiling the class after having add the header
file DataEntry.H at the list of included headers.

9.4 The constructor needs to be changed to initialize the total volume of particles injected.
The implementation is:

// Determine volume of particles to inject
this->volumeTotal_ = 0.0;
this->volumeTotal_ = positions_.size()*volumeFlowRate_().integrate(0.0, duration_);

9.5 The next step is the new implementation of the functions. The action performed by each
function is described here after. You can take inspiration from KinematicLookupTableInjection
to figure out the implementation

parcelsToInject: return the number of parcels to be injected between time0
and time1.

volumeToInject: return the volume of parcels to be injected between time0 and
time1. Hint: In the constructor, the total volume to be injected is computed.

timeEnd: time at which the injection has to stop. Hint: SOI_ is the Starting-Of-
Injection time and duration_ the total time during which the parcels are injected.

setPositionAndCell: set the position and the cell in which the particle is in-
jected. injectorI3 is the index of the injector from which the particle enters the
simulation, position the vector of initial position of the particle (and so the po-
sition of the injector), cellOwner the cell in which is the injector, tetFaceI the
face of the injector tetrahedron face and tetPtI the injector tetrahedron point.
Hint: the variable nParcels in setPositionAndCell is the second parameter
appearing without name const label,. So to use it, write instead const label
nParcels,.

Finally the setProperties function has to be implemented. That function pre-
scribes the velocity and the diameter of the injected particles. The former is given by
the variable U0 (as described in the code you commented). And as we want it to be
random, the diameter d is calculated as:

parcel.d() = sizeDistribution_().sample();

9.6 Change also the comment at the begin of the header file explaining the usage of the
injection model. You can now compile your new injection model.

9.7 Test your new injection model on a copy of the previous case (reduce the duration of
simulation to 1 s and not 3 s - you could also reduced the writing interval). The input
file needed and the parameters are already available. So you only have to change the
keyword InjectionModel in the dictionary kinematicCloudProperties.

3 Have a look at KinematicLookupTableInjection.C to find how to compute this index.

9.6 Extra Practice and Background Information 205

Background Information

9.6.1 Add new models

Add to runtime

The configuration files of a test case are based on keyword and string entries. When
you select a model, e.g. the k-epsilon model for the turbulence, OpenFOAM®

checks if this model exists within a database such database are created for each
top level model e.g. all turbulence model in RANS for incompressible flows. Con-
sequently in addition to the implementation of a new model, you will have most
of the time to add it to some database. This is done by calling some static function
in the source code. The one creating a selection table (to store one type of model) is
usually called defineRunTimeSelectionTable(nameModel, dicitonary).
And the one adding a specific model to the table is usually
addToRunTimeSelectionTable(nameModel, nameSpecificModel, dictionary).
For example to define a selection table for the RANS model, the function called is in
$FOAM_SRC/turbulenceModels/incompressible/RAS/RASModel/RASModel.C:
defineRunTimeSelecetionTable(RASModel, dictionary)

And to add the sub-model k-epsilon, the following call is made in
$FOAM_SRC/turbulenceModels/incompressible/RAS/kEpsilon/kEpsilon.C

addToRunTimeSelectionTable(RASModel, kEpsilon, dictionary);

Add debug flag

As described in the User’s Guide (3.2.5 Debug messaging and optimization switches),
you can output more information or carry out more checks during the execution of
your code by switching some flags in $HOME/.OpenFOAM/$WM_PROJECT_VERSION/
controlDict4. Those flags turn on some parts of the code that usually print more
information to the output and sometimes carry out more checks on the data. There
are therefore very useful for debugging but not to run efficiently a test case.
The additional information are provided when the integer after the name of the
class used is equal to 1 (0 turn off the output of the information).

When you implement a new model/class, you can easily add that ability to your
new class. This is done by calling one static function usually called
defineTypeNameAndDebug(className, 0);. The integer is the default value
of the flag. So if zero, by default no additional information are output in the log
file.
For example for the k-epsilon model:
defineTypeNameAndDebug(kEpsilon, 0);

Then to add some optional output in our code, you just have to surround them by
if(className::debug)
{

Info << /*Optional output*/ << endl;
// Additional tests

}

4 To create a default list of debug flag, copy the file $WM_PROJECT_DIR/etc/controlDict

206 9 Lagrangian Particle Tracking

Some advanced examples

When you specify a model within a dictionary, OpenFOAM® checks if the name of
the model is valid. Consequently when you develop a new model (e.g. a new injec-
tion model), the name of this new model has to be added to those lists. This is not
done manually by editing some files. But directly by calling specific function within
the libraries used for the current case (usually called makeTypeOfModel). Without
knowing it, you have already used a coupled of time this functionality; e.g. in the
previous chapter you have created a new boundary condition that as to be added to
list. For that the following lines are put at the end of rainDropletInletVelocity:

namespace Foam
{

makePatchTypeField
(

fvPatchVectorField,
rainDropletInletVelocityFvPatchVectorField

);
}

Listing 9.4: Add a new boundary condition to the runTime

For a boundary condition, this is not too complicated. However due to that trick the
compilation of a new model could be not so straightforward. As for the new injec-
tion model you can try to implement in the extra-practice: MultipleInjection.

MultipleInjection/makeBasicKinematicCollidingParcelSubmodels.C

LIB = $(FOAM_USER_LIBBIN)/libuserlagrangianIntermediate

Listing 9.5: Make/files to compile a new injection model.

If you look to Make/files (see listing 9.5), the compilation of the class, MultipleInjection,
is not done directly. But it is a special function makeBasicKinematicCollidingParcelSubmodels.C
that it is compiled. Then in the beginning of that file the header file makeParcelInjectionModels.H
is included (see listing 9.6). In it the addition of the new injection model is carried
out.

#include "basicKinematicCollidingCloud.H"

// Kinematic
#include "makeParcelInjectionModels.H"
// * //

namespace Foam
{

makeParcelInjectionModels(basicKinematicCollidingCloud);
}

Listing 9.6: makeBasicKinematicParcelSubmodels.C

Indeed the new injection model will be compiled thanks to the inclusion at line 33
of MultipleInjection.H (see listing 9.7).

27 #ifndef makeParcelInjectionModels_H
28 #define makeParcelInjectionModels_H
29

9.6 Extra Practice and Background Information 207

30 // * //
31

32 #include "MultipleInjection.H"
33

34 // * //
35

36 #define makeParcelInjectionModels(CloudType) \
37 \
38 makeInjectionModelType
\

39 (\
40 MultipleInjection, \
41 CloudType \
42);
43 // * //
44

45 #endif

Listing 9.7: makeParcelInjectionModels.H

To be able to figure out how to compile a specific type of model, you have to find the
way is done for an existing model. For that, start by analyzing the Make/files file
of the library containing the model to discover the compiled files. Then go upward
in the hierarchy of the header files to find where your new model should appear.

Chapter

10 Moving Mesh

210 10 Moving Mesh

10.1 Todays problem

Up to now the computational domain was always fixed. This is sufficient for many
basic investigations and for some real computations. But often a static domain is
not sufficient. In case of an external influence on the domain that cause a geometric
change of the area of interest (as in an internal combustion engine) the mesh has
to be adapted to the actual geometry (the changing of the domain could also be
caused by internal reasons like in an fluid flow engine, of course).

Figure 10.1: Sketch of an internal combustion engine with prechamber

For demonstration of a dynamically changing mesh we take the internal combus-
tion engine discussed earlier 7.1. The simplifications done earlier are retained ex-
cept the fixed geometry. So for repetition, we want to simulate the combustion in a
prechamber internal combustion engine with the following simplifications:

We do the simulation in 2D, not 3D
on a relatively coarse grid.
We use a very simple combustion model (the "Schmid Model")
We also ignore the different stoichiometry in prechamber and main chamber.

Bibliography

[1] http://foam.sourceforge.net/doc/Guides-a4/UserGuide.pdf
OpenFOAM Programmers Guide, Version 1.6, 24th July 2009

[2] http://foam.sourceforge.net/doc/Guides-a4/ProgrammersGuide.pdf
OpenFOAM Programmers Guide, Version 1.6, 24th July 2009

[3] H. Jasak: Dynamic Mesh Handling in OpenFOAM, AIAA-2009-341 47th AIAA
Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Expo-
sition, 2009

10.2 Physics 211

[4] J. H. Ferziger; M. Peric: Computational methods for fluid dynamics, Springer, 2end
edition, 2001

[5] P. Moradnia: http://www.tfd.chalmers.se/h̃ani/kurser/OS_CFD_2007/
A tutorial on how to use Dynamic Mesh solver IcoDyMFOAM Spring 2008

10.2 Physics

The physics of the problem does not change compared to the ones told earlier. The
usage of a mesh in any CFD-calculation is a simplification of the real object of in-
terest. So a dynamically changing mesh, also called “moving mesh” is only a mater
of simulation and has no physical background related to the physics of reality.

10.3 Numerics

Here we take a closer look on the effect of a dynamic mesh on the basic Equations
of a CFD-simulation. Assuming that the coordinate system does not change during
the simulation only the convective term will be affected by a relative velocity due
to the mesh motion.
First, we consider a 1-D- continuity-equation

∂ρ

∂t
+
∂(ρv)

∂x
= 0. (10.1)

As we are working with the FVM-Method as most CFD-Codes does, we integrate
this equation over a control volume with moving walls from x1(t) to x2(t):∫ x2(t)

x1(t)

∂ρ

∂t
dx+

∫ x2(t)

x1(t)

∂(ρv)

∂x
dx = 0 (10.2)

Considering the chain rule for the first term eq. 10.2 leads to:

d

dt

∫ x2(t)

x1(t)

ρdx−
[
ρ2
dx2
dt

− ρ1
dx1
dt

]
+ ρ2v2 − ρ1v1 = 0 (10.3)

Taking into account that
dx

dt
represents the velocity of the moving mesh respectively

the integration boarders, the term
dx

dt
could be replaced by vb, representing the

boarder velocity. Therefor the term in brackets became similar to the last two terms
and the eq: 10.3 yields:

d

dt

∫ x2(t)

x1(t)

ρdx+

∫ x2(t)

x1(t)

∂

∂x
[ρ(v − vb)] dx = 0 (10.4)

If the border velocity vb is equal to the fluid velocity v the continuity equation re-
duce to the first term, that can be written in the Lagrange mode, dm/dt = 0
Writing the eq. 10.3 in 3D leads to

d

dt

∫
V

ρdV −
∫
S

ρ
dr

dt
·n dS +

∫
S

ρv ·n dS = 0 (10.5)

respectively with the replacement of
dx

dt
by vb:

d

dt

∫
V

ρdV +

∫
S

ρ(v − vb) ·n dS = 0 (10.6)

212 10 Moving Mesh

-� � -

-�

6

?

?
66

?

new position

old position

n

e

s

w

(∆x)n δx

(∆x)n+1

δ
y

(∆
y
)n

(∆
y
)n

+
1

Figure 10.2: Control volume growing in time due to different mesh velocities in x-
and y-direction

The same cane be done with the momentum equation. For example the integral
mode of the i-th component of the momentum equations can be written as follows:

d

dt

∫
V

ρuidV +

∫
S

ρui(v − vb) ·n dS =

∫
S

(τijij − pii) ·n dS +

∫
V

bidV. (10.7)

According to this example, the equation of each scalar value can be derived by re-
placing the velocity vector in the convective term by the relative velocity v − vb.
So if the position of the mesh is known for every time as it is the case if the mesh
movement is predefined, the solution of the Navier-Stokes-Equations constitute no
new problems. The convective flux is simply calculated with a relative velocity on
the borders of the control volume (CV). Therefore you need to know the Velocity of
each side of the control Volume. And there you have to take care how to calculate
them because the conservation of any conservative value e.g. mass is not neces-
sarily satisfied by every kind of approximated mesh velocity. In the following an
example will be shown, where mass conservation is not achieved and a solution of
this problem will be presented.
Let us assume a rectangular control volume where the sides move with constant
but different velocities as it is shown in picture 10.2. The fluid of interest should be
incompressible and moves with a constant velocity. As an example, the continuity-
equation is considered with an implicit Euler equation.

According to the implicit Euler integration over time the discretized continuity
equation for the CV in fig. 10.2 yields

ρ[(∆V)n+1 − (∆V)n]

∆t
+ ρ[(u− ub)e − (u− ub)w]

n+1(∆y)n+1+

ρ[(v − vb)n − (v − vb)s]
n+1(∆x)n+1 = 0,

(10.8)

where u and v are velocity components of the fluid according to the cartesian sys-
tem. Due to a constant fluid velocity like it was predefined, the fluid velocities
crosses out. Therefore you get the following term:

ρ

∆t
[(∆V)n+1− (∆V)n]−ρ(ub,e−ub,w)(∆y)n+1−ρ(vb,n−vb,s)(∆x)n+1 = 0 (10.9)

Because of a constant mesh velocity we can replace the difference of the velocity
terms by the first derivation in time:

ub,e − ub,w =
δx

∆t
, vb,n − vb,s =

δy

∆t
(10.10)

10.3 Numerics 213

Inserting this in Eq. 10.9 an considering that (∆V)n+1 = (∆x∆y)n+1 and (∆V)n =
[(∆x)n+1 − δx][(∆y)n+1 − δy] one recognize a mass source:

δṁ =
ρδxδy

∆t
= ρ(ub,e − ub,w)(vb,n − vb,s)∆t (10.11)

If you analyze the right hand side, it is obvious that the mass production is zero
if the mesh velocity in one direction is zero or the velocities on opposite sides are
equal. In addition as the production rate is proportional to the time step, a small
value of the latter will create an acceptable production rate. However the accumu-
lation with the time can result in a problematic value.
The explicit Euler scheme faces the same problem, whereas the Crank-Nicholson
discretization or the implicit discretization on three time levels would solve it cor-
rectly. But there are cases where even these methods produce artificial errors.
A possible solution for this problem is to add an equation called space conservation
equation. It is close to a continuity equation with a density of one.

d

dt

∫
V

dV −
∫
S

vb ·n dS = 0 (10.12)

Figure 10.3: Figure of a CV with different velocities of the sides.

Starting again with the Euler method for time integration, the space conservation
equation of the CV shown in Fig. 10.3 gets the following form:

(∆V)n+1 − (∆V)n

∆t
=
∑
c

[(vb ·n)]n+1
c , c = e, w, n, s (10.13)

The difference in the control Volume over the time could also be described by sum
of all partial changes in volume that occur for every side of the CV from timestep
to timestep (see pic. 10.3).

(∆V)n+1 − (∆V)n

∆t
=

∑
c δV

n+1
c

∆t
(10.14)

Because the left hand side of both equations are equal also the right hand-side have
to be equal. Using this the change in volume over time can be written as

V̇ n+1
c = (vb ·n)cSc =

δV n+1
c

∆t
. (10.15)

214 10 Moving Mesh

Using this the mass flow through one side can be determined by the equation

ṁn+1
c =

∫
Sn+1
c

ρ(v − vb) ·ndS ≈ [ρ(v ·n)S]n+1
c − (ρV̇)n+1

c (10.16)

Going now back to the implicit Euler equation this discretization can be used for
the connective term:

(ρ∆V)n+1 − (ρ∆V)n

∆t
+
∑
c

ṁn+1
c = 0 , c = e, w, n, s (10.17)

For a sequential solver as the later used PISO-Solver, the mass fluxes in all con-
servation equations despite the continuity equation are presumed to be known. In
such a case only the continuity equation has to be changed.

10.4 OpenFOAM® 215

10.4 OpenFOAM®

10.4.1 Preparing the solver files

The solver described here is a modification of the solver developed in Chapter 7.
As we have learned already its the easier way to start with an existing solver it is
recommended to copy the solver SchmidFoam you have created earlier into your
local solver directory (e.g. to SchmidDyMFoam). Then it is better to change the
name of the C++ file into e.g. SchmidDyMFoam to avoid a mix up with the original
file while editing. For that adapt Make/files. Then you must also change the
Make/options file. For a dynamically changing mesh additional headers and

libraries have to be used: dynamicFvMesh and meshTools. By executing the
wmake command within the solver folder you can compile the solver for a first
time. There should be no errors, only two warnings about not used variables which
can be neglected.

10.4.2 Modifying the solver

Changes in the main file

Two major changes have to done to the solver: allow the mesh to move and the rel-
ative fluxes instead of the absolute ones. The new solver is presented in the listing
(10.1). The first requirement is answered by including the header file dynamicFvMesh.H
at the beginning that makes available the dynamic mesh utilities. Secondly we re-
place the line
#include "createMesh.H"

by
#include "createDynamicFvMesh.H"

to generate an non-static mesh.

Then the mesh is moved at each time step using the function:

mesh.update();

This function is called in front of every time step within the time loop.

The fluxes have to be absolute when setting the time step. So the function makeAbsolute
is called. Then after some checks and before the equations are solved they are made
relative using the function makeRelative.

#include "setRootCase.H"
#include "createTime.H"
// create a dynamic mesh and not a static one
//#include "createMesh.H"
#include "createDynamicFvMesh.H" // HERE
// Read values for hu, sL and yFuel
#include "readChemistryProperties.H"
#include "createFields.H"
#include "initContinuityErrs.H"

pimpleControl pimple(mesh);

Info<< "\nStarting time loop\n" << endl;

216 10 Moving Mesh

while (runTime.run())
{

#include "readTimeControls.H"
#include "compressibleCourantNo.H"
// Make the fluxes absolute
fvc::makeAbsolute(phi, rho, U); // HERE

#include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

// Update the mesh
Info << "Update the mesh." << nl << endl; // HERE
bool meshChanged = mesh.update(); // HERE

if (meshChanged) // HERE
{ // HERE

thermo.correct(); // HERE
#include "compressibleCourantNo.H" // HERE

} // HERE

// Make the fluxes relative to the mesh motion
fvc::makeRelative(phi, rho, U); // HERE

// Compute the source terms
#include "burn.H"
#include "rhoEqn.H"

// --- Pressure-velocity PIMPLE corrector loop
for (pimple.start(); pimple.loop(); pimple++)
{

if (pimple.nOuterCorr() != 1)
{

p.storePrevIter();
rho.storePrevIter();

}

#include "UEqn.H"
// Solve the transport of the regression variable
#include "bEqn.H"
#include "hEqn.H"

// --- PISO loop
for (int corr=0; corr<pimple.nCorr(); corr++)
{

#include "pEqn.H"
}

if (pimple.turbCorr())
{

turbulence->correct();
}

}

runTime.write();

10.4 OpenFOAM® 217

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;

}

Listing 10.1: SchmidDyMFoam.C file of SchmidDyMFoam solver.

Adapt the pEqn.H file

As the fluxes are computed also for the Poison equations we have to modify the
pEqn.H file. The file should look like this (changes were made at the marked lines)

rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();

U = rAU*UEqn().H();

if (pimple.nCorr() <= 1)
{

UEqn.clear();
}

if (pimple.transonic())
{

surfaceScalarField phid
(

"phid",
fvc::interpolate(psi)

*(
(fvc::interpolate(U) & mesh.Sf())

// + fvc::ddtPhiCorr(rAU, rho, U, phi) // HERE
)

);

fvc::makeRelative(phid, psi, U); // HERE

for (int nonOrth=0; nonOrth<=pimple.nNonOrthCorr(); nonOrth++)
{

fvScalarMatrix pEqn
(

fvm::ddt(psi, p)
+ fvm::div(phid, p)
- fvm::laplacian(rho*rAU, p)

);

pEqn.solve
(

mesh.solver(p.select(pimple.finalInnerIter(corr, nonOrth)))
);

if (nonOrth == pimple.nNonOrthCorr())
{

phi == pEqn.flux();
}

218 10 Moving Mesh

}
}
else
{

phi =
fvc::interpolate(rho)*
(

(fvc::interpolate(U) & mesh.Sf())
//+ fvc::ddtPhiCorr(rAU, rho, U, phi) // HERE

);

fvc::makeRelative(phi, rho, U); // HERE

for (int nonOrth=0; nonOrth<=pimple.nNonOrthCorr(); nonOrth++)
{

// Pressure corrector
fvScalarMatrix pEqn
(

fvm::ddt(psi, p)
+ fvc::div(phi)
- fvm::laplacian(rho*rAU, p)

);

pEqn.solve
(

mesh.solver(p.select(pimple.finalInnerIter(corr, nonOrth)))
);

if (nonOrth == pimple.nNonOrthCorr())
{

phi += pEqn.flux();
}

}
}

#include "rhoEqn.H"
#include "compressibleContinuityErrs.H"

// Explicitly relax pressure for momentum corrector
p.relax();

// Recalculate density from the relaxed pressure
thermo.correct(); // HERE
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
Info<< "rho max/min : " << max(rho).value()

<< " " << min(rho).value() << endl;

U -= rAU*fvc::grad(p);
U.correctBoundaryConditions();

DpDt = fvc::DDt(surfaceScalarField("phiU", phi/fvc::interpolate(rho)), p);

Listing 10.2: PISO loop for the moving mesh solver.

Now we can compile the solver as explained before.

10.4 OpenFOAM® 219

Case setup

Now we start the case setup. The easiest way is again to copy the SchmidFoam
case-directory to a new directory (e.g. engineDyM). The initial mesh geometry is
the same for both cases but we have to put the lower boundary and the right bound-
ary within separate wall patches respectively piston and cylinderWall. And
for thermodynamically reasons the external wall of the cylinder becomes also a
separate patch. To do this we change the constant/polymesh/blockMeshDict
file.

The boundary values of the newly introduced patches must also be added at the
initial conditions at the start time directory. They are the same as for the patch
wand for almost all variables as they are no more than a split of the former wall.

The exception are the velocity and the temperature. The velocity of the lower patch
(the piston) should still be (0, 0, 0) relative to the reference of the piston. However
the reference of the simulation is a viewer that see the piston moving. So for the
simulation reference, the velocity on the wall is no more (0, 0, 0) but equals to the
wall velocity. To set that in OpenFOAM® you have to use the movingWallVelocity
boundary condition :

piston
{

type movingWallVelocity;
value uniform (0 0 0);

}

For a better calculation the following start conditions will be used for the tempera-
ture:

cylinderWall
{

type wallHeatTransfer;
alphaWall uniform 100;
Tinf uniform 300;
value uniform 300;

}
wand
{

type wallHeatTransfer;
alphaWall uniform 100;
Tinf uniform 300;
value uniform 300;

}
piston
{

type wallHeatTransfer;
alphaWall uniform 100;
Tinf uniform 400;
value uniform 300;

}

Listing 10.3: Temperature boundary conditions.

The procedure to create the mesh via using subsetMesh remains the same.

220 10 Moving Mesh

Definition of the mesh motion
The mesh motion is defined in a file called dynamicMeshDict in the constant
folder. Here is an example of it:

FoamFile
{

version 2.0;
format binary;
class dictionary;
location "constant";
object dynamicMeshDict;

}
// *//
dynamicFvMesh dynamicMotionSolverFvMesh;

motionSolverLibs ("libfvMotionSolvers.so");

solver velocityComponentLaplacian y;

diffusivity directional (1 1 0);

Listing 10.4: dynamicMeshDict defining the piston motion.

The parameters of this dictionary will be now described.

dynamicFvMesh
There are two mesh manipulation approaches available which are defined in 2 dif-
ferent classes. The one uses for this case is the dynamicFvMesh model. This ap-
proach is useful for cases where the topology remains constant and the changes
within the mesh stay small. The changes are done by squeezing or stretching the
cells and by changing the node positions. Five different classes can be used with
this approach:

staticFvMesh:
This class is identical to a solver without mesh motion. The dynamicMeshDict
file does not need any further items.
dynamicMotionSolverFvMesh:
This class changes the mesh via squeezing or stretching of cells and movement
of points. If you use this approach you will have to make sure, that the changes
in the mesh does not corrupt the solution in an undesired way. In addition to the
entry dynamicFvMesh you have to specify the solver and the diffusivity
within the dynamicMeshDict file.
dynamicInkJetFvMesh:
Whereas the dynamicMotionSolverFvMesh is for a mesh deformation with a
constant velocity along a specified direction the dynamicInkJetFvMesh class
performs an oscillating movement along the X axis for all cells on the left side
of refPlaneX1. Therefore also the solver and the diffusivity have to be
specified as before. Additionally a subdictionary named
dynamicInkJetFvMeshCoeffs has to be created in dynamicMeshDictwith
the coefficients

amplitude (the amplitude of the motion)
frequency (the frequency of the motion)
refPlaneX (the x-Component of the reference plane)

1 All cells on the right side will remain fixed

10.4 OpenFOAM® 221

The x-coordinates of the points are scaled using the following relation: Xnew =
Xinit(1 + 0.5A cos(2πft))

dynamicRefineFvMesh:
dynamicRefineFvMesh is similar to the staticFvMesh class. The only dif-
ference is that according to predefined field the mesh will be refined during the
run according to the defined parameters. The dynamicMeshDict file should
therefore look something like this:

dynamicRefineFvMeshCoeffs
{

// How often to refine
refineInterval 1;
// Field to be refinement on
field alpha1;
// Refine field inbetween lower..upper
lowerRefineLevel 0.001;
upperRefineLevel 0.999;
// If value < unrefineLevel unrefine
unrefineLevel 10;
// Have slower than 2:1 refinement
nBufferLayers 1;
// Refine cells only up to maxRefinement levels
maxRefinement 2;
// Stop refinement if maxCells reached
maxCells 200000;
// Flux field and corresponding velocity field. Fluxes on changed
// faces get recalculated by interpolating the velocity.
correctFluxes
(

(phi U)
);
// Write the refinement level as a volScalarField
dumpLevel true;

}

Listing 10.5: dynamicMeshDict to use with the class
dynamicRefineFvMesh.

solidBodyMotionFvMesh
This class is used for complex calculation like Ship design Analysis (SDA) with
a 3 degree of freedom (DoF) motion function or Sea Keeping Analysis (SKA)
with a 6DoF motion function. This a special part of the area of moving mesh
and is still a field in development.

The second approach of a moving mesh is done by the topoChangerFvMesh.
Within this class the topology does not remain constant. This approach is used if the
topology can not be kept at all or the simulation results would be affected in an un-
acceptable way. The class polyTopoChanger will search for the meshModifiers
input file, an if it exists extract the necessary data out of it. Otherwise the data are
read from the dynamicMeshDict. There are four sub-classes within this
topoChangerFvMesh .which are listed below:

linearValveFvMesh uses sliding meshes between the interfaces of two pieces
of mesh in relative linear motion. For the parameters needed the dictionary
linearValveFvMeshCoeffs is used to define the solver and the mesh han-
dling utility. For more information see [5].

222 10 Moving Mesh

linerValveLayersFvMesh is an extension of the previous mentioned one.
In addition this class performs layer addition and removal. Therefore the extra
dictionary layer is needed.
mixerFvMesh allows the implementation of a case with a rotor/stator interac-
tion. A number of coefficients like refinement values and solver have to speci-
fied in the dynamicMeshDict.
movingConeTopoFvMesh is a utility for mesh manipulation like squeezing
and stretching and also inserting and deleting cells. The coefficient for refin-
ing and inserting cells are declared in the dynamicMeshDict.

motionSolverLibs
The keyword motionSolverLibs specifies the library used by the manipulation
approach. The keyword solver defines as the word already says the solver by
which the motion equation is solved. In OpenFOAM® there are four solvers avail-
able.

displacementLaplacian The equation of cell displacement are solved based
on the Laplacian discretisation of the diffusivity and the cell displacement. There-
fore the diffusivity model must be read from the dynamicMeshDict and the
displacement from an extra file named pointDisplacement in the starting
time folder. There you specify the final displacement of mesh components e.g
moving walls and the displacement of the internal field, if this is possible. In
general the file contains the following items:

dimensions (determines the displacement dimensions)
internalField (the displacement of the internal field

mesh)
boundaryField (the displacement of the boundaries mesh)

Additionally you can define a cellDisplacement file. The content is quiet the
same but the types differ from pointVectorFieldwithin pointDisplacement
to volVectorFiled within cellDisplacement. The cellDisplacement
is not compulsory and can be neglected. By adding the vector name, e.g. y
to the solver name we get displacementComponentLaplacian y an the
equations are only solved in the y direction. The same has to be done with the
pointDisplacement. So you get pointDisplacementy
velocityLaplacian This solver is almost identical to the one mentioned pre-
viously. The only difference is in dealing with velocities instead of displace-
ment. So a pointMotionU file is needed. Again there can be also be supplied a
cellMotionU file although it is not necessary. The difference is again the type
as told before. In the present case we use a component type of this solver
velocityComponentLaplacian y (see above) together with a mointMotionUy
file in the initial time directory, shown below:

FoamFile
{

version 2.0;
format ascii;
class pointScalarField;
location "0.000000";
object pointMotionUy;

}
// * //

10.4 OpenFOAM® 223

dimensions [0 1 -1 0 0 0 0];

internalField uniform 0;

boundaryField
{

cylinderWall
{

type slip;
}
wand
{

type fixedValue;
value uniform 0;

}
piston
{

type fixedValue;
value uniform 0.02;

}
wedge1
{

type wedge;
}
wedge2
{

type wedge;
}
defaultFaces
{

type empty;
}

}

Listing 10.6: Boundary condition to define the motion of the boundaries.

As a motion velocity is specified without final position, you have to take care
that your domain does not crash, due to a zero volume mesh.
LaplaceFaceDecomposition This approach is used if the maximum order
of the displacement is not known or is known to be very big. The mesh is re-
built after a decomposition of all cells and faces and the Laplace smoothing
equation is solved by the Finite Element Method. It is a very robust method but
robustness is achieved by a high computational effort.
SBRStress It is a displacement model, solving a diffusive equation and the cell
displacement. It also considers the solid body rotation term in calculations. The
pointDisplacement file must be supplied within the initial time directory.

As already mentioned the equations solving the mesh displacement are all based on
a diffusion model. Therefore we have to specify how the motion spreads over the
domain. These methods can be divided into quality-based and distance-dependent
methods. Quality-based methods are

uniform
directional (,)
motionDirectional (,)
inverseDistance

224 10 Moving Mesh

The distance based methods can be split into

linear
quadratic
exponential ()

The brackets should symbolize the number of variables needed for this type of
diffusivity model

For the cellMotion an discretization scheme has to be provided. It is specified in
the system/fvSchemesfile within the laplacianSchemes sub-dictionary.

laplacian(diffusivity,cellMotionU) Gauss linear uncorrected;

To solve the cell motion, the parameters of the solver have to be given in the
system/fvSolution file by adding:

cellMotionUy
{

solver PCG;
preconditioner DIC;
tolerance 1e-08;
relTol 0;

}

Now the case can be run by executing SchmidDyMFoam.

10.5 Extra Practice and Background Information 225

10.5 Extra Practice and Background Information

Restricting the mesh movement

By looking at the mesh motion, you will see that the cells in the upper part of the
cylinder skew. This behavior is not very good because the mesh at the prechamber
opening is also skewed. This will disturbed the flame propagation. It would be
better if the mesh movement is limited to the lower part of the domain. This can be
done by changing the diffusivity in a appropriate way.

Piston movement

In a real engine the piston does not perform a movement with a constant velocity.
The real piston movement can be better described by a oscillation function. Try cre-
ate a case based on the previous one in which the piston is moving based on an os-
cillating function at 120 rpm. It is suggested that you use the dynamicInkJetFvMesh
class for this case setup.

Chapter

11 Annexes

228 11 Annexes

11.1 Paraview : some hints

11.1.1 Animation

In order to produce a movie of the simulation using Paraview, you have to do two
steps:

1. First to click to File -> Save animation. A window will prompt you with a name
e.g. animation. Write one and click Ok. Then Paraview will save a picture for
each time step of the simulation with the name animation_####.jpg.

2. Then the pictures can be converted in a movie thank to the following command:

convert -monitor -quality 90 -delay 10 -antialias
animation*jpg animation.mpg

The command convert is called with the following 4 options:

monitor: print information about the actions done by the command
quality X: compress the pictures using a quality X given in percent (between
1 and 100)
delay N: add a delay of N ms between two pictures
antialias: apply to the movie an anti-aliasing filter

11.1.2 Print nice picture

By default the color scheme of Paraview has a good contrast for a screen. However
it is not adapted neither environment friendly to be printed. But that could be
quickly change when you save a screenshot.

1. Click on File->Save screenshot
2. Change the Palette from Current palette to Print
3. Click on Ok.
4. Provide a name for the file and then click on Ok.

List of Figures

1.1 The Paraview GUI: The red arrows point on important buttons 24

2.1 Heat transfer in the cross-section of a infinitely long steel profile 28

2.2 Heat transfer in an infinite small plate. 29

2.3 Vertex Numbering in a hexaedral block 35

3.1 The Zalman cooler ZM-NB32K 50

4.1 Poiseuille channel pipe flow 68

4.2 Pressure-velocity coupling: a 2D mesh example 69

4.3 Staggered grid 72

4.4 Geometry for channel pipe flow 86

4.5 Wedge patch type used for axi-symmetric geometry 86

5.1 Channel flow, with a section heated up by a stack with small cap-
illary slots. 92

5.2 Temperature profile for constant wall heat flux (left) and constant
wall temperature (right). 94

5.3 1D-domain 97

5.4 Three main steps of the meshing process when using snappyHexMesh.
Left: cell refinement and removal. Rigth: cell morphing to the
given surfaces. Bottom: Boundary layer addition. 100

5.5 Simplified domain 109

6.1 Todays problem - The mesh has to be cartesian and uniform with
a size of the cells being 12.5 cmx 12.5 cm 112

6.2 The three regions of the velocity boundary layer. 115

6.3 PISO algorithm 117

7.1 Sketch of an internal combustion engine with prechamber 136

7.2 Borghi Diagram [4] 139

7.3 The geometry in paraFoam 144

7.4 The mesh in paraFoam 146

7.5 Reaction progress in the engine after 0.1 s. 153

230 List of Figures

8.1 Geometry of the collapsing column test case. 164

8.2 Slosh phenomenon at laboratory scale. 165

8.3 Surface vs. Volume schemes. 165

8.4 Structure of the folder for the heatTransferFvPatchScalarField
class 171

8.5 Experimetal observations of a collapsing water-column without
obstacle (Ubbink, 1997). 181

8.6 Droplet collector geometry. 182

8.7 Tank truck. 185

8.8 C++ Source Guide: main page 186

8.9 C++ Source Guide: search box 186

8.10 C++ Source Guide: inheritance and collaboration diagrams 187

8.11 C++ Source Guide: legend of the diagrams 187

8.12 C++ Source Guide: public member functions 188

8.13 C++ Source Guide: all public member functions 189

8.14 C++ Source Guide: detailed documentation 189

9.1 von Karman street pattern 192

9.2 Particle-laden flow around a cylinder at low Reynolds numbers,
vorticity magnitude and polydispersed particles 198

9.3 Conditions for the different types of particle-particle and particle-
turbulence interaction. 202

10.1 Sketch of an internal combustion engine with prechamber 210

10.2 Control volume growing in time due to different mesh velocities
in x- and y-direction 212

10.3 Figure of a CV with different velocities of the sides. 213

Listings
1.1 The main control file: controlDict 18
1.2 The pressure initial value file p 22
2.1 Example of a blockMeshDict for a plate of 50 cmx 50 cm 33
2.2 The laplacianFoam.C main file of the laplacianFoam solver with-

out the commented header of the file. Usually the header consist
of standard forms and a short description of the solver. 36

2.3 The createFields.H file of the laplacianFoam solver 37
2.4 The write.H file of the laplacianFoam solver 39
2.5 A typical fvSchemes file of the laplacianFoam solver 40
2.6 A typical fvSolution file for the laplacianFoam solver 43
3.1 Example of funkySetFieldsDict 52
4.1 SIMPLE loop 76
4.2 pEqn.H 78
4.3 fvSchemes 81
4.4 sampleDict 82
5.1 Extract of snappyHexMeshDict. 100
5.2 porousZones 101
5.3 MRFZones 102
5.4 Example of bash script to run periodicaly foamLog. 104
5.5 Script to visualize the residuals 106
6.1 Time loop of pisoFoam 118
6.2 pisoFoam source code. Transient solver for incompressible flow.

Turbulence modelling is generic, i.e. laminar, RAS or LES may be
selected. 120

6.3 Sample of createFields.H for pisoFoam 121
6.4 RASProperties 122
6.5 fvSchemes 123
6.6 Sample of fvSolution for a PISO solver. 124
6.7 setDiscreteFieldsDict 126
6.8 General definition of the block functions in controlDict. 127
6.9 Example of use for the fieldAverage function. 128
6.10 Example of use of the probes function. 129
6.11 Example of use of the function writeRegisteredObject. 129
6.12 Example of use for the function sets. 130
6.13 thermophysicalProperties 133
7.1 fig:schmidFoamC 147
7.2 Extract of setFieldsDict. 152
7.3 cellSetDict 155
7.4 refineMeshDict 155
7.5 createPatchDict 160
8.1 alphaEqn.H 168
8.2 Extract of an boundary condition header file. 170
8.3 Extract of a boundary-condition source code. 172

232 Listings

8.4 Examples of groovyBC usage. 175
8.5 Extract of decomposeParDict. 175
8.6 Script to run in parallel an OpenFOAM® case. 178
8.7 Extract of setFieldsDict. 179
9.1 Time loop of icoUncoupledKinematicParcelFoam 195
9.2 Definition of a basicKinematicCollidingCloud 195
9.3 Section of kinematicCloudProperties 198
9.4 Add a new boundary condition to the runTime 206
9.5 Make/files to compile a new injection model. 206
9.6 makeBasicKinematicParcelSubmodels.C 206
9.7 makeParcelInjectionModels.H 206
10.1 SchmidDyMFoam.C file of SchmidDyMFoam solver. 215
10.2 PISO loop for the moving mesh solver. 217
10.3 Temperature boundary conditions. 219
10.4 dynamicMeshDict defining the piston motion. 220
10.5 dynamicMeshDict to use with the class dynamicRefineFvMesh. 221
10.6 Boundary condition to define the motion of the boundaries. 222

Index

Boundary conditions, 22
fixedGradient, 45
fixedValue, 45
freestream, 197
freestreamPressure, 197
groovyBC, 174
inletOutlet, 179
movingWallVelocity, 219
pressureInletOutletVelocity, 179
timeVaryingFlowRateInletVelocity, 184
totalPressure, 179
wallHeatTransfer, 219
wedge, 86
zeroGradient, 22

Case
constant folder, 21
controlDict

example, 18
parameters, 19–21

system folder, 40
fvSchemes, 40
fvSolution, 43

Code
Class folder, 170

Compilation, 171
Make folder, 170
Structure, 170

Solver folder, 53
Compilation, 55
createFields.H, 37
Make folder, 54
Structure, 53

Lagrangian solver
Implementation, 194
post-processing, 196

Linear solver, 46
MULES, 169
Preconditioners, 44, 47

Mesh
blockMesh, 33

blockMeshDict, 33–34
cellSet, 155
createPatch, 160
fluentMeshToFoam, 58
refineMesh, 155, 158
rotateMesh, 159
setSet, 145, 157
snappyHexMesh, 99

example, 107
subsetMesh, 146, 158
transformPoints, 159

Mesh motion
Boundary conditions, 222

dynamicFvMesh, 220–221
dynamicMeshDict, 220
Motion solver, 222
topoChangerFvMesh, 221–222

Multiple reference frame, MRF
dictionary, 102

Numerics
Discretization guidelines, 89
Operators syntax, 95
Relaxation, 79
Residuals, 103

Convergence criteria, 80
foamLog, 103
gnuplot, 106
pyFoamPlotRunner, 103

Schemes, 41
Divergence operator, 41
Laplacian operator, 42
Normal gradient schemes, 42
Spatial schemes, 31
Time schemes, 30

Source terms, 96

Parallelization, 175
Command, 177
decomposePar, 175

decomposeParDict, 175
reconstructPar, 177

PISO algorithm, 116
implementation, 118–120
PISO dictionary, 124–125

Poisson’s equation, 70
Porous media

dictionary, 102
Pressure losses models, 101
Thermal models, 101

Post-processing
functions, 127

fieldAverage, 128
probe, 129
writeRegisteredObject, 129

General options, 159
paraFoam, 23
Paraview, 23
patchIntegrate, 63
Sampling, 82

sampleDict, 82–85
vorticity, 201

Pre-processing
funkySetFields, 52

example, 52
mapFields, 133
setDiscreteFields, 125

dictionary, 125–126
setFields, 153

234 Index

SIMPLE, 75
Implementation, 76–79

Solvers
icoFoam, 23
interFoam, 168
laplacianFoam, 36
pisoFoam, 119
rhoPorousMRFSimpleFoam, 109
rhoSimpleFoam, 108
simpleFoam, 76

thermophysicalProperties, 133
Janaf law, 142
Sutherland law, 143

Turbulence models, 113
Law of the wall, 115
Set inlet boundary, 123
Set parameters, 121
Set wall boundaries, 122–123

	Introduction into Linux and OpenFOAM®
	Introduction into Linux
	xTerm - Konsole
	Kate - An Enhanced Text Editor

	Introduction into OpenFOAM®
	Installation
	Structure of a Case
	Starting OpenFOAM®
	Post-Processing

	Extra Practice and Background Information
	Sources for documentation

	Heat Transfer in a Plate
	Todays Problem
	Physics
	Fourier's Law

	Numerics
	Temporal discretization schemes
	Spatial discretization schemes

	OpenFOAM®
	Mesh Generation with blockMesh
	Setup of the laplacianFoam Solver
	The system Folder

	Extra Practice and Background Information
	Linear solvers and preconditioners

	Heat Transfer In a Complex Geometry
	Todays Problem
	Physics
	Numerics
	OpenFOAM®
	The funkySetFields utility
	Before writing some code
	Structure of a solver folder

	Extra Practice and Background Information

	Channel Pipe Flow
	Physics
	Laminar channel pipe flow

	Numerics
	Conservation equations
	Collocated storage of variables
	Staggered grid
	Rhie-Chow Velocity Interpolation
	Pressure-Correction Methods
	SIMPLE - pressure velocity correction method

	OpenFOAM®
	simpleFoam
	fvSchemes
	fvSolution
	Sampling

	Extra Practice and Background Information
	Discretization best practice guidelines

	Channel flows with Heat Transfer
	Introduction
	Todays problem

	Physics
	Laminar flow in a planar channel

	OpenFOAM®
	Numerics in OpenFOAM®
	Mesh generation with the snappyHexMesh utility
	Porous media and multiple reference frame (MRF) modeling
	Convergence to a steady state

	Exercises
	Extra Practice and Background Information

	The Backward Step
	Todays Problem
	Physics
	Turbulence Models
	Law of the wall

	OpenFOAM®
	pisoFoam
	Set up a turbulent flow

	Extra Practice and Background Information

	Combustion
	Todays problem
	Physics
	Combustion fundamentals
	Turbulent Combustion

	Numerics
	OpenFOAM®
	Preparing the solver files
	Exploring the case setup
	Implementing the Schmid Model
	Running the case

	Extra Practice and Background Information
	Tools to handle the mesh

	Multiphase Flow
	Todays problem
	Physics
	Numerics
	Volume-Of-Fluid in OpenFOAM®
	Counter-Gradient transport

	OpenFOAM®
	Implementation of the volume of fluid model
	Structure of a class folder
	Class for boundary conditions
	The groovyBC boundary condition
	Running in parallel

	Exercises
	Extra Practice and Background Information
	Source code documentation

	Lagrangian Particle Tracking
	Todays problem
	Physics
	Numerics
	OpenFOAM®
	Lagrangian Particle Tracking in OpenFOAM®
	Postprocessing of Particle Trajectories
	Boundary conditions for external flows

	Exercises
	Extra Practice and Background Information
	Add new models

	Moving Mesh
	Todays problem
	Physics
	Numerics
	OpenFOAM®
	Preparing the solver files
	Modifying the solver

	Extra Practice and Background Information

	Annexes
	Paraview : some hints
	Animation
	Print nice picture

