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CHAPTER 1

Stochastic Calculus

The general setting for Malliavin calculus is a Gaussian probability space, i.e. a proba-
bility space (Ω,Σ,P) along with a closed subspace H of L2(Ω,Σ,P) consisting of centered
Gaussian random variables. It is often convenient to assume that H is isometric to another
Hilbert space H, typically an L2-space over a parameter set T .

1.1. The Wiener Chaos Decomposition

We recall that a real-valued random variable X, defined on a probability space (Ω,Σ,P)
is called Gaussian (or, more precisely, centered Gaussian) if its characteristic function ϕX ,

defined by ϕX(t) := E
(

exp(itX)
)

is of the form ϕX(t) = e
q
2
t2 for some q ≥ 0. It is well-

known that a Gaussian random variable is either constantly zero (in which case q = 0) or,
else, q > 0 and the distribution has density

1√
2πq

e
−x

2

2q

with respect to Lebesgue measure dx. In that case, the random variable has finite moments
of all orders, its mean is zero (whence it is called “centered”) and its variance is q. A Gaussian
random variable is called standard if it has variance 1.

A family (Xi)i∈I of real-valued random variables is called Gaussian family or jointly
Gaussian, if for any n ∈ N and any choice i1, . . . , in of distinct indices in I, the vector
(Xi1 , . . . , Xin) is a Gaussian vector. The latter means that for any α ∈ Rn, the real-valued
random variable

∑n
k=1 αkXik is Gaussian.

We now introduce isonormal Gaussian processes.

Definition 1.1.1. Let H be a real, separable Hilbert space with inner product 〈 · , · 〉.
An H-isonormal Gaussian process is a family W = {W (h) : h ∈ H} of real-valued random
variables, defined on a common probability space (Ω,Σ,P), such that W (h) is a Gaussian
random variable for all h ∈ H and, for h, g ∈ H, we have E

(
W (h)W (g)

)
= 〈h, g〉.

If the Hilbert space H is clear from the context, we will also speak of isonormal Gaussian
processes. Given an isonormal Gaussian process, the probability space on which the random
variables are defined will be denoted by (Ω,Σ,P).

We now note some properties of isonormal Gaussian processes.

Proposition 1.1.2. Let H be a real, separable Hilbert space.

(1) There exists an H-isonormal Gaussian process W .

Now let W = {W (h) : h ∈ H} be any H-isonormal Gaussian process.

(2) The map h 7→W (h) is an isometry, in particular, it is linear.
(3) W is a Gaussian family.

Proof. (2) It suffices to prove that W is linear; in that case, it follows directly from the
definition of isonormal process that W is an isometry. Thus, let h, g ∈ H and λ, µ ∈ R. We
have

E
((
W (λh+ µg)− λW (h)− µW (g)

)2)
= EW (λh− µg)2 − 2λE

(
W (λh+ µg)W (h)

)
− 2µE

(
W (λh+ µg)W (g)

)
1
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+λ2EW (h)2 + 2λµE
(
W (h)W (g)

)
+ µ2EW (g)2

= ‖λh+ µg‖2 − 2λ〈λh+ µg, h〉 − 2µ〈λh+ µg, g〉+ λ2‖h‖2 + 2λµ〈g, h〉+ µ2‖g‖2

= 0 .

This implies that W (λh+ µg) = λW (h) + µW (g) almost surely.

(3) For n ∈ N, h1, . . . , hn ∈ H and α ∈ Rn, we have, by linearity,

n∑
k=1

αkW (hk) = W
( n∑
k=1

αkhk

)
which is Gaussian by assumption.

(1) Since H is separable, it has a countable orthonormal basis (hk)k∈N (if the basis is
finite, the proof is similar). Let γ denote standard Gaussian measure on R and consider the
infinite product space

(Ω,Σ,P) :=
( ∞∏
k=1

R,
∞⊗
k=1

B(R),
∞⊗
k=1

γ
)

By construction, the random variables Xn, defined by Xn((ωk)k∈N) := ωn are independent
and Gaussian. In particular, they form an orthonormal basis of their closed linear span in
L2(Ω,Σ,P). We now define W : H → L2(Ω,Σ,P) to be the isometry that sends hk to Xk.
Then W is an H-isonormal Gaussian process as is easy to see. �

Let us give some examples of isonormal Gaussian processes.

Example 1.1.3. (Brownian motion)
Consider the Hilbert space H = L2((0,∞),B(0,∞), λ), where λ is Lebesgue measure.

By Proposition 1.1.2, there exists an H-isonormal Gaussian process W . Let Bt := W (1(0,t]).
Then Bt is a centered Gaussian random variable with variance

EB2
t = EW (1(0,t])W (1(0,t]) =

〈
1(0,t],1(0,t]

〉
= t

Moreover, given 0 ≤ t0 < t1 . . . < tn = t < t+s, the functions 1(t0,t1], . . . ,1(tn−1,t],1(t,t+s| are
orthogonal in H, hence the random variables Bt1−Bt0 = W (1(t0,t1]), . . . , Bt−Btn−1 , Bt+s−Bt
are orthogonal in L2(Ω), i.e. they are uncorrelated. As these random variables are jointly
Gaussian (Proposition 1.1.2), they are independent. This shows that Bt+s−Bt is independent
of the σ-algebra Ft := σ(Br : r ≤ t). Thus, the process (Bt) is a Brownian motion —
except for the fact that we have not proved that it has continuous paths. However, using
Kolmogorov’s theorem, it can be proved that Bt has a continuous modification. We refer
the reader to the literature for a proof.

One often writes ∫ T

0
f(t) dBt := W (1(0,T )f)

and calls
∫ T

0 f(t) dBt the Wiener integral of f over (0, T ).

Example 1.1.4. (d-dimensional Brownian motion)
Consider the Hilbert space H = L2((0, ,∞),B((0,∞), λ;Rd). We denote the canonical

Basis of Rd by (e1, . . . , en), i.e. ei is the vector which has a 1 at position i and 0’s at all other

positions. If we put Bj
t := W (1(0,t]ej), then the vector Bt := (B1

t , . . . , B
d
t ) is a d-dimensional

Brownian motion, i.e. Bj
t is a Brownian motion for every j and Bj

t and Bi
t are independent

for j 6= i.

Let us also mention, without going into details, a further example which motivates the
abstract setting we consider.
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Example 1.1.5. (Fractional Brownian motion)
A fractional Brownian motion is a Gaussian process with covariance function

cH(t, s) =
1

2
(t2H + s2H − |t− s|2H)

where H ∈ (0, 1) is the so-called Hurst parameter. The choice H = 1
2 yields c 1

2
(t, s) =

min{t, s} which is the covariance function of Brownian motion.
Let E denote the step functions on, say, (0, T ). It can be proved that there exists an

inner product 〈 · , · 〉H on E such that〈
1(0,t],1(0,s]

〉
H

= cH(t, s) .

We denote by VH the completion of E with respect to the inner product 〈 · , · 〉H .
Then an VH -isonormal Gaussian process W gives rise, as above, to a fractional Brownian

motion with Hurst parameter H.

The range of the isonormal process W is the subspace H that was mentioned in the
introduction. We now begin to study the structure of that space. This will be done using
Hermite polynomials.

Definition 1.1.6. For n ∈ N0, the n-th Hermite polynomial Hn is defined by H0 ≡ 1
and

Hn(x) :=
(−1)n

n!
e
x2

2
dn

dxn

(
e−

x2

2

)
for n ≥ 1.

Consider the function F (t, x) := exp(tx − t2/2). Then the Hermite polynomial are the
coefficients in the power series expansion of F with respect to t. Indeed, we have

F (t, x) = exp
(x2

2
− 1

2
(x− t)2

)
= e

x2

2

∞∑
n=0

tn

n!

dn

dtn
e−

(x−t)2
2

∣∣∣
t=0

=

∞∑
n=0

tn
(−1)n

n!
e
x2

2
dn

dzn
e−

z2

2

∣∣∣
z=x

=

∞∑
n=0

tnHn(x) .

We note that the convergence of the series is uniform on compact sets.
Now some basic properties of the Hermite polynomials follow easily:

Lemma 1.1.7. For n ≥ 1, we have

(1) H ′n(x) = Hn−1(x);
(2) (n+ 1)Hn+1(x) = xHn(x)−Hn−1(x)
(3) Hn(−x) = (−1)nHn(x).

Proof. Throughout, we set F (t, x) := exp(tx− t2/2).
(1) We have ∂

∂xF (t, x) = tF (t, x) =
∑∞

n=0 t
n+1Hn(x). On the other hand, interchanging

summation and differentiation, ∂
∂xF (t, x) =

∑∞
n=0 t

nH ′n(x). Thus (1) follows by equating
coefficients.

(2) follows similarly, observing that ∂
∂tF (t, x) = (x − t)F (t, x) =

∑∞
n=0 t

nxHn(x) −
tn+1Hn(x), while, on the other hand, ∂

∂tF (t, x) =
∑∞

n=0 nt
n−1Hn(x).

(3) follows directly from observing that F (−x, t) = F (x,−t). �

We next insert Gaussian random variables into polynomials. Observe that if X is a
Gaussian random variable, then X ∈ Lr for all r ∈ [1,∞). Thus Hölder’s inequality yields
that for every polynomial p the random variable p(X) belongs to Lr for all r ∈ [1,∞). The
following Lemma clarifies the basic relationship between Hermite polynomials and Gaussian
random variables.
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Lemma 1.1.8. Let X,Y be standard Gaussian random variables which are jointly Gauss-
ian. Then for n,m ≥ 0, we have

E
(
Hn(X)Hm(Y )

)
=

{
0 if n 6= m
1
n!

(
E
(
XY

))n
if n = m.

Proof. Let ρ := E[XY ]. Then ρ = Cov(X,Y ), since EX2 = EY 2 = 1. The moment
generating function of the vector (X,Y ) is given by

EesX+tY = e
1
2

(t2+s2+2stρ) .

Equivalently, we have

E
(

exp(sX − s2/2) exp(tY − t2/2)
)

= exp(stρ) .

Differentiating n times with respect to s and m times with respect to t and evaluating at
s = t = 0, we obtain

E
(
n!m!Hn(X)Hm(Y )

)
=

{
0 if n 6= m
n!ρn if n = m.

�

Definition 1.1.9. Let W be an H-isonormal Gaussian process. The n-th Wiener chaos
Hn is the closure in L2(Ω,Σ,P) of the linear span of the set {Hn(W (h)) : h ∈ H, ‖h‖ = 1}.

As H0 ≡ 1, the 0-th Wiener chaos H0 is the set of all constant functions, whereas
H1 = {W (h) : h ∈ H}, since H1(x) = x and since W is linear.

As a consequence of Lemma 1.1.8 we obtain

Corollary 1.1.10. Let W be an H-isonormal Gaussian process. Then for n 6= m the
spaces Hn and Hm are orthogonal.

Proof. If g, h ∈ H with ‖g‖ = ‖h‖ = 1, then W (g) and W (h) are standard Gaussian
random variables. Moreover, they are jointly Gaussian, as W is a Gaussian family. Thus, by
Lemma 1.1.8, Hn(W (g)) and Hm(W (h)) are orthogonal in L2(Ω,Σ,P). This orthogonality
relation extends to the linear hull of such elements and also to their closures Hn and Hm. �

It is a rather natural question, how the direct sum
⊕∞

n=0 Hn looks like. Clearly, any
element of the latter is measurable with respect to the σ-algebra ΣW := σ(W (h) : h ∈ H).
As it turns out, we have

Theorem 1.1.11. Let W be an H-isonormal Gaussian process. Then
∞⊕
n=0

Hn = L2(Ω,ΣW ,P)

and this decomposition is orthogonal.

Proof. In view of Corollary 1.1.10 it only remains to prove that if X ∈ L2(Ω,ΣW ,P)
is orthogonal to

⊕∞
n=0 Hn, then X = 0. Let an X ∈ L2(Ω,ΣW ,P) which is orthogonal to⊕∞

n=0 Hn be given. Then E
(
XHn(W (h))

)
= 0 for all n ∈ N0 and h ∈ H with ‖h‖ = 1.

Noting that Hn is a polynomial of degree n, it follows that the Hermite polynomials are a
vector space basis of the space of polynomials. By linearity, it follows that E

(
Xp(W (h))

)
= 0

for all polynomials p and every h ∈ H. Setting pn(x) :=
∑n

k=0
xk

k! , we have pn(W (h)) →
exp(W (h)) pointwise and |pn(W (h))| ≤ exp(|W (h)|) where the latter is square integrable.

It follows from dominated convergence that E
(
XeW (h)

)
= 0 for all h ∈ H.

By the linearity of W , we have

E
(
Xe

∑d
j=1 tjW (hj)

)
= 0 ∀ t1, . . . , tn ∈ R, h1, . . . hn ∈ H .

In fact, as the left hand side is also well-defined for tj ∈ C and is an analytic function of its
variables, by the uniqueness theorem for analytic functions implies that this relation remains
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valid for complex t1, . . . , tn. In particular, the characteristic function of the measure ν on
Rn, defined by

ν(A) = E
(
X1A(W (h1), . . . ,W (hn))

)
,

vanishes. By the uniqueness theorem for characteristic functions, ν = 0. It thus follows that
E
(
X1B

)
= 0 for all sets B of the form {(W (h1), . . . ,W (hn)) ∈ A} for n ∈ N, h1, . . . , hn ∈ H

and A ∈ B(Rn). Since sets of this form generate ΣW , it follows that E
(
X1B

)
= 0 for all

B ∈ ΣW . Since X is ΣW -measurable, we have X = 0. �

In the case where H = R is one-dimensional this reduces to

Corollary 1.1.12. Let γ be standard Gaussian measure. Then {(n!)
1
2Hn : n ∈ N0} is

an orthonormal basis of L2(R,B(R), γ).

Proof. Let (Ω,Σ,P) = (R,B(R), γ) and H = R. Define W : H → L2(Ω,Σ,P) by(
W (h)

)
(x) = hx. Then W is an isonormal Gaussian process. Indeed, under γ, x is a

Gaussian random variable hence so is ever multiple W (h). Moreover, E
(
W (h)W (g)

)
=

hg
∫
R
x2 dγ = hg.

Further note that H has only two elements of norm one: +1 and −1 which correspond
to the random variables x and −x respectively. It follows from Lemma 1.1.7 that Hn(x) =
(−1)nHn(−x), whence Hn is one-dimensional. Thus, by Theorem 1.1.11 and Lemma 1.1.8,

(n!)
1
2Hn is an orthonormal basis of L2(R,ΣW ,P). Noting that ΣW = σ(x) = B(R), the

thesis follows. �

We end this section by providing more information about the spaces Hn.

Definition 1.1.13. Let W be an H-isonormal Gaussian process. We define P0
n as the

set (in fact, vector space) of all random variables of the form p(W (h1), . . . ,W (hk)), where
k ∈ {1, . . . , n}, h1, . . . , hk ∈ H and p is a polynomial in k variables of degree at most n.

Moreover, Pn is the closure of P0
n in L2(Ω,Σ,P).

Proposition 1.1.14. We have Pn = H0 ⊕ · · · ⊕Hn.

Proof. Clearly, H0 ⊕ · · · ⊕Hn ⊂ Pn. To prove the converse inclusion, it suffices to
prove that Pn ⊥ Hm for all m > n. In fact, it suffices to prove P0

n ⊥ Hm for m > n. To
that end, let X = p(W (h1), . . . ,W (hk)) ∈ P0

n and h ∈ H with ‖h‖ = 1 be given. We have
to prove that E

(
XHm(W (h))

)
= 0 for m > n.

Extend h to an orthonormal basis {h, e1, . . . , ej} of span{h1, . . . , hk, h}. Expressing the
hi’s in this basis we can write X = q(W (e1), . . . ,W (ej),W (h)) for a polynomial of degree at
most n. Note that the random variables W (e1), . . . ,W (ej),W (h) are jointly Gaussian and
uncorrelated, hence independent. It follows that

E
(
W (e1)α1 · . . . ·W (ej)

αjW (h)βHm(W (h))
)

=

j∏
l=1

E
(
W (ej)

αj
)
· E
(
W (h)βHm(W (h))

)
.

If β = 0, the latter is zero, as EHm(W (h)) = E
(
H0(W (h))Hm(W (h))

)
= 0 by Lemma 1.1.8.

If, on the other hand, 0 < β ≤ n < m, then xβ is a linear combination of Hermite polynomials
Hl with indices l ≤ n < m. Thus Lemma 1.1.8 yields that the above expectation is zero.
Together, it follows that E

(
XHm(W (h))

)
= 0, which is what we needed to prove. �

Finally, we provide an orthonormal basis of Hn and thus, in view of Theorem 1.1.11,
also of L2(Ω,ΣW ,P). We suppose that H is infinite dimensional, the case where H is finite
dimensional is similar, but easier. We pick an orthonormal basis (en)n∈N of H.

Let Λ be the set of all sequences α = (αn)n∈N0 such that αn ∈ N0 for all n and αn = 0
for all but finitely many values of n. For α ∈ Λ, we put |α| :=

∑∞
n=0 αn and α! :=

∏∞
n=0 αn!.
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For α ∈ Λ, we define

Φα :=
√
α!
∞∏
n=0

Hαn(W (en)) .

Note that in the above product all but finitely many factors are 1, since H0 ≡ 1.

Proposition 1.1.15. For n ∈ N0, the family {Φα : |α| = n} of random variables is an
orthonormal basis of Hn.

Proof. Let us first note that since the reandom variables W (ej) are independent, we
have

E
(
ΦαΦβ

)
=
√
α!
√
β!

∞∏
k=0

E
(
Hαk(W (ek))Hβk(W (ek))

)
= δαβ

by Lemma 1.1.8. Thus {Φα} is an orthonormal system.
If |α| = n, then clearly Φα ∈P0

n ⊂Pn. Conversely, if X = p(W (h1), . . . ,W (hk)) ∈P0
n,

then X can be approximated by polynomials in the W (ej) of degree at most n. These two
facts together yield that span{Φα : |α| ≤ n} = Pn.

Together with the orthogonality relation, we see inductively that {Φα : |α| = n} is an
orthonormal basis of Hn as claimed. �

1.2. The Malliavin Derivative

Throughout this section, actually for the rest of this chapter, we fix an H-isonormal
Gaussian process W . The underlying probability space is denoted by (Ω,Σ,P). For simplic-
ity, we assume that Σ = ΣW .

In this section, we want to define the derivative of a random variable X ∈ L2(Ω) with
respect to the “chance parameter” ω. However, usual definitions of “derivative” cannot be
used in our situation for the following reasons: (i) our probability space Ω is in general
lacking the necessary structure to define a derivative (such as linear structure, Banach space
structure, etc.), (ii) random variables are usually defined only almost everywhere.

To solve this problem, we think of “randomness” as being injected only via the isonormal
process W and take derivatives with respect to the “parameter” h. Thus, in particular, the
derivative should take values in H∗, the dual space of H, which, however, we shall identify
with H.

Before giving the formal definition, we need some preparation. By C∞p (Rd), we denote

the space of infinitely differentiable functions on Rd which, together with all their partial
derivatives, have polynomial growth. C∞b (Rd) denotes the subspace of C∞p (Rd) consisting
of those functions which, together with all their partial derivatives, are bounded. Finally
C∞c (Rd) denotes the subspace of C∞b (Rd) consisting of functions with compact support.

By S (resp. Sb, resp. Sc) we denote the class of random variables X such that there
exists an n ∈ N, vectors h1, . . . , hn and a function f ∈ C∞p (Rn) (resp. f ∈ C∞b (Rn), resp.
f ∈ C∞c (Rn)) such that

X = f(W (h1), . . . ,W (hn)) .

The elements of S are called smooth random variables.
Clearly, P0 ⊂ S , thus both spaces are dense in L2(Ω) by Theorem 1.1.11 and Proposition

1.1.14 (recall that we assumed Σ = ΣW ). Moreover, Sc ⊂ Sb ⊂ S . Approximating a
polynomial with C∞c -functions, it is easy to see that also Sc is dense in L2(Ω).

Definition 1.2.1. Let X = f(W (h1), . . . ,W (hn)) ∈ S . The Malliavin derivative of X
is the H-valued random variable DX, defined by

DX :=
n∑
j=1

∂jf(W (h1), . . . ,W (hn))hj ,
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where ∂jf denotes the j-th partial derivative of f .

Note that for h ∈ H, we have

〈DX,h〉 = lim
t→0

f(W (h1) + t〈h1, h〉, . . . ,W (hn) + t〈hn, h〉)− f(W (h1), . . . ,W (hn))

t
,

which gives an interpretation of DX as a directional derivative.

Example 1.2.2. Let us consider again the situation of a Brownian motion, i.e. H =
L2(0,∞). Recall, that we often write W (h) =:

∫∞
0 h(t) dBt where Bt is Brownian motion.

Then X :=
∫∞

0 h(t) dBt ∈ S and DX = h. In particular, DBt = 1(0,t].

As a slightly more complicated example, consider X = B2
t = (W (1(0,t]))

2 ∈ S . Then
DX = 2W (1(0,t])1(0,t] = 2Bt1(0,t].

Before proceeding, we have to check that the definition of the Malliavin derivative does
not depend on the representation of the random variable X.

Lemma 1.2.3. Assume that X ∈ S has representations

X = f(W (h1), . . . ,W (hn)) = g(W (e1), . . . ,W (em))

where e1, . . . , em are an orthonormal system. Then

n∑
j=1

∂jf(W (h1), . . . ,W (hn))hj =

m∑
i=1

∂ig(W (e1), . . . ,W (em))ei

Proof. We may assume without loss of generality that the span of the hj ’s is the same as

the span of the ei’s, for otherwise we can put hn+1 = e1, . . . , hn+m = em and replace f with f̃ ,
defined by f̃(x1, . . . , xn+m) := f(x1, . . . , xn) and extend e1, . . . , em to an orthonormal basis
e1, . . . , em+r of the span of both replace g with g̃, defined by g̃(x1, . . . , xm+r) := g(x1, . . . , xm).

Note that this does not change the sums in the conclusion of the statement, as ∂j f̃ ≡ 0 for
j > n and ∂ig̃ ≡ 0 for i > m.

Recall that the hj ’s are represented in the orthonormal basis e1, . . . , em by the for-
mula hj =

∑m
i=1 〈hj , ei〉ei. We let T be the linear map from Rm to Rn given by the

matrix (〈hj , ei〉)1≤j≤n,1≤i≤m. Then T (W (e1), . . . ,W (em)) = (W (h1), . . . ,W (hn)), so that
(f ◦ T )(W (e1), . . . ,W (em)) = X = g(W (e1), . . . ,W (em)). This implies that f ◦ T ≡ g.
Indeed, if f ◦ T (x0) 6= g(x0), then, by continuity, |f ◦ T − g| ≥ ε in a neighborhood of x0.
As the probability that the standard Gaussian vector W (e1), . . . ,W (em) takes values in that
neighborhood is strictly positive, this contradicts the above equality.

Thus, using the chain rule, we find

m∑
i=1

∂ig(W (e1), . . . ,W (em))ei =

m∑
i=1

∂i(f ◦ T )(W (e1), . . . ,W (em))ei

=

m∑
i=1

n∑
j=1

(∂jf ◦ T )(W (e1), . . . ,W (em))〈hj , ei〉ei

=

m∑
j=1

∂jf(W (h1), . . . , hm)hj .

�

We next establish an important integration-by-parts formula.

Lemma 1.2.4. Let X ∈ S and h ∈ H. Then E
(
〈DX,h〉

)
= E

(
XW (h)

)
.
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Proof. By linearity, we may assume that ‖h‖ = 1. Furthermore, we can assume that
X is given as

X = f(W (e1), . . . ,W (en))

where f ∈ C∞p (Rn) and e1, . . . , en is an orthonormal system with e1 = h. Thus, the vector
W (e1), . . . ,W (en) has standard normal distribution on Rn. Note that in this case 〈DX,h〉 =
∂1f(W (e1), . . . ,W (en)).

We denote by ρ the density of the standard normal distribution, i.e.

ρ(x) = (2π)−
n
2 exp

(
− 1

2

n∑
j=1

x2
j

)
.

Using integration by parts, we find

E
(
〈DX,h〉

)
=

∫
Rn

(
∂1f(x)

)
ρ(x) dx

= −
∫
Rn
f(x)ρ(x)(−x1) dx

= E
(
XW (h)

)
.

�

Corollary 1.2.5. Let X,Y ∈ S and h ∈ H. Then

E
(
Y 〈DX,h〉

)
= E

(
XYW (h)−X〈DY, h〉

)
.

Proof. Without loss of generality, we can assume that there exist h1, . . . , hn ∈ H and
f, g ∈ C∞p (Rn) such that

X = f(W (h1), . . . ,W (hn)) and Y = g(W (h1), . . . ,W (hn)) .

It now follows from the product rule that D(XY ) = XDY + Y DX. The claim thus follows
from Lemma 1.2.4. �

We next show that the Malliavin derivative is closable. Before proceeding, let us recall
some terminology. Let E and F be Banach spaces. An (unbounded) operator from E to F
is a linear map A : D(A) → F , where D(A) is a subspace of E. Such an operator is called
closed, if its graph Γ(A) := {(x,Ax) : x ∈ D(A)} is a closed subspace of the product E × F .
Equivalently, if (xn) is a sequence in D(A) and xn → x in E and Axn → y in F , it follows
that x ∈ D(A) and Ax = y. An operator is called closable, if the closure of its graph is again
the graph of an operator, called the closure of A. Note that the closure of A – if it exists
– is necessarily closed. An operator A is closable if (and only if) whenever xn is a sequence
in D(A) which converges to 0 and such that Axn converges to some y ∈ F , it follows that
y = 0.

Let us also recall the definition of vector valued Lp spaces. A map f : Ω → H is called
(strongly) measurable if it is the pointwise limit of simple functions

∑
xk1Ak . A strongly

measureable map f is called p-integrable, if
∫

Ω ‖f‖
p dP < ∞. We then write f ∈ Lp(Ω;H).

As usual, we identify functions which are equal almost everywhere. It is easy to see that
Lp(Ω;H) is a Banach space with respect to the norm

‖f‖Lp(Ω;H) :=
(∫

Ω
‖f‖pH dP

) 1
p
.

It is easy to see that L2(Ω;H) is a Hilbert space with respect to the inner product 〈f, g〉 :=∫
Ω 〈f, g〉H dP.

Proposition 1.2.6. Let p ∈ [1,∞). The operator D, viewed as an operator from Lp(Ω)
to Lp(Ω;H) initially defined on S , is closable.
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Proof. Let Xn be a sequence in S which converges to 0 in Lp(Ω) and such that DXn

converges to ξ in Lp(Ω;H). We need to show that ξ = 0.
To that end, let h ∈ H and Y ∈ Sb be given such that YW (h) is bounded. By Corollary

1.2.5, we have

E
(
Y 〈ξ, h〉

)
= limE

(
Y 〈DXn, h〉

)
= limE

(
Y XnW (h)−Xn〈DY, h〉

)
= 0

since Xn → 0 in Lp(Ω) and YW (h) and 〈DY, h〉 are bounded. For density reasons it follows
that E〈ξ, h〉 = 0. Since h ∈ H was arbitrary, it follows that ξ = 0, which finishes the
proof. �

Slightly abusing notation, we shall denote the closure of D in Lp(Ω) again by D. The
domain of D in Lp(Ω) is denoted by D1,p. Thus D1,p is the closure of S with respect to the
norm

‖X‖1,p :=
(
E|X|p + E‖DX‖pH

) 1
p .

For p = 2, the space D1,2 is a Hilbert space with respect to the inner product

〈X,Y 〉1,2 = E(XY ) + E〈DX,DY 〉H .

We also note that for p ∈ (1,∞) the space D1,p is reflexive as it is isometrically isomorphic
to a closed subspace of the reflexive space Lp(Ω)× Lp(Ω;H).

We next establish a chain rule for Malliavin derivatives.

Proposition 1.2.7. Let p ≥ 1, X = (X1, . . . , Xm) be a vector of random variables with
Xj ∈ D1,p for j = 1, . . . ,m and ϕ : Rm → R be continuously differentiable with bounded
partial derivatives. Then ϕ(X) ∈ D1,p and

(1.1) Dϕ(X) =

m∑
j=1

∂jϕ(X)DXj .

Proof. If Xj ∈ S for j = 1, . . . ,m and ϕ ∈ C∞(Rm) with bounded partial derivatives,
then equation (1.1) follows directly from the definition and the classical chain rule. For the

general case, pick sequences X
(n)
j in S with X

(n)
j → Xj inD1,p for j = 1, . . . ,m (thus we have

X
(n)
j → Xj in Lp(Ω) and DX

(n)
j → DXj in Lp(Ω;H) for all j) and a sequence ϕn ∈ C∞(R)

such that ϕn → ϕ uniformly on compact sets, ∇ϕn → ∇ϕ uniformly on compact sets and
|ϕn| ≤ C(1 + |x|) for a certain constant C (the latter is possible since ϕ, having bounded
derivatives is of linear growth).

It then follows from dominated convergence that ϕn(X(n)) → ϕ(X) in Lp(Ω) and that

Dϕn(X(n)) =
∑m

j=1 ∂jϕn(X(n))DX
(n)
j converges to

∑m
j=1 ∂jϕ(X)DXj in Lp(Ω;H). By

closedness of the Malliavin derivative, it follows that ϕ(X) ∈ D1,p and that (1.1) holds. �

In applications, for example to prove that solutions to certain stochastic differential
equations with Lipschitz coefficients belong to the domain of the Malliavin derivative, it is
important to have a generalization of the chain rule for Lipschitz maps. To prove such a
generalization, we use the following important

Lemma 1.2.8. Let p ∈ (1,∞) and Xn ∈ D1,p be such that Xn → X in Lp(Ω) and such
that

sup
n∈N

E‖DXn‖pH <∞ .

Then X ∈ D1,p and DXn converges weakly to DX.
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Proof. The sequence Xn, being convergent in Lp is bounded in Lp. It thus follows that
Xn is bounded in D1,p. As bounded subsets of reflexive spaces are relatively weakly compact,
we can extract a subsequence Xnk which converges weakly (in D1,p) to some Y ∈ D1,p. In
particular, Xnk converges weakly in Lp to Y , whence Y = X. It follows that X ∈ D1,p.
We can apply the above to any subsequence to see that every subsequence of Xn has a
subsequence converging to X weakly in D1,p. It then follows that Xn converges weakly to
X in D1,p. In particular, DXn → DX weakly in Lp(Ω;H). �

Proposition 1.2.9. Let p ∈ (1,∞) and X = (X1, . . . , Xm) be a vector with Xj ∈ D1,p

for j = 1, . . . ,m and let ϕ : Rm → R be Lipschitz continuous with Lipschitz constant L.
Then ϕ(X) ∈ D1,p. Moreover, there exists a random vector Y = (Y1, . . . , Ym) with |Y | ≤ L
almost surely, such that

Dϕ(X) =

m∑
j=1

YjDXj .

Proof. Let ϕn be a sequence of continuously differentiable functions which converges
pointwise to ϕ and such that |∇ϕn| ≤ L (e.g. convolute with a mollifier). By Proposition
1.2.7, ϕn(X) ∈ D1,p and Dϕn(X) =

∑
∂jϕn(X)DXj . Clearly, ϕn(X)→ ϕ(X) in Lp as n→

∞. Moreover, the sequence Dϕn(X) is bounded in Lp(Ω;H). Thus Lemma 1.2.8 implies that
ϕ(X) ∈ D1,p and that Dϕn(X) converges weakly in Lp(Ω;H) to Dϕ(X). Since the sequence
∇ϕn(X) is bounded by L, it has a subsequence which converges weakly in Lp(Ω,Rm) to a
random vector Y = (Y1, . . . , Ym). It follows that Y is bounded by L. Moreover, Dϕ(X) =∑
YjDXj . �

We next want to define also higher order Malliavin derivatives. Since the Malliavin
derivative of a random variable is an H-valued random variable, we need to differentiate
Hilbert space valued random variables. As it turns out, we need some abstract results which
we establish before returning to our main line of study.

Intermezzo: Tensor Products and Hilbert-Schmidt Operators

Let H and V be Hilbert spaces and pick orthonormal bases (hα)α∈A of H and (vβ)β∈B
of V . We define the (Hilbert space) tensor product H⊗V to be the vector space of all formal
series

∑
aα,βhα ⊗ vβ where aα,β ∈ `2(A×B), endowed with the inner product

〈
∑
aα,βhα ⊗ vβ,

∑
bα.βhα ⊗ vβ〉 :=

∑
aα,βbα,β .

Thus, H ⊗ V , being isometrically isomorphic with `2(A × B), is a Hilbert space and the
system (hα ⊗ vβ)(α,β)∈A×B is an orthonormal basis of V ⊗H.

Similar as for algebraic tensor products, we can characterize H ⊗ V by a universal prop-
erty.

Consider the map ρ : H × V → H ⊗ V , defined by

ρ
(∑

aαhα,
∑

bβvβ

)
:=
∑

aαbβhα ⊗ bβ .

Note that if (aα) ∈ `2(A) and (bβ) ∈ `2(B), then (aαbβ) ∈ `2(A× B) so that this definition
makes sense. In fact, we have∥∥∥∑ aαbβhα ⊗ vβ

∥∥∥2

H⊗V
=

∑
α∈A,β∈B

a2
αb

2
β =

∑
α∈A

a2
α

∑
β∈B

b2β =
∥∥∥∑ aαhα

∥∥∥2

H

∥∥∥∑ bβvβ

∥∥∥2

V

so that ρ is a continuous, bilinear form.

Lemma 1.2.10. Let H,V be Hilbert spaces, H⊗V and ρ as above. Let also U be a Hilbert
space and η : H × V → U be a continuous bilinear form (recall, that η is called continuous
if there is a constant C such that ‖η(h, v)‖U ≤ C‖h‖H‖v‖V ). Then there exists a bounded
linear operator Tη : H ⊗ V → U such that η = Tη ◦ ρ.
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Proof. Given η as in the statement of the lemma, let uα,β := η(hα, vβ). For the assertion
to be true, we have to have Tη(hα⊗vβ) := uα,β. We note that by continuity of η, the vectors
uα,β are uniformly bounded. Thus, given (aα,β) ∈ `2(A×B), the series

∑
aα,βuα,β converges

in U . This shows that there exists a unique bounded linear map Tη from H ⊗ V to U with
Tη(hα ⊗ vβ) := uα,β. This map clearly satisfies η = Tη ◦ ρ. �

We can now use this universal property to identify some tensor products.

Corollary 1.2.11. Let (Ωi,Σi, µi) for i = 1, 2 be σ-finite measure spaces. Then the
tensor product L2(Ω1,Σ1, µ1)⊗L2(Ω2,Σ2, µ2) is isometrically isomorphic to the product space
L2(Ω1 × Ω2,Σ1 ⊗ Σ2, µ1 ⊗ µ2).

Proof. For ease of notation, we suppress the σ-algebra and the measure from our no-
tation in L2 spaces.

Consider the bilinear form η : L2(Ω1) × L2(Ω2) → L2(Ω1 × Ω2) given by η(f, g) :=
[(x, y) 7→ f(x)g(y))]. By Fubini’s theorem we have∫

Ω1×Ω2

(
f(x)g(y)

)2
d(µ1 ⊗ µ2)(x, y) =

∫
Ω1

f(x)2 dµ1(x)

∫
Ω2

g(y)2 dµ2(y)

so that ‖η(f, g)‖ = ‖f‖‖g‖. In particular, η is continuous. By the universal property, there
exists a linear operator Tη : L2(Ω1) ⊗ L2(Ω2) → L2(Ω1 × Ω2) such that η = Tη ◦ ρ. We
thus have Tη(f ⊗ g) = [(x, y) 7→ f(x)g(y)]. In particular, the range of Tη contains indicator
functions of rectangles A × B where A and B have finite measure. Using the continuity of
Tη, a monotone class argument shows that the range of Tη contains the indicator of every
set S ∈ Σ1 ⊗Σ2 with finite measure and hence, by linearity, any integrable simple function.
By density and continuity, Tη is surjective.

Now let (eα), resp. (ẽβ) be orthonormal bases of L2(Ω1), resp. L2(Ω2). Then every
element ξ of L2(Ω1)⊗L2(Ω2) can be written as ξ =

∑
aα,βeα⊗ẽβ. for some (aα,β) ∈ `2(A×B).

We have

‖Tηξ‖2L2(Ω1,×Ω2) =

∫
Ω1×Ω2

(∑
aα,βeα(x)ẽβ(y)

)2
d(µ1 ⊗ µ2)(x, y)

=
∑

aα,βaγ,δ

∫
Ω1

eα(x)eγ(x) dµ1(x)

∫
Ω2

ẽβ(y)ẽδ(y) dµ2(y)

=
∑

a2
α,β = ‖ξ‖L2(Ω1)⊗L2(Ω2) .

This proves that T is an isometry. In particular it is injective, hence, altogether, an isomor-
phism. �

Also a second identification for tensor products, this time even for abstract Hilbert
spaces, is of importance. It arises from the bilinear form η : H × V → L (H,V ) given by
η(h, v) := [g 7→ 〈g, h〉H · v]. Note that η(h, v) if h 6= 0, then the range of η(h, v) is the span
of v. Linear combinations of such “rank one operators” are exactly the operators with finite
dimensional range, the so-called “finite rank operators”. In the literature, one often finds
the notation h⊗ v for η(h, v) which already suggests a connection with tensor products.

It should be noted, however, that there is no hope of identifying the tensor product H×V
with all of L (H,V ). Indeed, if that was the case, then every bounded operator from H to
V could be approximated by finite rank operators, in particular it must be compact. For
infinite dimensional Hilbert spaces, this is certainly not true. Thus to identify the tensor
product H×V with a space of operators, we have to consider a suitable aubclass of operators,
the so-called Hilbert-Schmidt operators.

Definition 1.2.12. Let H,V be separable Hilbert spaces. An operator T ∈ L (H,V ) is
called Hilbert-Schmidt operator if for some (equivalently, all) orthonormal bases (en) of H
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the sum
∑

n ‖Ten‖2V is finite. For a Hilbert-Schmidt operator, we put

‖T‖HS :=
(∑
n∈N
‖Ten‖2V

) 1
2
.

To see that the definition of Hilbert-Schmidt operator (and of the value of ‖T‖HS) is
independent of the choice of the orthonormal basis, let (en) and (hn) let orthonormal bases
of H. Then, using Parseval’s identity, we find∑

n

‖Ten‖2V =
∑
n

∥∥∥T∑
m

〈en, hm〉Hhm
∥∥∥2

V
=
∑
n

∑
m

|〈en, hm〉H |
2‖Thm‖2V

=
∑
m

‖hm‖2H‖Thm‖2V =
∑
m

‖Thm‖2V .

Clearly, sums and scalar multiples of Hilbert-Schmidt operators are Hilbert-Schmidt
operators. Thus the Hilbert-Schmidt Operators from H to V are a vector space, denoted by
LHS(H,V ). It is also easy to see that ‖ · ‖HS is a norm on LHS(H,V ).

Lemma 1.2.13. Let H,V be separable Hilbert spaces. Then H ⊗ V is isometrically iso-
morphic to LHS(H,V ).

Proof. Consider the continuous bilinear form η : H × V → L (H,V ), defined by
η(h, v) := 〈·, h〉v. By the universal property, there exists bounded linear operator Tη :
H ⊗ V → L (H,V ) such that η = Tη ◦ ρ.

Now let (hn) be an orthonormal basis of H and (vn) be an orthonormal basis of V . Then
(hn ⊗ vm) is an orthonormal basis of H ⊗ V . If ξ =

∑
anmhn ⊗ vm is an element of H ⊗ V ,

then Tη(ξ) ∈ LHS(H,V ). Indeed, for the orthonormal basis (hk) we have∑
k

‖Tηhk‖2V =
∑
k

∥∥∥∑
n,m

anm〈hk, hn〉Hvm
∥∥∥2

V
=
∑
k

∑
m

a2
km = ‖ξ‖2H⊗V .

This moreover shows that ‖Tηξ‖HS = ‖ξ‖H⊗V . Thus Tη is an isometry. It remains to prove
that the range of Tη is all of LHS(H,V ). To that end, let T ∈ LHS(H,V ) and let (hn),
resp. (vn) be orthonormal bases of H resp. V . We can expand Ten =

∑
m anmvm, where

anm = 〈Ten, hm〉V . Note that ∑
nm

a2
nm =

∑
n

‖Ten‖2V <∞ .

Thus ξ :=
∑
anmen ⊗ vm belongs to H ⊗ V . We then have

(Tηξ)(ek) =
∑
n,m

anm〈ek, en〉Hvm =
∑
m

akmvm = Tek .

Hence, by linearity and continuity, Tηξ = T , i.e. rgTηLHS(H,V ) as claimed. �

It is customary to drop the operator Tη and merely write T =
∑
anmhn ⊗ vm in the

above situation, where anm are the coefficients in the expansion of Ten in the basis (vm).
It follows from Lemma 1.2.13 that the Hilbert-Schmidt norm ‖ · ‖HS is induced by an

inner product. Indeed, if T =
∑
anmhn ⊗ vm and S =

∑
bnmhn ⊗ vm belong to LHS(H,V )

and we set
〈T, S〉HS :=

∑
nm

anmbnm .

This defines an inner product on LHS(H,V ) which induces the norm ‖ · ‖HS. Note that

〈T, S〉HS =
∑
n

∑
m

anmbnm =
∑
n

〈Ten, Sen〉V =
∑
n

〈S∗Ten, en〉V =: tr(S∗T )

The last sum is the so-called trace of the operator S∗T ∈ L (H,H). In fact, the trace can
be define for a more general class of operators – the so-called trace class operators – and the
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above equation shows that if S, T ∈ LHS(H,V ), then S∗T is of trace class. We do not go
into details here but note that the value of tr(S∗T ) does not depend on the choice of the
orthonormal basis (en). Indeed, if (hn) is an orthonormal basis of H, then expanding hn in
the basis (em), we find∑

n

〈Thn, Shn〉V =
∑
n

∑
k

∑
k

〈hn, ek〉H〈hn, el〉H〈Tek, Sel〉V

=
∑
k

∑
l

〈ek, el〉H〈Tek, Sel〉V

=
∑
k

〈Tek, Sek〉V .

This in particular shows that the norm in the Hilbert space H ⊗ V does not depend on
the choice of bases of H and V , as it seems a priori.

We now return to our discussion of Malliavin derivatives and extend the definition of
the Malliavin derivative to Hilbert space valued random variables. Besides our H-isonormal
Gaussian process W we are given a (separable) Hilbert space V . In this setting, we have the
following generalization of the Wiener chaos decomposition.

We let Hn(V ) denote the closed subspace of L2(Ω;V ) generated by random variables of
the form

∑m
j=1Xjvj , where Xj ∈ Hn and vj ∈ V . This space can be canonically identified

with the space Hn ⊗ V .
We now have the following generalization of Theorem 1.1.11. The proof is left to the

reader.

Theorem 1.2.14. Let W be an H-isonormal Gaussian process and V be a separable
Hilbert space. Then

L2(Ω,ΣW ,P;V ) =

∞⊗
n=0

Hn(V )

and this decomposition is orthogonal. Moreover, if (vk)k∈K is an orthonormal basis of V ,
then {Φα ⊗ vk : |α| = n, k ∈ K} is an orthonormal basis of Hn(V ).

In order to generalize the definition of the Malliavin derivative, we consider the space
S (V ), consisting of V -valued random vectors X of the form

X =
m∑
j=1

Yjvj

where Yj ∈ S , thus Yj = fj(W (hj1), . . . ,W (hjnj )) for certain nj ∈ N, fj ∈ C∞p (Rnj )) and

hj1, . . . , h
j
nj ∈ H, and vj ∈ V .

Definition 1.2.15. For X ∈ S (V ) as above, the Malliavin derivative of X is the H⊗V -
valued random variable (alternatively, the LHS(H,V )-valued random variable) DX, defined
by

DX =

m∑
j=1

nj∑
i=1

[
∂ifj(W (hj1), . . . ,W (hjnj )

]
hji ⊗ vj =

m∑
j=1

(
DXj

)
⊗ vj .

Here the tensors in the first sum are elements in H ⊗ V , the tensors in the second sum are
elements in L2(Ω;H)⊗ V .

We note that in the case where V = R, i.e. in the scalar situation considered so far, the
tensor H ⊗ V = H ⊗ R is isometrically isomorphic to H and the vector valued definition
coincides with the one given above.

Expanding the vectors vj in an orthonormal basis and testing against the elements of this
basis, it follows from Lemma 1.2.3 that the definition is independent of the representation of
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the random vector X. Similar as in the scalar case, one shows that the Malliavin derivative
is closable as an operator from Lp(Ω;V ) to Lp(Ω;H⊗V ). We leave the details to the reader.
The domain of the closure is denoted by D1,p(V ).

We can now also define higher order Malliavin derivatives. Indeed, if X ∈ D1,p is such
that the H-valued random variable DX belongs to D1,p(H), then we say that X ∈ D2,p

and D2X := D(DX). Thus, the second derivative is an H ⊗H-valued random variable or,
alternatively, and LHS(H)-valued random variable.

Example 1.2.16. Let us consider again the situation of Brownian motion where H =
L2((0,∞)) and Bt = W (1(0,t]). We have seen that X = B2

t belongs to D1,2 and DX =

2Bt1(0,t] Note that DX ∈ S (H). We have D2X = (D2Bt)⊗ 1(0,t] = 21(0,t] ⊗ 1(0,t].

Let us write H⊗n for the n-fold tensor product of H with itself. We define inductively

Dk,p := {X ∈ Dk−1,p : Dk−1X ∈ D1,p(H⊗(n−1))} and DkX := D(Dk−1X).

Dk,p is a Banach space with respect to the norm

‖X‖k,p :=
(
E|X|p +

k∑
j=1

E‖DjX‖p
H⊗j

) 1
p
.

For p = 2 and k ≥ 1, the space Dk,2 is a Hilbert space with respect to the inner product

〈X,Y 〉k,2 = E(XY ) +
k∑
j=1

E
〈
DjX,DjY

〉
H⊗j

.

We next characterize the Malliavin derivative in terms of the Wiener chaos decomposi-
tion. We denote by Jn the orthogonal projection onto the n-th Wiener chaos (both in the
scalar and the vector-valued situation).

Proposition 1.2.17. Let X ∈ L2(Ω) have the chaos decomposition X =
∑∞

n=0 JnX.
Then X ∈ D1,2 if and only if

∑∞
n=0 n‖JnX‖22 < ∞. In this case DJnX = Jn−1DX and we

have

E‖DX‖2H =

∞∑
n=0

n‖JnX‖22

Proof. Pick an orthonormal basis (en) of H and consider the random variables Φα from
Proposition 1.1.15, i.e. for α ∈ Λ we have

Φα =
√
α!
∞∏
j=1

Hαj (W (ej)) .

We have Φα ∈ S and using that H ′n = Hn−1, we find

DΦα =
√
α!
∞∑
l=1

∞∏
j 6=l,l=0

Hαj (W (en))Hαl−1(W (el))el

Note that if |α| =
∑
αj = n, then for fixed l the random variable

√
α!

∞∏
j 6=l,l=0

Hαj (W (en))Hαl−1(W (el))

is equal to
√
αlΦβ(l) where β

(l)
j = αj for j 6= l and β

(l)
l = αl − 1. Therfore, DΦα =∑∞

l=1

√
αlΦβ(l) .
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Note that |β| = n− 1 whence DΦα ∈Hn−1(H). Moreover,

E‖DΦα‖2H =
∞∑
l=0

αl = |α| = n

Since {Φα : |α| = n} is an orthonormal basis of Hn by Proposition 1.1.15, it follows from
linearity and closedness of D that Hn ⊂ D1,2 and DHn ⊂Hn−1(H), where we set H−1(H) =
{0}. Moreover, E‖DY ‖2H = nE|Y |2 for Y ∈Hn.

Now assume that
∑∞

n=0 n‖JnX‖22 < ∞. By the Wiener chaos decomposition, the se-

quence XN :=
∑N

n=0 JnX converges in L2(Ω) to X. Moreover, by the above,

E‖DXN‖2H =
N∑
n=0

n‖JnX‖22

which is bounded by assumption. By Lemma 1.2.8, X ∈ D1,2 and DX =
∑∞

n=0DJnX.
Conversely, let X ∈ D1,2. By Theorem 1.2.14, O = {Φα ⊗ ek : α ∈ Λ, k ∈ N} is an

orthonormal basis for L2(Ω;H). Expanding DX in this basis and X in the orthonormal
basis Φα, the above computation shows that DJnX = Jn−1DX and that E‖DX‖2H =∑∞

n=0 ‖JnX‖22 <∞. �

As a corollary, we see that a random variable whose Malliavin derivative is zero, is almost
surely constant.

Corollary 1.2.18. Let X ∈ D1,2 be such that DX = 0 a.e. Then X = EX a.e.

Proof. By Proposition 1.2.17, JnX = 0 for all n ≥ 1. Thus X = J0X = EX almost
surely. �

Corollary 1.2.19. Let A ∈ Σ. Then 1A ∈ D1,2 if and only if P(A) ∈ {0, 1}.

Proof. If P(A) ∈ {0, 1}, then 1A is almost surely constant, hence 1A ∈H0 ⊂ D1,2.
Conversely assume that 1A ∈ D1,2. Pick a function ϕ ∈ C∞c (R) with ϕ(t) = t2 for

t ∈ (−2, 2). Then ϕ has bounded derivative. Noting that ϕ(1A) = 1A and ϕ′(t) = 2t for
t ∈ (−2, 2), it follows from the chain rule (Proposition 1.2.7) that

D1A = Dϕ
(
1A

)
= 21AD1A .

Thus D1A = 0 a.e. on Ac and D1A = 21A, a.e. on A. Altogether, D1A = 0 a.e. and hence,
by Corollary 1.2.18, 1A = E1A = P(A) almost surely, which implies P(A) ∈ {0, 1}. �

1.3. The Divergence Operator

We next define the divergence operator as the adjoint of the Malliavin derivative. As the
Malliavin derivative maps L2(Ω) to L2(Ω;H), its adjoint will be an operator on L2(Ω;H)
taking values in L2(Ω).

Definition 1.3.1. The divergence operator, sometimes also called the Skorohod integral,
is the adjoint δ of the Malliavin derivative D on L2(Ω). More precisely, the domain D(δ)
consists of those u ∈ L2(Ω;H) such that there exists X ∈ L2(Ω) with

E〈DY, u〉H = E
(
Y ·X

)
for all Y ∈ D1,2. Since D1,2 is dense in L2(Ω), there is at most one such element X. We
write δ(u) := X.

Note that an element u of L2(Ω;H) belongs to the domain D(δ) if and only if there exists
a constant c ≥ 0 such that ∣∣E〈DY, u〉∣∣ ≤ c(E|Y |2) 1

2
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for all X ∈ D1,2. Indeed, in this case, the map ϕ(Y ) := E〈DY, h〉 is a linear functional on
D1,2 which is bounded with respect to the 2-norm. It thus has a unique bounded extension
to all of L2(Ω). By the Riesz-Fischer theorem, this extension is of the form Y 7→ E(Y X) for
a certain X ∈ L2(Ω).

Example 1.3.2. Let u ∈ S (H), say u =
∑n

j=1Xjhj . Then X ∈ D(δ) and

(1.2) δ(u) =
n∑
j=1

XjW (hj)−
n∑
j=1

〈DXj , hj〉

To see this, we may (by linearity) assume that n = 1 and write u = Xh for simplicity. Then
the statement reduces to equality

E〈DY, u〉 = EX〈DY, h〉 !
= EY

(
XW (h)− 〈X,h〉

)
for all Y ∈ D1,2. This integration-by-parts formula was seen to be true for Y ∈ S in
Corollary 1.2.5, that it is true for Y ∈ D1,2 follows by an approximation argument.

We next prove that a large class of H-valued processes u, namely those in D1,2(H),
belong to the domain of δ. Let us note that if u ∈ D1,2, then the derivative Du takes values
in H ⊗H h LHS(H,H) so that the derivative is operator valued.

We first prove a “commutator relationship” between the Malliavin derivative and the
divergence.

Lemma 1.3.3. Let u ∈ S (H) and h ∈ H. Then

(1.3) 〈Dδ(u), h〉 − δ(Du · h) = 〈u, h〉
Given h ∈ H we may define the directional derivative DhX of a random variable X

as DhX := 〈DX,h〉. For an H-valued random variable, the directional derivative can be
defined as Dhu := Du · h, i.e. the image of h under the map Du ∈ LHS.

Doing so, equation (1.3) can be rephrased as Dhδ − δDh = 〈·, h〉 which is some sort of
Heisenberg commutator relationship (AB−BA = id) except that we have to test against an
h (and that the first Dh is actually different from the second).

Proof of Lemma 1.3.3. Let u = Xg where X = f(W (e1), . . . ,W (en)) ∈ S and g ∈
H. We assume without loss of generality that e1, . . . , en is an orthonormal system with
g, h ∈ span{e1, . . . , en}, cf. the proof of Lemma 1.2.3. The general case follows from linearity.
In what follows we write Xj := (∂jf)(W (e1), . . . ,W (en)).

By (1.2), δu = XW (g) − 〈DX, g〉. We note that 〈DX, g〉 =
∑n

j=1Xj〈ej , g〉. Let us

also note that XW (g) = f̃(W (e1), . . .W (en),W (g)) where f̃(x, xn+1) = xn+1f(x) so that
D(XW (g)) = Xg +

∑n
j=1W (g)Xjej . It follows from the definition of D that

(1.4) 〈Dδ(u), h〉 = 〈u, h〉+
n∑
j=1

W (g)Xj〈ej , h〉 −
n∑
j=1

〈ej , g〉〈DXj , h〉

On the other hand, Du =
∑n

j=1Xjej⊗g so that Du ·h =
∑n

j=1Xj〈h, ej〉g. Thus (1.2) yields

(1.5) δ(Du · h) =

n∑
j=1

〈h, ej〉XjW (g)−
n∑
j=1

〈h, ej〉〈DXj , g〉

Expanding h and g in the orthonormal basis e1, . . . , en, we find
n∑
j=1

〈ej , g〉〈DXj , h〉 =

n∑
j=1

n∑
i=1

〈ej , g〉〈h, ei〉〈DXj , ei〉

=

n∑
j=1

n∑
i=1

〈ej , g〉〈h, ei〉〈DXi, ej〉 =

n∑
i=1

〈h, ei〉〈DXi, g〉,
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where we have used in the second equality that 〈DXj , ei〉 = 〈DXi, ej〉 as a consequence of
the Schwarz theorem on mixed partial derivatives. Combining this with (1.4) and (1.5),
equation (1.3) is proved. �

We can now prove

Proposition 1.3.4. D1,2(H) ⊂ D(δ). Moreover, for u, v ∈ D1,2(H) we have

(1.6) E
(
δ(u)δ(v)

)
= E〈u, v〉+ E

[
tr(DuDv)

]
.

Proof. Let us first assume that u, v ∈ S (H) ⊂ D(δ). We let (en) be an orthonormal
basis of H. Using the duality between δ and D and the Parseval identity, we have

E
(
δ(u)δ(v)

)
= E〈u,Dδ(v)〉 =

∞∑
k=1

E〈u, ek〉〈Dδ(v), ek〉 .

By Lemma 1.3.3 the latter equals
∞∑
k=1

E
(
〈u, ek〉

(
〈v, ek〉+ δ(Dv · ek)

))
= E〈u, v〉+

∞∑
k=1

E〈u, ek〉δ(Dv · ek)

Using the duality between D and δ we find for k ∈ N
E
(
〈u, ek〉δ(Dv · ek)

)
= E

〈
D〈u, ek〉, (Dv · ek)

〉
= E〈Du∗ · ek, Dv · ek〉

where we have used that D〈u, h〉 = Du∗ · h which was an exercise. Thus we obtain

E
(
δ(u)δ(v)

)
= E〈u, v〉+ E

∞∑
k=1

〈Du∗ · ek, Dv · ek〉

= E〈u, v〉+ E
[
tr(DuDv)

]
This establishes (1.6) for u, v ∈ S (H). For u = v ∈ S (H) we have in particular,

E|δ(u)|2 = E‖u‖2H + E‖Du‖2H⊗H =: ‖u‖2D1,2(H) .

Given u ∈ D1,2(H), there exists a sequence un in S (H) such that un → u in L2(Ω;H) and
Dun → Du in L2(Ω;H ⊗H). The above inequality shows that δ(un) is a Cauchy sequence
in L2(Ω), hence convergent to, say, X.

Now observe that for Y ∈ D1,2 we have

E〈DY, u〉 = lim
n→∞

〈DY, un〉 = lim
n→∞

E
(
Y δ(un)

)
= E

(
Y X

)
.

This implies u ∈ D(δ) and δ(u) = X. It also implies (1.6) for u = v. The general case follows
by polarization. �

Our next result allows us to factor out a scalar random variable in a divergence.

Proposition 1.3.5. Let X ∈ D1,2 and u ∈ D(δ) be such that Xu ∈ L2(Ω;H) and such
that Xδ(u)− 〈DX,u〉 ∈ L2(Ω). Then Xu ∈ D(δ) and

δ(Xu) = Xδ(u)− 〈DX,u〉 .
Proof. First, let X ∈ S . By the duality between D and δ and calculus, we find for

Y ∈ Sb that

E〈DY,Xu〉 = E〈u,XDY 〉 = E〈u,D(XY )− Y DX〉
= E

(
δ(u)XY − Y 〈u,DX〉

)
= E

(
Y
(
Xδ(u)− 〈DX,u〉

))
.

Using that S is dense in D1,2, it follows that the above is true for X ∈ D1,2, u ∈ D(δ) and
Y ∈ Sb. Using the additional assumptions on X and u, we see that it then also holds for
Y ∈ D1,2. This yields the claim. �



18 1. STOCHASTIC CALCULUS

We end this section by showing that both the Malliavin derivative and the Skorohod
integral are local operators. Here we call an operator T defined on a space of random
variables local if X = 0 a.e. on a set A ∈ Σ implies that also TX = 0 a.e. on A.

Proposition 1.3.6. The divergence operator δ is local on D1,2(H).

Proof. It suffices to show that δ(u)1{‖u‖=0} = 0 almost everywhere.
Let X ∈ Sc and ϕ ∈ C∞c (R) with 1(−1,1) ≤ ϕ ≤ 1(−2,2). Put ϕn(t) := ϕ(nt) so

that ϕn(t) → 1{0} pointwise and ϕ′n(t) → ∞ · 1{0} pointwise. Note that supt∈R |tϕ′n(t)| =
supt∈R |ntϕ′(nt)| ≤ 2‖ϕ′‖∞ <∞.

It is an exercise to prove that Xϕn(‖u‖2) ∈ D1,2 with

D
(
Xϕn(‖u‖2)

)
= ϕn(‖u‖2)DX + 2Xϕ′n(‖u‖2)Du · u .

This together with the duality between D and δ yields

E
(
δ(u)Xϕn(‖u‖2)

)
= E

(
ϕn(‖u‖2)〈u,DX〉

)
+ 2E

(
Xϕ′n(‖u‖2)〈Du · u, u〉

)
.

Observe that ϕn(‖u‖2)〈u,DX〉 → 1{0}(‖u‖2)〈u,DX〉 = 0 as n→∞ and that∣∣ϕn(‖u‖2)〈u,DX〉
∣∣ ≤ ‖ϕ‖∞‖u‖H‖DX‖H

and the latter is integrable. Thus, by dominated convergence, E
(
ϕn(‖u‖2)〈u,DX〉

)
→ 0.

Similarly, Xϕ′n(‖u‖2)〈Du · u, u〉 → 0 as n→∞ and∣∣Xϕ′n(‖u‖2)〈Du · u, u〉
∣∣ ≤ |X||ϕ′n(‖u‖2)‖Du‖H⊗H‖u‖2 ≤ 2|X|‖ϕ′‖∞‖Du‖H⊗H

which is integrable. Altogether the dominated convergence theorem yields

E
(
δ(u)1{‖u‖=0}X

)
= 0

which finishes the proof. �

We next proof that also the Malliavin derivative is local. Note that the proof uses the
divergence operator.

Proposition 1.3.7. The Malliavin derivative is a local operator on D1,1.

Proof. Let X ∈ D1,1. Replacing X with arctanX if necessary, we may and shall
assume that X ∈ L∞ additionally. Let ϕ,ϕn be as in the proof of Proposition 1.3.6 and put

ψn(t) :=
∫ t
−∞ ϕn(r) dr. Note that ‖ψn‖∞ ≤ n−1‖ϕ‖1 By the chain rule, ψn(X) ∈ D1,1 and

Dψn(X) = ϕn(X)DX.
Now let u ∈ Sb(H). We note that EY δ(u) = E〈DY, u〉 holds even for Y ∈ D1,1 ∩ L∞

and u ∈ Sb(H) as is easy to see using approximation. Hence, we find∣∣Eϕn(X)〈DX,u〉
∣∣ =

∣∣E〈D(ψn(X)), u〉
∣∣ =

∣∣Eψn(X)δ(u)
∣∣ ≤ 1

n
‖ϕ‖1E|δ(u)| → 0

as n→∞. It follows that E1{|X|=0}〈DX,u〉 = 0 and thus, since Sb(H) separates L1(Ω;H),
1{|X|=0}DX = 0 almost surely which implies the claim. �

Since δ and D are local operators, they can be defined on larger domains by localization.
This is done as follows. If R is a vector space of (real or Hilbert space valued) random
variables then we say that ξ ∈ Rloc if there exists a sequence ((An, ξn))n∈N ⊂ Σ ×R such
that

(1) An ↑ Ω and
(2) ξ = ξn on An.

Then, given a local operator T on R, we can define Tξ by setting Tξ = Tξn on An
Proceeding in this manner, we extend the Malliavin derivative to the spaces D1,p

loc and

extend the divergence δ to the spaces D1,2
loc(H).
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1.4. The Ornstein-Uhlenbeck Semigroup

Definition 1.4.1. Let Jn denote the projection on L2(Ω) onto the n-th Wiener chaos.
The Ornstein-Uhlenbeck semigroup is the one-parameter semigroup (T (t))t≥0 defined by

T (t)X :=
∞∑
n=0

e−ntJnX .

From this definition, the following properties are easy to see:

Lemma 1.4.2. The Ornstein-Uhlenbeck semigroup satisfies the following properties:

(1) T (t) ∈ L (L2(Ω)) and T (t) is selfadjoint for all t ≥ 0;
(2) T (0) = idL2(Ω) and T (t+ s) = T (t)T (s);

(3) For X ∈ L2(Ω), the orbit t 7→ T (t)X is continuous.

Lemma 1.4.2 can be summarized by saying that the Ornstein-Uhlenbeck semigroup is
a strongly continuous semigroup of selfadjoint operators. We recall that the generator of a
strongly continuous semigroup (S(t))t≥0 on a Banach space E is the (in general unbounded)
operator A, defined by

D(A) := {x ∈ E : lim
t→0

t−1(T (t)x− x) exists} and Ax := lim
t→0

t−1(T (t)x− x) .

We can now characterize the generator L of the Ornstein-Uhlenbeck semigroup – the
Ornstein-Uhlenbeck operator – in terms of the Wiener chaos decomposition.

Proposition 1.4.3. The generator L of the Ornstein-Uhlenbeck semigroup (T (t))t≥0 is
the operator given by LX :=

∑∞
n=0−nJnX for X ∈ D(L) where

D(L) :=
{
X ∈ L2(Ω) :

∞∑
n=0

n2‖JnX‖22 <∞
}
.

Proof. For the moment denote the generator of the Ornstein-Uhlenbeck operator by A
and let L be the operator in the statement of the proposition.

First assume that X ∈ D(A) with AX = Y , i.e. limn→∞ t
−1(T (t)X − X) exists and

equals Y . Using the continuity of the projection Jn and the fact that Jn commutes with
T (t) for all t ≥ 0, we find

JnY = lim
t→0

Jn
T (t)X −X

t
= lim

t→0

T (t)JnX − JnX
t

= lim
t→0

e−nt − 1

t
JnX = −nJnX .

Since
∑

n ‖JnY ‖2 <∞ it follows that X ∈ D(L) and LX = Y .
Conversely, let X ∈ D(L). We have

E

∣∣∣(T (t)X −X))

t
− LX

∣∣∣2 =

∞∑
n=0

(e−nt − 1

t
+ n

)2
E|JnX|2

Each summand in the latter sum converges to 0 as t→ 0. Moreover, |t−1(e−nt−1)| ≤ ne for
all t ≤ 1. Thus by dominated convergence the sum converges to 0 as t → 0 implying that
X ∈ D(A) and AX = LX. �

The next proposition clarifies the relation between the operators L,D and δ.

Proposition 1.4.4. We have L = −δD, i.e. X ∈ D(L) if and only if X ∈ D1,2 and
DX ∈ D(δ); in that case δ(DX) = −LX.

Proof. If X ∈ D1,2 with DX ∈ D(δ), then, by the duality between D and δ, we have

E
(
Y δ(DX)

)
= E〈DY,DX〉

for all Y ∈ D1,2.
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By Proposition 1.2.17 and polarization E〈Jn−1DX,Jn−1DY 〉 = nE(JnXJnY ). Thus,
expanding into the Wiener chaoses, we find

E
(
Y δ(DX)

)
=
∞∑
n=0

nE(JnY JnX) =
∞∑
n=0

nE(Y JnX)

It follows that Jn(δ(DX)) = nJn(DX). Indeed, if we pick Y ∈ Hm for m 6= 0, then the
above implies

E(Y (δ(DX)− nJnX) =
∑
j 6=n

nE(Y JjX) = 0 .

By linearity and continuity, this remains true for Y ∈ H ⊥
n =

⊕
m6=n Hm. It now follows

that
∞∑
n=0

n2‖JnX‖2 =
∞∑
n=0

‖Jnδ(DX)‖2 <∞

and hence X ∈ D(L). Moreover, continuing the above calculation, we find

E
(
Y δ(DX)

)
=
∞∑
n=0

nE(JnY JnX) =
∞∑
n=0

nE(Y JnX) = EY (−LX)

for all Y ∈ D1,2. The equality δ(DX) = −LX follows from the density of D1,2 in L2(Ω).

Conversely, let X ∈ D(L). Then
∑∞

n=0 n
2‖JnX‖22 <∞ and hence

∑∞
n=0 n‖JnX‖22 <∞

which implies X ∈ D1,2 by Proposition 1.2.17. The computations above yield

E
[
Y (−LX)

]
= E〈DY,DX〉

for all Y ∈ D1,2. By definition, this means that DX ∈ D(δ) and δ(DX) = −LX. �

Remark 1.4.5. The proof of Proposition 1.4.4 shows that the Ornstein-Uhlenbeck op-
erator can also be defined via quadratic forms. Indeed, if we define a[X,Y ] := E〈DX,DY 〉,
then X ∈ D1,2 is such that there exists Z ∈ L2(Ω) with EY Z = a(X,Y ) for all Y ∈ D1,2,
then X ∈ D(L) and LX = −Z.

Note that the symmetric form 1 + a is the inner product of the Hilbert space D1,2.

In the applications of Malliavin calculus that we will present, the main operators of
interest are the Malliavin derivative and the Skorohod integral. However, the Ornstein-
Uhlenbeck operator plays an imporatant role in theoretic considerations and we will come
back to this operator in Chapter 3.

1.5. Multiple Wiener Integrals

In this section, we take a closer look at the situation where the Hilbert space H is of the
form L2(T,B, µ) where (T,B, µ) is a σ-finite measure space. This in particular includes the
situation of Brownian motion from Example 1.1.3 where (T,B, µ) = ((0,∞),B((0,∞), λ).
We recall that the Brownian motion Bt was defined as Bt := W (1(0,t]). We have then
remarked that one often writes ∫ T

0
f(t) dBt := W (1(0,T ]f)

and calls this the Wiener integral of f over (0, T ). We note that if f =
∑

j αj1(aj ,bj ] is a
step function, then by linearity∫

f(t) dB(t) =
∑
j

αjW (1(aj ,bj ]) =
∑
j

αj
(
W (1(0,bj ])−W (1(0,aj ])

)∑
j

αj(Bbj −Baj )

so that the Wiener integral is indeed defined via a certain Riemannian sum. We would also
like to note that {W (h) : h ∈ H} = H1, so that the Wiener integral yields a description of
the first Wiener chaos.
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In this section, we develop a theory of multiple Wiener integrals which will then give
a description of all Wiener chaoses in the important case where our Hilbert space H is an
L2-space. This more detailed information about the Wiener chaos decomposition will then
also yield refined results about the central operators D, δ and L.

Throughout this section, we fix a σ-finite measure space (T,B, µ) and consider the
Hilbert space H = L2(T,B, µ). We will assume that the measure µ has no atoms. We recall
that an atom is a measurable set A with positive measure such that every measurable subset
B of A has either measure zero or the same measure as A. It can be proved that if µ has no
atoms, then for every A ∈ B with µ(A) > 0 and every r ∈ (0, 1), there exists a measurable
subset B of A with µ(B) = rµ(A).

Since simple functions are dense in L2 the isonormal Gaussian process W is uniquely
determined by the random variables {W (A) : A ∈ B, µ(A) < ∞} where W (A) := W (1A).
Sometimes this family {W (A) : A ∈ B, µ(A) <∞} is called white noise based on µ.

We set B0 := {A ∈ B : µ(A) <∞}.

Definition 1.5.1. Let m ∈ N. The space of elementary functions Em consists of those
functions f ∈ L2(Tm,Bm, µm) which are of the form

(1.7) f(t1, . . . , tm) =

n∑
i1,...,im=1

ai1...im1Ai1×···×Aim (t1, . . . , tm)

where n ∈ N, A1, . . . , An are pairwise disjoint sets in B0 and the coefficients ai1...im are zero
whenever any two of the indices i1, . . . , im are equal.

Thus Em is generated by the indicator functions 1B where B = A1 × · · · × Am is a
rectangle in Tm with finite measure that does not intersect any of the diagonal subspace
∆ij = {t ∈ Tm : ti = tj}. Note that f(t) = 0 for every f ∈ Em and t ∈ ∆ij . This
property will play an important role in the definition of the m-fold Wiener integral. Before
we introduce this integral, we note

Lemma 1.5.2. For m ∈ N, the space Em is dense in L2(Tm,Bm, µm).

Proof. It suffices to prove that 1B is contained in the closure of Em whenever B =
A1× · · · ×Am for certain A1, . . . , Am ∈ B0. Fix such a set B. Given ε > 0, we find pairwise
disjoint sets E1, . . . , En with µ(Ei) ≤ ε for 1 ≤ i ≤ n such that each set Aj can be written
as disjoint union of some of the Ei’s. This is a consequence of the fact that µ has no atoms.
We may assume that

⋃
j Ej =

⋃
iAi and denote the measure of the latter set by M .

Having the sets Ei at hand, we can now find coefficients εi1,...,im ∈ {0, 1} such that

1B =
n∑

i1,...,im=1

εi1,...,im1Ei1×...,×Eim .

Now let I be the set of tuples (i1, . . . , im) where all indices are different and let J be the set
of the remaining tuples. Setting

1C =
∑

i1,...,im∈I
εi1,...,im1Ei1×...,×Eim .

Then C ⊂ B and 1C ∈ Em. Moreover, we have

1B − 1C =
∑

i1,...,im∈J
εi1,...,im1Ei1×...,×Eim

Let us now describe the set J in more detail. We have

(
m
2

)
possibilities to pick two

positions 1, . . . ,m onto which we put an identical index, e.e. one of the numbers 1, . . . , n.
On the remaining positions, we put any one of these numbers.
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With this information, we estimate

‖1B − 1C‖2L2(Tm) =
∑

i1,...,im∈J
εi1,...,imµ(Ei1) · . . . · µ(Eim)

≤
(
m
2

) n∑
j=1

µ(Ej)
2
( n∑
j=1

µ(Ej)
)m−2

≤
(
m
2

)
ε
( n∑
j=1

µ(Ej)
)m−1

≤ εMm−1

(
m
2

)
which proves that 1B is indeed contained in the closure of Em. �

Remark 1.5.3. Lemma 1.5.2 is not true for measures with atoms. Indeed, consider
T = {0, 1} and µ({0}) = µ({1}) = 1. Then E2 consists of those functions f with f(0, 0) =
f(1, 1) = 0. But these functions are certainly not dense in L2(T 2).

We now introduce the m-fold Wiener integral.

Definition 1.5.4. For f ∈ Em of the form (1.7) the m-fold Wiener integral Im(f) is
defined as

Im(f) :=
n∑

i1,...,im=1

ai1,...,imW (Ai1) · . . . ·W (Aim) .

We leave it to the reader to verify that the definition of Im(f) is independent of the
particular representation of the function f . Clearly, the Wiener integral is linear.

Let us note some further properties of the Wiener integral.

Lemma 1.5.5. Let f ∈ Em and g ∈ Ek.

(1) Let f̃ denote the symmetrization of f ,

f̃(t1, . . . , tm) =
1

m!

∑
σ∈Sm

f(tσ(1), . . . , tσ(m)) .

Then Im(f) = Im(f̃).
(2) We have

E
(
Im(f)Ik(g)

)
=

{
0 if m 6= k

m!
〈
f̃ , g̃
〉
L2(Tm)

if m = k

Proof. (1) By linearity, it suffices to consider f = 1A1×···×Am where A1, . . . , Am are
pairwise disjoint. Noting that

W (A1) · . . . ·W (Am) = W (Aσ(1)) · . . . ·W (Aσ(m))

for any σ ∈ Sm, the thesis clearly holds in this case.

(2) We may and shall assume that f and g are based on the same partition A1, . . . , An.
We assume that f is given by (1.7) and

g(t1, . . . , tk) =
n∑

j1,...,jk=1

bj1,...,jk1Aj1×...×Ajk .

First assume that m 6= k. Note that the product Im(f)Ik(g) is a sum of terms of the form

ai1,...,imbj1,...,jkW (Ai1) · . . .W (Ajm) ·W (Aj1) · . . . ·W (Ajk) .

Since m 6= k, at least one index in {1, . . . , n} appears exactly once in the above product.
Since W (Aj) and W (Ai) are independent for i 6= j, it follows that the above product has
expectation zero in this case.
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Now assume that m = k. By part (1) we may and shall assume that f and g are
symmetric so that aiσ(1),...,iσ(m)

= ai1,...,im for all σ ∈ Sm and similarly for the b′s. We have

E
(
Im(f)Im(g)

)
= E

[(
m!

∑
i1<i2<···<im

ai1,...,imW (Ai1) · . . . ·W (Aim)
)

×
(
m!

∑
j1<j2<···<jm

bj1,...,bmW (Aj1) · . . . ·W (Ajm)
)]

= (m!)2
∑

i1<i2<···<im

ai1,...,imbi1,...,imµ(Ai1) · . . . · µ(Aim)

= m!〈f, g〉L2(Tm)

�

Setting f = g in part (2) of Lemma 1.5.5 and noting that ‖f̃‖L2(Tm) ≤ ‖f‖L2(Tm) it

follows that Im is a bounded linear operator from Em to L2(Ω) and thus, as a consequence
of Lemma 1.5.2, has an extension to a bounded linear operator from all of L2(Tm) to L2(Ω).
We still denote this extension by Im. We also write sometimes

Im(f) =:

∫
Tm

f(t1, . . . , tm)dW (t1) . . . dW (tm) .

In the case where T = (0,∞) it is also customary to use the differential dBt1 . . . dBtm .

Our next goal is to prove that the range of Im is exactly the m-th Wiener chaos Hm.
The proof is based on induction and uses a technical tool which we develop first.

Given f ∈ L2(Tm) and g ∈ L2(T k) the tensor f ⊗ g is the function f ⊗ g ∈ L2(Tm+k)
defined by (f ⊗ g)(t1, . . . , tm+k) = f(t1, . . . , tm)g(tm+1, . . . , tm+k). We also define the con-
traction f ⊗1 g as the function f ⊗1 g ∈ L2(Tm+k−2) given by

(f ⊗1 g)(t1, . . . , tm+k−1) :=

∫
T
f(t1, . . . , tm−1, s)g(tm, . . . , tm+k−2, s) dµ(s) .

We have

Proposition 1.5.6. Let f ∈ L2(Tm) be symmetric and g ∈ L2(T ). Then

Im(f)I1(g) = Im+1(f ⊗ g) +mIm−1(f ⊗1 g) .

Proof. First assume that f = 1̃A1×···×Am and g = 1B where A1, . . . , Am are pairwise
disjoint elements of B0. and B ∈ B0. If B is disjoint from A1, . . . , Am, then f ⊗ g ∈ Em+1

and f ⊗1 g = 0. By the definition of the integral

Im(f)I1(g) = W (A1) · . . .W (Am)W (B) = Im+1(f ⊗ g) ,

which is the thesis in this case.
If B is not disjoint from the Aj ’s we may and shall assume that B = A1. In this case,

f ⊗1 g(t1, . . . , tm−1) =
1

m!

∑
σ∈Sm

1Aσ(1)(t1) · . . . · 1Aσ(m−1)
(tm−1)

∫
T
1Aσ(m)

(s)1A1(s) dµ(s)

=
1

m!

∑
σ∈Sm,σ(m)=1

1Aσ(1)(t1) · . . . · 1Aσ(m−1)
(tm−1)µ(A1)

=
1

m
1̃A2×···×Am(t1, . . . , tm)µ(A1)

Next, given ε > 0, we find a measurable partition of A1 in disjoint sets B1, . . . , Bn with
µ(Bi) < ε. We can define

hε :=
∑
i 6=j

1Bi×Bj×A2×···×Am ∈ Em+1 .
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We find

Im(f)I1(g) = W (A1)2W (A2) · . . . ·W (Am) =
( n∑
j=1

W (Bj)
)2
W (A2) · . . . ·W (Am)

= µ(A1)W (A2) · . . . ·W (Am) +
∑
i 6=j

W (Bi)W (Bj)W (A2) · . . . ·W (Am)

+

n∑
j=1

[
W (Bj)

2 − µ(Bj)
]
W (A2) · . . . ·W (Am)

= mIm−1(f ⊗1 g) + Im+1(hε) +Rε.

Setting M := µ(A1) · . . . · µ(Am), we find

ER2
ε = 2

n∑
j=1

µ(Bj)
2µ(A2) . . . µ(Am) ≤ 2ε

n∑
j=1

µ(Bj)µ(A2) · . . . · µ(Am) ≤ 2εM .

Here the first equality follows from the fact that EX4 = 3σ4 for X ∼ N (0, σ2). Thus the
thesis follows upon ε→ 0 if we prove that hε → f ⊗ g for ε→ 0. Indeed we have

‖h̃ε − ˜f ⊗ g‖L2(Tm+1) =
∥∥h̃ε − 1̃A1×···×Am×A1

∥∥
L2(Tm+1)

=
∥∥h̃ε − 1̃A1×A1×A2···×Am

∥∥
L2(Tm+1)

≤
∥∥hε − 1A1×A1×A2···×Am

∥∥
L2(Tm+1)

=
n∑
j=1

µ(Bj)
2µ(A2) · . . . µ(Am) ≤ εM

which implies the necessary convergence. �

We now obtain

Proposition 1.5.7. Let Hm be the m-th Hermite polynomial and h ∈ L2(T ) be of norm
one. Then

m!Hm(W (h)) =

∫
Tm

h(t1) · . . . · h(tm) dW (t1) . . . dW (tm) .

Moreover, the m-fold Wiener integral maps L2(Tm) onto Hm. Finally, Im(f) = Im(g) if

and only if f̃ = g̃.

Proof. Let us write h⊗m for the function h⊗ · · · ⊗ h with m factors.
We proof the above equation by induction on m. To include m = 0, we set h⊗0 ≡ 1 and

let I0 be the identity map on the constant functions. Thus the formula trivially holds for
m = 0. For m = 1, we clearly have W (h) = H1(W (h)) =

∫
T h(t) dW (t). Thus assume that

the formula is correct for some m and all smaller values. By Proposition 1.5.6

Im+1(h⊗(m+1)) = Im(h⊗m)I1(h)−mIm−1(h⊗m ⊗1 h)

= m!Hm(W (h))W (h)−mIm−1(h⊗(m−1)‖h‖2)

= m!Hm(W (h))W (h)−m(m− 1)!Hm−1(W (h))

= m!(m+ 1)Hm+1(W (h))

since (m+ 1)Hn+1(x) = xHn(x)−Hn−1(x), see Lemma 1.1.7.

For the second part, let L2
sym(Tm) denote the closed subspace of L2(Tm) consisting of

symmetric functions. By Lemma 1.5.5, EIm(f)2 = m!‖f‖2L2(Tm) for f ∈ L2
sym(Tm). Thus

ImL
2
sym(Tm) is a closed subspace of L2(Ω) which, by the above, contains Hm(W (h)) for

h ∈ H of norm 1. Consequently, Hm ⊂ ImL
2
sym(Tm). Since Im(f) ⊥ Ik(g) for k 6= m, it

follows that ImL
2
sym(Tm) is orthogonal to Hk for k 6= m, whence ImL

2
sym(Tm) = Hm �
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We immediately obtain the following version of the Wiener chaos expansion, which rep-
resents an element of L2(Ω) as a series of multiple Wiener integrals.

Theorem 1.5.8. Let X ∈ L2(Ω,Σ,P). Then there exists unique symmetric functions
fn ∈ L2(Tn) with

X =

∞∑
n=0

In(fn) .

Here f0 = EX and I0 is the identity on the constants.

1.6. Stochastic Calculus in the White Noise Case

We now proceed to study the special situation where H = L2(T,B, µ) for a σ-finite
measure space (T,B, µ) without atoms. Given a random variable X ∈ D1,2, the Malliavin
derivative DX is an element of L2(Ω;H) which in this special case can be identified with
L2(T×Ω). Thus the Malliavin derivative can be viewed as a stochastic process {DtX : t ∈ T}
where DtX is defined almost everywhere with respect to the measure µ ⊗ P. Similarly, if
X ∈ Dk,2 then the k-fold Malliavin derivative DkX is an element of L2(Ω;H⊗k) which can
canonically be identified with L2(T k ×Ω) whence the derivative DkX can be viewed as a k-
parameter stochastic process {Dk

t1,...,tk
X : tj ∈ T}. Even more is true. Namely an element of

X of Dk,2 belongs to Dk+1,2 if and only if Dk
t1,...,tk

X ∈ D1,2 for µ⊗k-almost every (t1, . . . , tk)

and t 7→ E‖DtD
k
t1,...,tk

X‖2
L2(Tk)

belongs to L2(T ). in that case Dk+1
t,t1,...,tk

X = DtD
k
t1,...,tk

X

almost surely. Indeed, consider the case k = 1 and let X = f(W (h1), . . . ,W (hn)) ∈ S . In
this case

DtX =
n∑
i=1

(∂if)(W (h1), . . . ,W (hn))hj(t), DX =
n∑
i=1

(∂if)(W (h1), . . . ,W (hn))hj ,

DsDtX =
n∑
j=1

n∑
i=1

(∂j∂jf)(W (h1), . . . ,W (hn))hi(s)hj(t),

and

D2X =
n∑
j=1

n∑
i=1

(∂j∂jf)(W (h1), . . . ,W (hn))hi ⊗ hj .

It follows from the identifications of Tensor product spaces that

E
(
|X|2 + ‖DX‖2H + ‖D2X‖2H⊗H

)
= E

(
|X|2 + ‖t 7→ DtX‖2L2(T ) + ‖(s, t) 7→ DsDtX‖2L2(T 2)

)
for such X. Thus the claim follows from approximation.

Similar remarks also apply to the divergence operator δ. If we view the Malliavin deriva-
tive as an operator from L2(Ω) to L2(T ×Ω), then the adjoint δ is an operator on L2(T ×Ω)
taking values in L2(Ω). Thus the domain of δ consists of certain stochastic processes. It is
especially in this situation that one calls δ the Skorohod integral.

In this section, we study properties of the Malliavin derivative and the divergence oper-
ator in the white noise setting.

Let us start with a result about the action of D in terms of multiple Wiener integrals.

Proposition 1.6.1. Let X ∈ D1,2 have Wiener expansion X =
∑∞

n=0 In(fn) where
fn ∈ L2

sym(Tn). Then

(1.8) DtX =

∞∑
n=1

nIn−1(fn(·, t)) .
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Before proving Proposition 1.6.1, let us give an interpretation. If X is given as a single
multiple wiener integral X = In(fn), say

X =

∫
Tn
fn(t1, . . . , tn) dW (t1) . . . dW (tn),

then (1.8) says that the derivative of X is obtained by “removing” one of the stochastic
integrals, viewing the variable which is not integrated as a parameter and multiplying with
n. Note that it does not matter with respect to which variable we do not integrate, as the
function fn is assumed to be symmetric.

Proof of Proposition 1.6.1. In view of Proposition 1.2.17, it suffices to proof the
result for X of the form X = Im(fm) where fm is symmetric. We may furthermore assume
that fm ∈ Em, say

fm =
n∑

i1,...im=1

ai1,...,im1Ai1×···×Aim

where A1, . . . , An are pairwise disjoint sets of finite measure. Hence

X =
n∑

i1,...im=1

ai1,...,imW (Ai1) · . . . ·W (Aim)

Thus X ∈ S and we have, by definition,

DX =
n∑

i1,...im=1

m∑
j=1

ai1,...,im1Aij

∏
k 6=j

W (Ajk)

On the other hand,

1̃Ai1×···×Aim (t1, t2, . . . , tm) =
1

m!

∑
σ∈Sm

n∏
k=1

1Aiσ(k)
(tk)

=
1

m!

m∑
j=1

1Aij
(tm)

∑
σ∈Sm,σ(j)=m

∏
k 6=j

1Aiσ(k)
(tk)

=
1

m

m∑
j=1

1Aj (tm)1̃∏
k 6=j Aik

(t1, . . . , tm−1)

This implies that

Im−1(fm(·, t)) =
n∑

i1,...im=1

ai1,...,im
1

m

m∑
j=1

1Aij
(t)
∏
k 6=j

W (Aik) ,

finishing the proof. �

We give some applications of this result. Let us fix a set A ∈ B. We put

ΣA := σ(W (B) : B ∈ B0, B ⊂ A).

In the particular case where T = (0,∞), where we have defined Bt := 1(0,t], we can for
example consider A = (0, t]. Then Σ(0,t] = σ(Bs : s ≤ t). It is more customary to write
Ft := Σ(0,t]. Note that F = (Ft)t≥0 is the natural filtration generated by Brownian motion.
We first compute the Wiener chaos representation of a conditional expectation.

Lemma 1.6.2. Let X ∈ L2(Ω) have Wiener expansion X =
∑∞

n=0 In(fn) and A ∈ B.
Then

E
(
X
∣∣ΣA

)
=

∞∑
n=0

In(fn1
⊗n
A ) .
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Proof. It suffices to prove the result for X = In(fn) where fn ∈ En. Moreover, by
linearity, we can assume that fn = 1B1×···×Bn where B1, . . . , Bn are pairwise disjoint sets of
finite measure. Thus X = W (B1) · . . . ·W (Bn). We find

E
(
X
∣∣ΣA

)
= E

( n∏
j=1

(
(W (Bj ∩A) +W (Bj ∩Ac)

)∣∣∣ΣA

)
=

n∏
j=1

(
W (Bj ∩A) + 0

)
= In(1(B1∩A)×···×(Bn∩A)) = In(fn1

⊗n
A ) .

Here we have used that the random variables W (Bj ∩ A) and also the random variables
W (Bj ∩Ac) are independent for different values of j and that the former are ΣA measurable
whereas the latter are independent from ΣA. �

We can now prove

Proposition 1.6.3. Let X ∈ D1,2 and A ∈ B. Then E(X|ΣA) ∈ D1,2 and

DtE
(
X
∣∣ΣA

)
= E

(
Dt

∣∣ΣA

)
1A .

Proof. Let X =
∑∞

n=0 In(fn). Combining Proposition 1.6.1 with Lemma 1.6.2, we have

DtE(X|ΣA) = Dt

∞∑
n=0

In(fn1
⊗n
A ) =

∞∑
n=1

nIn−1(fn(·, t)1⊗nA (·, t))

=
∞∑
n=1

nIn−1(fn(·, t)1⊗(n−1)
A (·))1A(t) = E(DtX|ΣA)1A(t) .

In particular, the last series converges so that indeed E(X|ΣA) ∈ D1,2. �

This implies the following

Corollary 1.6.4. Let A ∈ B and assume that X ∈ D1,2 is ΣA-measurable. Then
DtX = 0 almost everywhere on Ac × Ω.

Let us give an interpretation of this result in the case where T = (0,∞). We again put
Bt = W (1(0,t]) and Ft = σ(Bs : s ≤ t). Then if X is Ft measurable, then the Malliavin
derivative DsX is supported in the interval [0, t], i.e. DsX = 0 for s > t.

Let us now address the divergence operator. As we have already mentioned above, the
domain of the divergence is a subset of L2(T × Ω). If u = u(t, ω) ∈ D(δ) we will use the
notation

δ(u) =:

∫
T
u(t) δW (t)

and call δ(u) the Skorohod integral of the “process” (u(t))t∈T .
We have seen in Proposition 1.3.4 that if u ∈ D1,2(H), then u ∈ D(δ). We will now,

using multiple Wiener integrals, give a full description of the domain of the Skorohod integral.
Given an element u ∈ L2(T × Ω) we have a Wiener expansion of the form

u(t) =
∞∑
n=0

In(fn(·, t))

where fn ∈ L2(Tn+1) is a symmetric function in the first n variables. Using Fubini’s theorem
and Lemma 1.5.5 (2), we find

E

∫
T
u(t)2 dµ(t) =

∞∑
n=0

n!‖fn‖2L2(Tn+1) .
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We note that fn is not necessarily symmetric in all n+ 1 variables. The symmetrization f̃n
is given by

f̃n(t1, . . . , tn, t) =
1

n+ 1

(
fn(t1, . . . , tn, t) +

n∑
j=1

f(t1, . . . , tj−1, t, tj+1, . . . , tn, tj)
)
.

Proposition 1.6.5. Let u ∈ L2(T × Ω) have Wiener expansion u =
∑∞

n=0 In(fn(·, t)).
Then u ∈ D(δ) if and only if

∑∞
n=0(n+ 1)!‖f̃n‖2L2(Tn+1) <∞. In that case,

δ(u) =
∞∑
n=0

In+1(f̃n) .

Proof. Let Y = In(g) for some symmetric g. We have

E〈u,DY 〉 = E

∫
T
utDtY dµ(t)

= E

∫
T
utnIn−1(g(·, t)) dµ(t)

=
∞∑
m=0

∫
T
nEIm(fm(·, t))In−1(g(·, t)) dµ(t)

= n

∫
T
EIn−1(fn−1(·, t))In−1(g(·, t)) dµ(t)

= n(n− 1)!

∫
T
〈fn−1(·, t), gn−1(·, t)〉L2(Tn−1) dµ(t)

= n!〈fn−1, g〉L2(Tn) = n!
〈
f̃n−1, g

〉
L2(Tn)

= E
(
In(f̃n−1)In(g)

)
= E

(
In(f̃n−1)Y

)
After this preliminary computation, first assume that u ∈ D(δ). Then the above yields

E
(
δ(u)Y

)
= E〈u,DY 〉 = E

(
In(f̃n−1)Y )

for all Y ∈Hn. This implies that Jnδ(u) = In(f̃n−1). Consequently, δ(u) =
∑∞

n=0 In+1(f̃n).
In particular, it follows that the latter series converges. By orthogonality and Lemma 1.5.5
(2) Eδ(u)2 =

∑∞
n=0(n+ 1)!‖f̃n‖2L2(Tn+1) <∞.

Conversely, if
∑∞

n=0(n+ 1)!‖f̃n‖2L2(Tn+1) <∞, then Z :=
∑∞

n=0 In+1(f̃n) exists in L2(Ω).

The preceding computation yields

E〈u,DY 〉 = E
(
ZY )

for all Y ∈ Hn, hence, by linearity, for Y ∈
⊗N

n=0 Hn. By continuity, this extends even to
Y ∈ D1,2 and we conclude that u ∈ D(δ) and δ(u) = Z. �

Let us now compare the domain D(δ) with the space D1,2(H) which is included in D(δ)
by Proposition 1.3.4. The following Lemma gives examples of elements of D(δ) which are
not included in D1,2(H).

Lemma 1.6.6. Let A ∈ B0 and X ∈ L2(Ω) be Σc
A-measurable. Then X1A ∈ D(δ) and

δ(X1A) = XW (A) .

Proof. Let us first assume that X ∈ D1,2. By Corollary 1.6.4, DX = 0 almost every-
where on A×Ω so that 〈DX,1A〉 =

∫
T DtX1A(t) dµ(t) = 0 almost surely. Proposition 1.3.5

yields that X1A ∈ D(δ) and

δ(X1A) = Xδ(1A)− 〈DX,1A〉 = XW (A) .
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For the general case, let Xn be a sequence in D1,2, converging to X in L2(Ω). Replacing Xn

with E(Xn|ΣA) if necessary, we may and shall assume that Xn is ΣA-measurable. Observe
that Xn1A converges to X1A in L2(Ω;H) and δ(Xn1A) converges to XW (A). By closedness
of δ, X1A ∈ D(δ) and δ(X1A) = XW (A). �

By the remarks at the beginning of this section, if µ(A) > 0, then X1A ∈ D1,2(H) if
and only if X ∈ D1,2. Thus there are elements in D(δ) not contained in D1,2(H). Take,
e.g., X = 1{W (B)>0} for some set B of positive measure disjoint from A. Then X 6∈ D1,2 by

Corollary 1.2.19 since P(W (h) > 0) = 1
2 .

We end this section by proving the following extension of the commutator relationship
in Equation (1.3).

Proposition 1.6.7. Let u ∈ D1,2(H) be such that for almost every t ∈ T the process
s 7→ Dtu(s) belongs to D(δ) and such that there is a version of t 7→ δ(Dtu(s)) which is in
L2(T × Ω). Then δ(u) ∈ D1,2 and

Dt(δ(u)) = u(t) + δ(Dtu) .

Proof. We assume that u has chaos expansion u(t) =
∑∞

n=0 In(fn(·, t)), where fn is
symmetric in the first n variables. Since D1,2(H) ⊂ D(δ) by Proposition 1.3.4, it follows

from Proposition 1.6.5 that
∑∞

n=0(n + 1)!‖f̃n‖2L2(Tn+1) < ∞ and δ(u) =
∑∞

n=0 In+1(f̃n). In

particular, taking Proposition 1.5.7 into account, it follows that Jn(δ(u)) = In(f̃n−1). Noting

that ‖Jn(δ(u))‖22 = n!‖f̃n−1‖L2(Tn), it follows that
∑
n‖Jn(δ(u))‖22 <∞ whence δ(u) ∈ D1,2

by Proposition 1.2.17. Moreover, by Proposition 1.6.1,

Dt(δ(u)) = Dt

∞∑
n=0

In+1(f̃n) =
∞∑
n=0

(n+ 1)In(f̃n(·, t))

=

∞∑
n=0

In

(
fn(t1, . . . , tn, t) +

n∑
j=1

fn(t1, . . . , tj−1, t, tj+1, . . . , tn, tj

)
= u(t) +

∞∑
n=0

nIn(g̃n(·, t))

where

g̃n(t1, . . . , tn, t) =
1

n

n∑
j=1

fn(t1, . . . , tj−1, t, tj+1, . . . , tn, tj

)
Now fix t, s ∈ T . Proposition 1.2.17 yields Dtu(s) =

∑∞
n=0 nIn−1(fn(·, t, s)). For fixed t

Proposition 1.6.5 implies that

δ(Dtu(s)) =

∞∑
n=0

nIn(ρn(·, t))

where the function ρn is given by

ρn(t1, . . . , tn, t) :=
1

n

n∑
j=1

fn(t1, . . . , tj−1, tn, tj+1, . . . , tn−1, t, tj)

=
1

n

n∑
j=1

fn(t1, . . . , tj−1, t, tj+1, . . . , tn−1, tn, tj) = g̃n(·, t)

as fn is symmetric in the first n variables. Together with the above this implies that
Dt(δ(u)) = u(t) + δ(Dtu) as claimed. �
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1.7. Itô’s Integral and the Clark-Ocone Formula

Let us consider once again the Skorohod integral δ in the situation of the previous
section, i.e. the white noise case. The space D1,2(H) =: L1,2 is contained in the domain of
the Skorohod integral. This space coincides with the space of processes u ∈ L2(T ×Ω) such
that u(t) ∈ D1,2 almost surely and Dsu(t) ∈ L2(T 2 × Ω). L1,2 is a Hilbert space with norm

‖u‖2L1,2 := ‖u‖2L2(T×Ω) + ‖Du‖2L2(T 2×Ω) .

Proposition 1.3.4 can be rephrased by saying that for u, v ∈ L1,2 we have

(1.9) E(δ(u)δ(v)) = E

∫
T
u(t)v(t) dµ(t) + E

∫
T

∫
T
Dsu(t)Dtu(s) dµ(t) dµ(s) .

Indeed, for Hilbert Schmidt operators S, T we have tr(ST ) = 〈T, S∗〉HS. Noting that f⊗g∗ =
g⊗f , we see that when identifying the tensor product L2(T )⊗L2(T ) with the product space
L2(T 2) then the adjoint corresponds to interchanging the variables.

Now we consider the special situation where T = (0,∞). We set Bt := W (1(0,t]) and
consider the natural filtration F = (Ft)t≥0 where Ft = Σ(0,t] = σ(Bs : s ≤ t). Suppose

that u = v ∈ L1,2 is such that u(t) is Ft-measurable for t ≥ 0, i.e. the process u is adapted.
In this case, it follows from Corollary 1.6.4 that Dsu(t) = 0 for s > t. It follows that
Dsu(t)Dtu(s) = 0 almost surely and equation (1.9) reduces to the following Itô-isometry

(1.10) Eδ(u)2 = E

∫ ∞
0

u(t)2 dt .

Let us consider a special class of stochastic processes, the so-called elementary step-processes.
An elementary step process is a process of the form

u =
n∑
j=1

Xj1(tj−1,tj ]

where 0 ≤ t0 < t1 < · · · < tn and Xj ∈ L2(Ω,Ftj ,P). It follows from Lemma 1.6.6 and
linearity that such a process u belongs to the domain of δ and

δ(u) =

n∑
j=1

Xj(Btj −Btj−1) .

Now assume that un is a sequence of elementary step process that converges in L2((0,∞)×Ω)
to the process u. The Itô-isometry (1.10) yields that the Skorohod integrals δ(un) are Cauchy,
hence convergent, in L2(Ω). Thus, by closedness of the Skorohod integral, every process in
the closure of the elementary step processes in L2((0,∞) × Ω) belongs to the domain of δ.
It can be proved that the elements of the closure are exactly the adapted, square integrable
processes, i.e. u ∈ L2

F((0,∞)× Ω).
We have thus proved:

Proposition 1.7.1. We have L2
F((0,∞)× Ω) ⊂ D(δ).

For u ∈ L2
F((0,∞)× Ω) is customary to write∫ ∞

0
u(t) dBt

instead of δ(u) and to call this the Itô-integral of u.
Actually, one can prove the Itô-isometry also directly for elementary step processes. One

can thus develop the Itô integral independently of Malliavin calculus. In this case, the above
results show that any Itô-integrable stochastic process is in the domain of the Skorohod
integral and the Skorohod integral coincides with the Itô integral.

We now have the following result about differentiability of the Itô-integral.
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Proposition 1.7.2. Let u ∈ L2
F((0, τ)×Ω) and define X :=

∫ τ
0 u(s) dBs. Then X ∈ D1,2

if and only if u ∈ L1,2. In that case, t 7→ Dtu(s) belongs to L2
F and for t ∈ (0, τ) we have

DtX = u(t) +

∫ τ

t
Dtu(s) dBs

almost surely.

Proof. If u ∈ L1,2, then, by definition, Dtu(s) exists almost everywhere and is square
integrable. By Corollary 1.6.4, Dtu(s) = 0 for t ≥ s. Moreover, the representation in Lemma
1.6.2 together with Proposition 1.6.1 easily yields that Dtu(s) is Fs measurable for t ≤ s.
Consequently, the map s 7→ Dtu(s) is adapted. As it is also square integrable, it belongs to
the domain of δ by Proposition 1.7.1. It follows from Proposition 1.6.7 that X ∈ D1,2 and

DtX = u(t) +

∫ τ

t
Dtu(s) dBs .

Conversely, assume that X ∈ D1,2. Let un(t) be the orthogonal projection of u(t) onto
Pn = H0 ⊕ · · · ⊕Hn so that un(t) → u(t) in L2(Ω). Note that un is adapted and square
integrable, hence Itô integrable. We put Xn :=

∫ τ
0 un(t) dBt. Taking Proposition 1.6.5 into

account, we see that Xn is the projection of X onto Pn+1. Using the above formula for Xn

and the Itô isometry, it follows that Xn converges to X in D1,2. In particular, its D1,2 norm
is bounded.

Using the above formula, we find

E

∫ τ

0
|DtXn|2 dt = E

∫ τ

0

∣∣∣u(t) +

∫ τ

t
Dtun(s) dBs

∣∣∣2 dt
= E

∫ τ

0
|u(t)|2 dt+ E

∫ τ

0

∫ τ

t
|Dtun(s)|2 dsdt

= E

∫ τ

0
|u(t)|2 dt+ E

∫ τ

0

∫ s

0
|Dtun(s)|2 dtds

≥ E

∫ τ

0

∫ s

0
|Dtun(s)|2 dtds = E‖Dun‖2L2((0,τ)2) .

Here, we have used that
∫ τ
t Dtun(s) dBs is independent of Ft, hence of u(t) and the Itô

isometry in the second equality and Fubini’s theorem in the third.
It thus follows that E‖Dun‖2L2((0,τ)2) is bounded and it now follows from Lemma 1.2.8

that u ∈ L1,2. �

Let us now consider Brownian motion with finite time horizon τ , i.e. we consider T =
[0, τ ]. A result by Itô states that any square integrable function X can be written as

X = EX +

∫ τ

0
u(t) dBt

for a suitable process u ∈ L2
F((0, τ) × Ω). It is a natural question how to compute the

process u given X. For random variables X ∈ D1,2 we have the following result, called the
Clark-Ocone formula.

Theorem 1.7.3. Let T = [0, τ ] and set as usual Bt := W (1(0,t]) and Ft = σ(Bs : s ≤ t).
Then for X ∈ D1,2 we have

X = EX +

∫ τ

0
E
(
DtX

∣∣Ft

)
dBt .
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Proof. Suppose that X has the Wiener decomposition X =
∑∞

n=0 In(fn) where fn is
symmetric. Using Proposition 1.6.1 and Lemma 1.6.2, we have

E(DtX|Ft) =
∞∑
n=1

nE
(
In−1(fn(·, t))

∣∣Ft

)
=
∞∑
n=1

nIn−1(fn(·, t)1⊗(n−1)
(0,t] )

We set u(t) := E(DtX|Ft). Clearly, u ∈ L2
F((0,∞) × Ω) so that u ∈ D(δ). Moreover, Itô

and Skorohod integrals coincide. We compute δ(u) using Proposition 1.6.5. To that end, let

us first compute the symmetrization of fn1
⊗(n−1)
(0,t) .

Using that fn is symmetric, we find

1

n!

∑
σ∈Sn

fn(tσ(1), . . . , tσ(n))1(0,tσ(n))(tσ(1)) · . . . · 1(0,tσ(n))(tσ(n−1))

= fn(t1, . . . , tn)
1

n!

∑
σ∈Sn

1{
tσ(n)=max{t1,...,tn}

}
=

1

n
fn(t1, . . . , tn) .

Hence

δ(u) =

∞∑
n=1

nIn(
˜

fn1
⊗(n−1)
(0,t) ) =

∞∑
n=1

In(fn) = X − EX �



CHAPTER 2

Smoothness of Probability Laws

The basic question of this chapter is the following. Given a random variable X (or more
generally, a random vector X), when has the distribution of X a density with respect to
Lebesgue measure. In that case, how smooth is the density, i.e. is it continuous, differentiable,
C∞, etc.

We establish criteria for absolute continuity and smoothness in terms of the Malliavin
calculus established so far. Subsequently, we apply our results to solutions of stochastic
differential equations.

2.1. Absolute Continuity

Throughout this section, we fix an H-isonormal Gaussian process W and the denote the
underlying probability space by (Ω,Σ,P). We assume for convenience that Σ = ΣW .

The following is a simple result about the absolute continuity of the law of a random
variable, based on the duality between Malliavin derivative and the Skorohod integral.

Proposition 2.1.1. Let X ∈ D1,2 be such that ‖DX‖H 6= 0 almost surely and such that
the random variable DX/‖DX‖2H ∈ D(δ). Then the law of X is absolutely continuous with
respect to Lebesgue measure. Its density is given by

p(t) = E
(
1{X>t}δ

( DX

‖DX‖2H

))
.

Proof. Let ψ ∈ Cc(R) and put ϕ(t) :=
∫ t
−∞ ψ(s) ds. Then ϕ is continuously differen-

tiable with bounded derivative ψ whence, by the chain rule in Proposition 1.2.7, ϕ(X) ∈ D1,2

and Dϕ(X) = ψ(X)DX. Consequently,

ψ(X) =
〈
Dϕ(X), DX

‖DX‖2H

〉
H

By the definition of the divergence,

Eψ(X) = E
(
ϕ(X)δ

( DX

‖DX‖2H

))
By approximation, the latter formula also holds for ψ = 1(a,b). Thus

P(a < X < b) = E
(∫ X

−∞
1(a,b)(s) ds · δ

( DX

‖DX‖2H

))
=

∫ b

a
E
(
1{X>s}δ

( DX

‖DX‖2H

))
ds

by Fubini’s theorem. This yields the claim. �

Example 2.1.2. Let us consider the easiest example where X = W (h) for some h ∈ H
with ‖h‖ = 1, i.e. X is a standard normal random variable. In this case, X ∈ D1,2 with
DX = h. Moreover, Y = DX/‖DX‖2H = h ∈ D(δ) with δ(Y ) = W (h) = X. Thus in this
case, the formula in Proposition 2.1.1 reduces to

p(t) = E
(
X1{X>t}

)
.

And indeed, using integration by parts we find

E
(
X1{X>t}

)
=

∫ ∞
t

xe−
x2

2
dx√
2π

=
[
− 1√

2π
e−

x2

2

∣∣∣∞
t

+ 0 =
1√
2π
e−

t2

2

33
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Proposition 2.1.1 is a first result yielding the absolute continuity of the probability law
of a random variable. Actually, one can prove absolute continuity under much weaker as-
sumptions. This is our next goal. We need some preparation.

Intermezzo: Approximating measurable functions

In this intermezzo, we prove the following approximation result:

Lemma 2.1.3. Let M be a Polish space, i.e. a complete, separable metric space and µ be
a finite measure on its Borel σ-algebra B(M). Then given a bounded, measurable function
f : M → R, there exists a bounded sequence fn of continuous functions on M such that
fn → f almost everywhere with respect to µ.

Let us recall that every finite measure µ on a Polish space is regular, i.e. for every set
A ∈ B(M) we have

µ(A) = sup{µ(K) : K ⊂ A, K compact} and µ(A) = inf{µ(U) : A ⊂ U, U open}.
In the proof of Lemma 2.1.3 we use the following result which is due to Lusin

Lemma 2.1.4. Let M be a Polish space, µ be a finite measure on its Borel σ-algebra and
f : M → R measurable. Then, given ε > 0 there exists a compact set K ⊂M with µ(Kc) < ε
such that f |K is continuous.

Proof. Let O = {B(q, n−1) : q ∈ Q, n ∈ N} the collection of all balls with rational
centers and radii of the form n−1 (this is a countable basis for the topology). Let (Bk)k∈N
be an enumeration of O. Since µ is regular, given ε > 0 we find compact sets Kk and open
sets Uk such that

Kn ⊂ f−1(Bk) ⊂ Uk and µ(Uk \Kk) < 2−kε .

The set A :=
⋃
k∈N Uk \ Kk is open as a union of open sets and has measure less than ε.

Using again inner regularity, we find a compact set K ⊂ Ac with µ(Ac \K) ≤ ε− µ(A). It
follows that µ(Kc) = µ(Kc ∩ A) + µ(Ac \ K) ≤ µ(A) + ε − µ(A) = ε. Now let f0 be the
restriction of f to Ac. Then clearly, f−1

0 (S) = f−1(S)∩Ac for any set S ⊂ R. For k ∈ N we
have Uk \Kk ⊂ A and thus Uk ∩Ac = Kk ∩Ac. It follows that

Uk ∩Ac = Kk ∩Ac ⊂ f−1
0 (Bk) ⊂ Uk ∩Ac .

This proves that the preimage of Bk under f0 is open in Ac, thus f0 is continuous. �

Proof of Lemma 2.1.3. By Lemma 2.1.4 for n ∈ N there exists a compact subset
Kn ⊂M such that µ(Kc

n) ≤ n−1 and such that f |Kn is continuous. We assume without loss
of generality that Kn ⊂ Kn+1. By the Tieze extension theorem, there exists a continuous
function fn such that fn = f on Kn and ‖fn‖∞ ≤ ‖f‖∞. This sequence is bounded and
converges pointwise to f on the set

⋃
nKn which has full measure. �

We can now prove the following Theorem which yields absolute continuity of the law
under less restrictive assumptions than Proposition 2.1.1. Note however, that in that propo-
sition we also obtain a formula for the density, which is not the case under our weaker
assumptions below.

Theorem 2.1.5. Let X ∈ D1,1
loc be such that ‖DX‖H 6= 0 almost surely. Then the law of

X is absolutely continuous with respect to Lebesgue measure.

Proof. By localization, we can assume that X ∈ D1,1. We have to show that E1E(X) =
0 for every set E ∈ B(R) with Lebesgue measure zero. It actually suffices to prove this
for bounded sets of measure zero (for then dominated convergence yields the result for all
sets of measure zero). Thus, let E ⊂ (−1, 1) be a set of Lebesgue measure zero. We
denote the law of X by µ. By Lemma 2.1.3, there exists a sequence fn of continuous
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functions on [−1, 1] which converge to 1E pointwise almost everywhere with respect to

µ + dx. We put ϕn(t) =
∫ t
−1 fn(x) dx. Then ϕn is continuously differentiable. By the

chain rule (Proposition 1.2.7), ϕn(X) ∈ D1,1 and Dϕn(X) = fn(X)DX. Since fn → 1E

almost everywhere with respect to Lebesgue measure, it follows that ϕn(x) → 0 for every
x. Consequently, ϕn(X) → 0 almost surely and even in L1(Ω). On the other hand, since
fn → 1E almost everywhere with respect to µ, we have fn(X) → 1E(X) almost surely
and thus fn(X)DX → 1E(X)DX almost surely. By dominated convergence, we even have
fn(X)DX → 1E(X)DX in L1(Ω;H). Since D is a closed operator, 1E(X)DX = 0 almost
surely and thus 1E(X)‖DX‖H = 0 almost surely. Since ‖DX‖H 6= 0 almost surely it follows
that 1E(X) = 0 almost surely. �

Example 2.1.6. Consider Brownian motion (Bt)t∈[0,1] and let M := maxt∈[0,1]Bt. We

have seen in the exercises that M ∈ D1,2 and DM = 1(0,t∗) where t∗ is the almost sure unique

point, where Bt∗ = M . Thus ‖DM‖H =
√
t∗ 6= 0 unless t∗ = 0. However, since B0 = 0

a.s. t∗ = 0 implies Bt ≡ 0 almost surely. But this has probability zero. Thus ‖DM‖H 6= 0
almost surely and it follows from Theorem 2.1.5 that the law of M is absolutely continuous
with respect to Lebesgue measure.

Using the reflection principle (i.e. the strong Markov property) of Brownian motion, it
can be shown that M has the density

p(x) =
2√
2π
e−

x2

2 1(0,∞)(x)

with respect to Lebesgue measure. This is much more information about M than we obtain
from Theorem 2.1.5. However, Theorem 2.1.5 merely uses distributional information about
Brownian motion.

We would also like to note that corresponding result is also true for the maximum of
the so-called Wiener sheet which is constructed from an L2((0, 1)2, dλs)-isonormal Gaussian
process, see [6, Section 2.1.7]. In that situation the law of the maximum process is not
known.

We next turn our attention to the law of a random vector X = (X1, . . . , Xd). Note that
the requirement that the law of X has a density with respect to d-dimensional Lebesgue
measure is stronger than merely requiring that the law of each Xj has a density with respect
to one dimensional Lebesgue measure. Indeed, it could still happen that the vector X is
concentrated on a (d − 1)-dimensional subspace (or even a subspace of lower dimension)
which is a set of measure zero with respect to d-dimensional Lebesgue measure.

As a first attempt to prove absolute continuity of the law of a vector, we try to iterate
the proof of Proposition 2.1.1. Note that there we had to normalize DX by dividing by
‖DX‖2H . In the multidimensional setting, we use the so-called Malliavin matrix.

Definition 2.1.7. Let X : Ω→ Rd be a random vector whose components Xj belong to

D
1,1
loc for j = 1, . . . , d. The Malliavin matrix γ is the matrix with entries γij = 〈DXi, DXj〉H .

Now assume that X : Ω → Rd is a random vector whose components belong to D1,2.
We further assume that the Malliavin matrix γ is almost surely invertible and the random
variables (γ−1)ijDXj belong to the domain of δ.

We want to repeat the proof of Proposition 2.1.1. To that end, let ϕ ∈ C∞b (Rd). It

follows from the chain rule, that ϕ(X) ∈ D1,2 and Dϕ(X) =
∑d

j=1(∂jϕ)(X)DXj . Tak-

ing the inner product with DXi, we find 〈Dϕ(X), DXi〉 =
∑d

j=1(∂jϕ)(X)〈DXj , DXi〉 =∑d
j=1 γji(∂jϕ)(X).

Thus, writing xj = (∂jϕ)(X) and bi = 〈Dϕ(X), DXi〉, the above gives a system of linear
equations γx = b. Since γ is almost surely invertible, we can solve for x and obtain x = γ−1b,
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that is

(∂jϕ)(X) =
d∑

k=1

(γ−1)jk〈Dϕ(X), DXk〉 =
〈
Dϕ(X),

d∑
k=1

(γ−1)jkDXk

〉
H
.

The duality between D and δ yields

E(∂jϕ)(X) =

d∑
k=1

E
〈
Dϕ(X), (γ−1)jkDXk

〉
=

d∑
k=1

E
[
ϕ(X)δ

(
(γ−1)jkDXk

)]

= E
[
ϕ(X)δ

( d∑
k=1

(γ−1)jkDXk

)]
(2.1)

To proof the existence of a density, we would like to use the function

ϕ(x1, . . . , xd) =

∫ x1

−∞
· · ·
∫ xd

−∞
1(a1,b1)×···×(ad,bd)(t1, . . . , td) dt1 . . . dtd .

To be more precise, we would like to find an expression for ∂1 . . . ∂dϕ, i.e. we have to iterate
(2.1). The problem is that it is not clear whether the random variables Yj := δ

(∑
(γ−1
jk DXk)

)
are such that they belong to D1,2 and, multiplied with entries of γ−1, belong to D(δ). We
will tackle this problem in the next section. However, the above computations together with
Proposition 2.1.12 below are enough to conclude that the distribution of X has a density
with respect to Lebesgue measure. We have thus proved

Proposition 2.1.8. Let X : Ω→ Rd be a random vector with components in D1,2 such
that

(1) The Malliavin matrix γ is almost surely invertible;
(2) For every i, j = 1, . . . , d, the random variable (γ−1)ijDXj belongs to D(δ).

Then the distribution of X has a density p with respect to d-dimensional Lebesgue measure.

Let us illustrate this before completing the proof.

Example 2.1.9. We consider the general linear stochastic differential equation{
dX(t) = AX(t)dt+BdW (t)
X(0) = x

where X is a vector in Rm, A ∈ Rm×m, B ∈ Rm×d and W is an d-dimensional Brownian
motion. The initial datum x ∈ Rd is nonrandom. It can be proved that the solution of the

above equation is given by X(t) = S(t)x0 +
∫ t

0 S(t − s)BdW (s) where S(t) := etA and the
latter integral is a Wiener integral. Let us look at the equation{

dX(t) = Y (t)dt
dY (t) = dW (t)

which corresponds to the choice m = 2, d = 1 A =

(
0 1
0 0

)
and B =

(
0
1

)
. Thus

S(t) =

(
1 t
0 1

)
and hence, by the above formula,

X(t) =

(
x1 + tx2 +

∫ t
0 (t− s)dBs

x2 +
∫ t

0 dBs

)
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Note that the components of X(t) belong to D1,2, in fact, the above gives their Wiener chaos
decomposition. We have

DX(t) =

(
(t− ·)1(0,t](·)

1(0,t](·)

)
.

Thus

γt =

(
t3/3 t2/2
t2/2 t

)
and hence detγt = t4/12 6= 0

for t > 0. Consequently, γ is invertible for t > 0 and hence the law of the vector X(t) has a
density with respect to 2-dimensional Lebesgue measure.

If, in contrast, we pick A =

(
1 0
0 0

)
and B as above, then the solution is X(t) =

(etx1, Bt) and the law of this vector has no density with respect to 2-dimensional Lebesgue

measure. Note that in this case the Malliavin matrix of X(t) is given by γ =

(
0 0
0 t

)
which is not invertible.

Intermezzo: Gagliardo-Nirenberg inequality

In the proof of Proposition 2.1.12, we use the following Gagliardo-Nirenberg inequality:

Lemma 2.1.10. Let d > 1. For f ∈ C1
c (Rd) we have

‖f‖ d
d−1
≤

d∏
j=1

‖∂jf‖
1
d
1

Proof. We write x = (x1, . . . , xd). For j ∈ {1, . . . , d} we have

|f(x)| =
∣∣∣ ∫ xj

−∞
∂jfdxj

∣∣∣ ≤ ∫
R

|∂jf | dxj =: Fj(x) .

Hence

|f(x)|
d
d−1 ≤ (F1(x) · · ·Fd(x))

1
d−1 .

Integrating with respect to x1 over R, noting that F1(x) is independent of x1 and using the

generalized Hölder inequality for
∑d

j=2
1
d−1 = 1,∫

R

|f(x)|
d
d−1 dx1 ≤ F1(x)

1
d−1

∫
R

F
1
d−1

2 · · ·F
1
d−1

d dx1

≤ F1(x)
(∫

R

F2(x) dx1

) 1
d−1 · · ·

(∫
R

Fd(x) dx1

) 1
d−1

.

We now integrate this inequality over R with respect to x2, noting that
( ∫

R
F2(x) dx1

) 1
d−1

is independent of x2 and using again the generalized Hölder inequality∫
R

∫
R

|f(x)|
d
d−1 dx1 dx2 ≤

(∫
R

F2(x) dx1

) 1
d−1
(∫

R

F1(x) dx2

) 1
d−1

(∫
R

∫
R

F3(x) dx1 dx2

) 1
d−1 · · ·

(∫
R

∫
R

F1(x) dx1 dx2

) 1
d−1

Iterating this until we have integrated over all variables x1, . . . , xd, we obtain∫
Rd
|f(x)|

d
d−1 dx ≤

d∏
j=1

(∫
Rd
|∂jf(x)| dx

) 1
d−1

.

�
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Remark 2.1.11. Note that a corresponding inequality in dimension 1 fails, even if one
is willing to allow a constant in front of the product. This is seen by considering functions
f , supported in (−n, n), say, which are equal to 1 on the interval (−(n− 1), n− 1).

We now formulate and prove the following Proposition.

Proposition 2.1.12. Let µ be a finite measure on Rd. If there exists a constant C ≥ 0
such that for all ϕ ∈ C∞b (Rd) and all j = 1, . . . , d we have∣∣∣ ∫

Rd
∂jϕdµ

∣∣∣ ≤ C‖ϕ‖∞,
then µ is absolutely continuous with respect to Lebesgue measure. The density belongs to the

space L
d
d−1 .

Proof. We first consider d = 1. Fixing a < b, let

ϕ(t) :=

 0 if t ≤ a
t− a if a < t < b
b− a if t ≥ b .

We note that ϕ is not infinitely differentiable. However, we can approximate this function by
C∞b functions such that the estimate in the proposition remains true when we use ∂ϕ = 1[a,b].
We hence obtain µ([a, b]) ≤ C(b − a) and this implies that µ is absolutely continuous with
respect to Lebesgue measure.

Now consider the case d > 1. The assumption implies that the map ϕ 7→
∫
∂iϕdµ,

initially defined on C∞c (R), extends to a bounded linear functional χi on C0(Rd). Thus,
there exists a signed measure νi such that χi(ϕ) =

∫
ϕdνi for all ϕ ∈ C0(Rd).

In order to prove that µ is absolutely continuous, we consider a standard mollifier ρn,
say ρn(x) = ndρ(nx) where ρ(x) = c exp(−(1− |x|2)−1) for |x| < 1 and ρ(x) = 0 else. Here
c is chosen such that

∫
ρdx = 1. The convolution ρn ∗ µ, defined by

ρn ∗ µ(x) :=

∫
Rd
ρn(x− y) dµ(y),

is a bounded, infinitely differentiable function. Moreover, ∂α(ρn ∗µ) = (∂αρn) ∗µ. To obtain
a function with compact support, we multiply with ϑm ∈ C∞c (Rd) which is chosen such that
1{|x|≤m} ≤ ϑm ≤ 1{|x|≤m+1}. By Lemma 2.1.10

‖ϑm(ρn ∗ µ)‖ d
d−1
≤

d∏
j=1

‖∂jϑm(ρn ∗ µ)‖
1
d
1 .

Note that

∂j(ϑm(ρn ∗ µ)) = (∂jϑm)(ρn ∗ µ) + ϑn((∂jρn) ∗ µ) .

It follows from the definition of νi that we can estimate |(∂jρn) ∗ µ| ≤ |ρn ∗ νj |. We thus
obtain

‖∂jϑm(ρn ∗ µ)‖1 ≤ ‖ϑm‖∞‖ρn ∗ νi‖1 + ‖∂jϑm‖∞‖ρn ∗ µ‖
≤ ‖ϑm‖∞‖νi‖TV + ‖∂jϑm‖∞‖µ‖TV =: Kj

whereKj is a constant independent of n andm. It follows that the set {ϑm(ρn∗µ) : n,m ∈ N}
is a bounded subset of L

d
d−1 and hence, by reflexivity, relatively weakly compact.

Thus, for every n ∈ N there is a function fn ∈ L
d
d−1 and a subsequence mk such that

ϑmk(ρn ∗ µ) ⇀ fn as k →∞. Consequently, for g ∈ Cc ⊂ Ld = (L
d
d−1 )∗ we have∫

gfn dx = lim
k→∞

∫
gϑmk(ρn ∗ µ) dx
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= lim
k→∞

∫
ρn ∗ (gϑmk) dµ =

∫
ρn ∗ g dµ.

For the last equality note that by dominated convergence ρn ∗ (gϑmk) → ρn ∗ g pointwise.
Moreover, ‖ρn∗(gϑmk)‖∞ ≤ ‖ρn‖∞‖g‖1. Thus the equality follows from applying dominated
convergence again.

Now note that the sequence fn is also bounded in L
d
d−1 . Thus there is a function f ∈ L

d
d−1

and a subsequence nk such that fnk ⇀ f . Now let g ∈ Cc. Since g is uniformly continuous
on its compact support we find, given ε > 0 an n ∈ N such that |g(x)− g(y)| ≤ ε whenever
|x− y| ≤ n−1. Thus

|ρn ∗ g(x)− g(x)| ≤
∫
ρn(y)|g(x− y)− g(x)| dy ≤ ε

∫
ρn(y) dy = ε .

This shows that ρn ∗ g → g uniformly. Altogether,∫
gf dx = lim

k→∞

∫
gfnk dx = lim

k→∞

∫
ρnk ∗ g dµ =

∫
g dµ .

This finishes the proof. �

Also in the case of random vectors, absolute continuity of the law can be proved under
weaker assumptions. The proof, however, is not a generalization of the one-dimensional
proof. We quote the result, due to Bouleau and Hirsch without proof.

Theorem 2.1.13. Let X = (X1, . . . , Xd) be a random vector such that Xj ∈ D1,p
loc for

some p > 1 and j = 1, . . . , d and such that the Malliavin matrix γ is almost surely invertible.
Then the law of X is absolutely continuous with respect to d-dimensional Lebesgue measure.

2.2. Smoothness of the Density

We now return to the question of finding a formula for the density of a random vector
which was left open in the last section. As we have noted there, we need regularity of
Skorohod integrals to iterate the one-dimensional proof to find such a formula. To that end,
given a Hilbert space V , we define the space D∞(V ) by

D∞(V ) :=
⋂
k≥1

⋂
p≥1

Dk,p(V ),

that is D∞(V ) consists of those random elements who have Malliavin derivatives of all orders
and these derivatives lie in all Lp spaces. Note that S (V ) ⊂ D∞. In the case where V = R,
we merely write D∞. The following is easy to see:

Lemma 2.2.1. Suppose that X = (X1, . . . , Xn) has components in D∞ and that ϕ ∈
C∞p (Rn). Then ϕ(X) ∈ D∞ and

Dϕ(X) =
n∑
j=1

(∂jϕ)(X)DXj .

In particular, chosing n = 2 and ϕ(x, y) = xy, it follows that D∞ is an algebra. We now
obtain the following result about the inverse of a matrix with entires in D∞.

Lemma 2.2.2. Let M = (Mij) is an n×n matrix with entries in D∞. Moreover, assume
that M is almost surely invertible and that (detM)−1 ∈ Lp(Ω) for all p ≥ 1. Then the
inverse M−1 = ((M−1)ij) has entries in D∞. Moreover, for i, j ∈ {1, . . . , n} we have

D(M−1)ij = −
n∑

k,l=1

(M−1)ik(M
−1)ljDMkl .
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Proof. As a consequence of Cramer’s rule, the entries of detM ·M−1 are polynomials
in the entries of M , hence elements of D∞ by Lemma 2.2.1. Moreover, detM , being itself a
polynomial in the entries of M is also an element of D∞. To finish the proof, it suffices to
show that (detM)−1 ∈ D∞.

To that end, let us first show that detM is either almost surely positive or almost surely

negative. To see this, let ψn = n1(0,1/n) and ϕn(t) =
∫ t
−∞ ψn(s) ds. Then φn(detM) ∈

D1,2 by the chain rule. Moreover, Dφn(detM) = n1(0,1/n)(detM)D(detM) (well, not
exactly, but we merely need the following estimate which can be proved rigorously, ap-
proximating ψn). We have ‖Dϕn(detM)‖H ≤ ‖X−1DX‖H ≤ |detM |−2‖D(detM)‖2H
which is integrable by assumption. It follows that ‖Dϕn(detM)‖H is uniformly bounded in
L2(Ω;H). Since ϕn(detM) → 1(0,∞)(detM) pointwise and also in L2, Lemma 1.2.8 yields

that 1(0,∞)(detM) ∈ D1,2. Now Corollary 1.2.19 implies that P(detM > 0) ∈ {0, 1}.
We assume without loss of generality that detM > 0 almost surely. The function ϕn(t) :=

(t + n−1)−1, initially defined for t > 0 can be extended to a function in C∞p (R). Hence, by

Lemma 2.2.1, ϕn(detM) ∈ D∞. Note that ϕn(detM)→ (detM)−1 almost surely. Moreover,
using that (detM)−1 ∈

⋃
Lp, we see that ϕn(detM) → (detM)−1 in every Lp, for p ≥ 1.

Next note that

Dϕn(detM) = −(detM + n−1)−2D(detM)→ −(detM)−1D(detM)

pointwise and also in Lp as is easy to see using our assumption. By the closedness of the
Malliavin derivative, (detM)−1 ∈ D1,p for every p ≥ 1. In general, the k-th derivative of
ϕn(detM) can be written as a sum of terms which are multiples products of derivatives of
ϕn(detM) and higer order Malliavin derivatives of detM . Also these converge in Lp(Ω;H⊗k)
so that by closedness we obtain inductively that (detM)−1 ∈ Dk,p for every k, p ≥ 1, i.e.
(detM)−1 ∈ D∞.

Finally, the formula in the Lemma follows by differentiating the equality M−1M = I. �

We next state a result about the regularity of Skorohod integrals that we will use. The
proof will be given in Chapter 3.

Theorem 2.2.3. Let u ∈ D∞(H). Then u ∈ D(δ) and δ(u) ∈ D∞.

We can now iterate the arguments in the previous section. We use the following notation
for partial derivatives. If f : Rd → R is a sufficiently smooth function and α = (α1, . . . , αd) ∈
Nd

0 is a multiindex, then ∂αf denotes the partial derivative

∂αf =
∂α1

∂xα1
1

· . . . · ∂
αd

∂xαdd
f

Proposition 2.2.4. Let X = (X1, . . . , Xd) be such that Xj ∈ D∞ for j = 1, . . . , d and
such that the Malliavin matrix γ satisfies (det γ)−1 ∈ Lp for all p ≥ 1. Then for Y ∈ D∞
and a multiindex α ∈ Nd

0, there exists a random variable Zα = Zα(X,Y ) in D∞ such that
for every ϕ ∈ C∞p (Rd) we have

E
[
(∂αϕ)(X)Y

]
= E

[
ϕ(X)Zα

]
.

Moreover, the random variables Zα are defined as follows. If α = ej, then

Zα = δ
( d∑
k=1

(Y γ−1)jkDXk

)
.

For general α we have

Zα+ej (X,Y ) = Zej (X,Zα(X,Y )) .
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Proof. If α = ej , then the same argument as in the last section, cf. equation (2.1),
yields that E

[
(∂αϕ)(X)Y

]
= E

[
ϕ(X)Zej

]
for Zej as in the statement of the proposition.

Lemma 2.2.2 yields that
∑d

k=1(Y γ−1)jkDXk ∈ D∞(H). Thus Zej ∈ D∞. This shows that
the thesis is true for α = ej . The general case follows by induction on |α|, repeating the
above arguments. �

Definition 2.2.5. A random vector X = (X1, . . . , Xd) is called nondegenerate if Xj ∈
D∞ for j = 1, . . . , d and the Malliavin matrix γ is almost surely invertible with (det γ)−1 ∈ Lp
for all p ≥ 1.

We have now all probabilistic tools at hand to state and prove the main result of this
section. We will also need some facts about the Fourier transform and Schwartzfunctions
which we recall next.

Intermezzo: Schwartz Functions and the Fourier Transform

Definition 2.2.6. A function f : Rd → C is called rapidly decreasing, if

lim
|x|→∞

xαf(x) = 0

for all multiindices α ∈ Nd
0. Here xα = xα1

1 · . . . ·x
αd
d . A function is called a Schwartz function

if it is infinitely differentiable and the function and all its partial derivatives are rapidly
decreasing. The space of all Schwarz functions is denoted by S (Rd).

Obviously, the testfunctions C∞c (Rd) are Schwartz functions. Also f(x) := exp(−|x|2) is
a Schwartz function.

It is easy to see that a C∞-function f is rapidly decreasing if and only if

sup
x∈Rd

(1 + |x|m)|∂αf | <∞

for all m ∈ N and α ∈ Nd
0. In particular, Schwarz functions belong to Lp(Rd) since they can

be majorized by a multiple of the function x 7→ (1 + |x|m)−1 which is p-integrable if m is
large enough. As the testfunctions are Schwartz functions, S (Rd) is dense in Lp(Rd).

Definition 2.2.7. For f ∈ L1(Rd), its Fourier transform Ff : Rd → C is defined by

(Ff)(ξ) =

∫
Rd
f(x)e−ixξ dx

where xξ :=
∑

j xjξj .

Clearly, for f ∈ L1 the Fourier transform is well-defined and a bounded function on C.
We even have

Proposition 2.2.8. (Riemann-Lebesgue Lemma)
The Fourier transform defines a bounded linear operator from L1(Rd) to C0(Rd).

Proof. The continuity of Ff for f ∈ L1 is an easy consequence of the dominated
convergence theorem. Obviously, ‖Ff‖∞ ≤ ‖f‖1, whence F ∈ L (L1(Rd);Cb(R

d)). It
remains fo show that for f ∈ L1(Rd) we have (Ff)(ξ) → 0 as |ξ| → ∞. In fact, by the
boundedness of F and the closedness of C0 in Cb, it suffices to show this convergence for f
in a dense subspace of L1, say f ∈ C∞c (Rd).

Let such an f be given and let |ξ| ≥ R. Then there is an index j with |ξj | ≥ R/
√
d.

Integration by parts yields

|Ff(ξ)| =
∣∣∣ ∫
Rd
∂jf

1

−iξj
e−ixξ dx

∣∣∣ ≤ √d
R

max
j
‖∂jf‖1 → 0

as R→∞. �
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We want to show that F maps S (Rd) bijectively onto itself. Note that if f ∈ S (Rd),
then for every multiindex α also the functions ∂αf and xαf : x 7→ xαf(x) belong to S (Rd),
which follows immediately from the definition.

Lemma 2.2.9. Let f ∈ S (Rd). Then F ∈ C∞(Rd). Moreover, for every multiindex α

(1) ∂αFf = (−i)|α|F (xαf).

(2) F (∂αf)(ξ) = i|α|ξα(Ff)(ξ).

Proof. (1) Differentiability of parameter integrals is a standard application of the dom-
inated convergence theorem. Here, we have

∂αFf = ∂α

∫
Rd
f(x)e−ixξ dx =

∫
Rd
f(x)∂αe

−ixξ dx

= (−i)|α|
∫
Rd
xαf(x)e−ixξ dx = (−i)|α|F (xαf)

where we can interchange differentiation and integration since xαf(x) is integrable as a
Schwartz function.

(2) By integration by parts (note that all boundary terms vanish as xβf ∈ S (Rd)) we
obtain

F (∂αf)(ξ) =

∫
Rd

(∂αf)(x)e−ixξ dx = (−1)|α|f(x)∂αe−ixξ dx = (−1)|α|(−i)|α|ξα(Ff)(ξ) .

�

Corollary 2.2.10. For f ∈ S (Rd) we have Ff ∈ S (Rd).

Proof. We know already that Ff ∈ C∞. Thus we need to show that xα∂βf is rapidly
decreasing for all multiindices α, β. As a consequence of Lemma 2.2.9,

ξα∂β(Ff) = i−|α|(−i)|β|F (∂αx
βf)(ξ) .

By the Riemann-Lebesgue Lemma, the latter is an element of C0. �

We can now also compute the density of the standard normal density γ(x) := cde
−|x|2/2

where cd := (2π)−d/2 is chosen such that
∫
Rd
γ(x) dx = 1.

Corollary 2.2.11. We have (Fγ)(ξ) = c−1
d γ(ξ).

Proof. First let d = 1. Then γ solves the ODE y′ = −xy with initial datum y(0) = c1.
By Lemma 2.2.9

0 = F (γ′ + xγ) = iξFγ + i(Fγ)′

that is Fγ solves the same ODE. Actually, cdFγ also solves that ODE and, moreover,
cdFγ)(0) = cd. Thus, as the solution of that ODE is unique, cdFγ = γ.

In the case d > 1 we use Fubini’s theorem to obtain

Fγ(ξ) =
d∏
j=1

∫
R

e−x
2
j/2e−ixjξj dxj =

d∏
j=1

(2π)
1
2 e−ξ

2
j /2 = cdγ(ξ) .

�

Lemma 2.2.12. For f ∈ S (Rd) we have FFf(x) = c2
df(−x).

Proof. First note that for Schwartz functions f also the Fourier transform Ff is a
Schwartz function. In particular, FFf is well-defined. However, when trying to evaluate
the double integral via Fubini’s theorem, we end up with a divergent integral. Hence we use
the following trick.

We set g(x) := e−ixξ0γ(rx) where ξ0 ∈ Rd and r > 0 are parameters. Then we have

Fg(ξ) =

∫
Rd
e−ixξ0γ(rx)e−ixξ dx = (Fγr)(ξ0 + ξ)
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where we write γr(x) := γ(rx). Using this and Fubini’s theorem, we find∫
Rd

(Ff)(ξ)g(ξ) dξ =

∫
Rd

∫
Rd
f(x)g(ξ)e−ixξ dx dξ

=

∫
Rd
f(x)(Fg)(x) dx =

∫
R

f(x)(Fγr)(x+ ξ0)

=

∫
Rd
f(x)

1

rd
(Fγ)(r−1(x+ ξ0)) dx

= c−1
d

∫
Rd
f(ry − ξ0)γ(y) dy .

Here we have used the fact that (F (γr))(ξ) = r−dFγ(r−1ξ), which easily follows from
substituting z = rx in the integral defining F . In the last equality we have substituted
y = r−1(x+ ξ0).

Now we let r → 0. From dominated convergence, we obtain∫
Rd

(Ff)(ξ)g(ξ) dξ =

∫
R

(Ff)(ξ)e−iξξ0γ(rξ) dξ → γ(0)

∫
Rd

(Ff)(ξ)e−iξξ0 dξ = cd(FFf)(ξ)

as n→∞ and that

cd

∫
Rd
f(ry − ξ0)γ(y) dy → cd

∫
Rd
f(−ξ0)γ(y) dy = cdf(−ξ0)

as n→∞. Now the thesis follows. �

Theorem 2.2.13. The Fourier transformation is a bijection from S (Rd) onto itself.

Proof. By Lemma 2.2.12, F 4 = c4
didS (Rd). This implies that F is invertible with

F−1 = c−4
d F 3. �

This ends our brief digression.

The following is the main result of this Section.

Theorem 2.2.14. Let X = (X1, . . . , Xd) be a nondegenerate vector. Then the law of X
has a density p ∈ S (Rd) with respect to d-dimensional Lebesgue measure.

Proof. As a consequence of Proposition 2.1.8, the law of X has a density p with respect
to d-dimensional Lebesgue measure. We denote the Fourier transform of p by u. Thus

u(ξ) =

∫
Rd
p(x)e−ixξ dx = Ee−iXξ =: Eϕξ(X)

where ϕξ(x) = exp(−ixξ). If ∆ =
∑d

j=1 ∂
2
j denotes the Laplace operator, then ∆kϕξ =

|ξ|2kϕξ. It follows that

|ξ|2ku(ξ) =

∫
Rd
p(x)∆kϕξ(x) dx = E∆kϕξ(X) .

As a consequence of Proposition 2.2.4, there exists a random variable Z ∈ D∞ such that the
latter equals E

[
ϕξ(X)Z

]
. It follows that |ξ|2k|u(ξ)| ≤ E|Z| which implies that u is rapidly

decreasing.
To take care of the derivatives, first note that E

∏
|Xj |αj <∞ since the coordinates Xj

belong to any Lp. It follows that polynomials in d variables are integrable with respect to
p. Now a well-known result about differentiability of parameter dependent integrals yields
that u is a differentiable function of ξ and for any multiindex α we have

∂αu(ξ) =

∫
Rd
p(x)(−ix)αϕxi(x) dx
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Combining this with the above,

|ξ|2k∂αu(ξ) =

∫
Rd
p(x)(−ix)α∆kϕξ(x) dx = E(∆kϕξ)(X)(−iX)α = Eϕξ(X)Z̃

for a certain Z̃ ∈ D∞. It follows that also the partial derivatives are rapidly decreasing,
hence u ∈ S (Rd). By Theorem 2.2.13 it follows that p ∈ S (Rd). �

2.3. Stochastic Differential Equations

The main application of the results established so far is to solutions of stochastic dif-
ferential equations. Here, our underlying isonormal Gaussian process is of the form H =
L2((0,∞);Rd) (or H = L2((0, τ);Rd) if we consider a finite time horizon τ) so that we can
consider a d-dimensional Brownian motion Bt := (B1

t , . . . , B
d
t ) on our underlying Probability

space.

We will also consider the natural filtration F̃ = σ(Bj
s : s ≤ t, j = 1, . . . , d). Actually,

the theory of stochastic differential equations is based on the Itô integral and uses heavily
the fact that Itô stochastic integrals are martingales. To avoid technical difficulties about
measurability, it is customary to assume that the given filtration satisfies the usual conditions,
i.e. F0 contains the P-null sets and the filtration is right-continuous. It is well-known (see,
e.g., Section 2.7 in [4]) that the augmentation F of the Brownian filtration by the null sets
is right-continuous, it thus satisfies the usual conditions.

This additional assumption does not pose difficulties for the Malliavin calculus. Indeed,
the basic result involving measurability, Theorem 1.1.11 about the Wiener chaos decompo-
sition, remains valid when ΣW is replaced with its augmentation by the P-null sets.

Intermezzo: SDE – Existence and uniqueness of solutions

In this intermezzo, we recall some standard results about stochastic differential equations.
For more information, we refer the reader to standard literature, e.g. [4, 7].

We will consider m-dimensional stochastic differential equations of the form{
dX(t) = B(t,X(t)) dt+

∑d
j=1 Vj(t,X(t)) dBj

t

X(0) = x0

A solution of this equation is always understood in integrated form, i.e. a solution is an
m-dimensional stochastic process X so that for every t ≥ 0 we have

X(t) = x0 +

∫ t

0
B(s,X(s)) ds+

d∑
j=1

∫ t

0
Vj(s,X(s)) dBj

s

almost surely where the latter are Itô integrals. The process X has to be such that both
integrals are well-defined. As a matter of fact, we will only be interested in equations
where there is a solution X which has continuous paths (which, together with a continuity
assumption on B will yields that the deterministic integral is well-defined pathwise) and also
belongs to the space L2

F((0,∞)×Ω;Rm) (which together with a continuity assumption on the
Vj ’s will yield that the integrands in the stochastic integrals belongs to L2

F((0,∞)×Ω;Rm),
hence to the domain of the Itô integral, see Section 1.7.

The proof of existence and uniqueness of solutions to stochastic differential equations is
an application of Banach’s fixed point theorem. However, it also uses additional properties of
the (one-dimensional) Itô integral, namly that if φ ∈ L2

F((0, T )×Ω) then the integral process

M(t) :=
∫ t

0 φ(s) dBs is a continuous martingale with quadratic variation process 〈M〉t =∫ t
0 ‖φ(s)‖2 ds. Let us recall that the quadratic variation of a continuous local martingale M

is the unique adapted and increasing process 〈M〉 such that M2−〈M〉 is a local martingale.
The martingale property allows us to employ the following results in the proof of existence

and uniqueness.
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Theorem 2.3.1. (Doob’s maximal inequality; [3, Proposition 7.16])
Let (M(t))t∈[0,T ] be a continuous martingale on some stochastic basis and p ∈ (1,∞).

Then

E
(

sup
t∈[0,T ]

|M(t)|p
)
≤
( p

p− 1

)p
E|M(T )|p .

Theorem 2.3.2. (Burkholder-Davies-Gundy inequality; [3, Theorem 17.7])
Let p ∈ (0,∞). Then there exist constants cp, Cp > 0such that for every continuous

martingale (M(t))t∈[0,T ] we have

cpE〈M〉
p
2
T ≤ E sup

t∈[0,T ]
|M(t)|p ≤ CpE〈M〉

p
2
T .

We now make the following assumption

Hypothesis 2.3.3. Let, d,m ∈ N, τ > 0 and B : (0, τ)×Rm → Rm and, for j = 1, . . . , d,
Vj : (0, τ) × Rm → Rm be measurable maps such |B(·, 0)| and |Vj(·, 0)| are bounded, say by
C and there exists a constant L with

|B(s, x)−B(s, y)|+
d∑
j=1

|Vj(s, x)− Vj(s, y)| ≤ L|x− y| for all s ∈ (0, τ) and x, y ∈ Rm.

Theorem 2.3.4. Assume Hypothesis 2.3.3. Moreover, let p ≥ 2 and x0 ∈ Rd Then there
exists a unique continuous, adapted process (X(t))t∈[0,τ ] such that for every t ∈ [0, τ ] we have

X(t) = x0 +

∫ t

0
B(s,X(s)) ds+

d∑
j=1

∫ t

0
Vj(s,X(s)) dBj

s

almost surely. Moreover, there exists a constant C, depending only on p, T, x0, C and L such
that

E sup
t∈[0,T ]

|X(t)|p ≤ C .

Proof. We consider the Banach space E = LpF(Ω;C([0, T ];Rm)) of continuous, adapted
Rm-valued process which are p-integrable. We claim that the map Φ, defined by

Φ(X)(t) := x0 +

∫ t

0
B(s,X(s)) ds+

d∑
j=1

∫ t

0
Vj(s,X(s)) dBj

s

maps E to itself. Indeed, the constant x0 belongs to E. The deterministic integral is clearly
continuous and adapted. Moreover,

E sup
t∈[0,T ]

∣∣∣ ∫ t

0
B(s,X(s)) ds

∣∣∣p ≤ T p−1E

∫ T

0
|B(s,X(s))|p ds

≤ T p−1E

∫ T

0
(C + L|X(s)|)p ds <∞ .

As for the stochastic integral, first note that as a consquence of our assumptions, the inte-
grand has components in L2

F((0, T )×Ω) whence the stochastic integral defines a continuous
martingale. As a consequence of (vector valued versions of) Doob’s maximal inequality and
the Burkholder-Davies-Gundy inequality,

E sup
t∈[0,T ]

∣∣∣ ∫ t

0
Vj(s,X(s)) dBj

s

∣∣∣p ≤ ( p

p− 1

)p
E
∣∣ ∫ T

0
Vj(s,X(s)) dBj

s

∣∣∣p
≤ C ′pE

(∫ T

0
|Vj(s,X(s))|2 ds

) p
2
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≤ C ′pT
p
2
−1E

∫ T

0
|Vj(s,X(s))|p ds

≤ C ′pT
p
2
−1E

∫ T

0
(C + L|X(s)|)p ds <∞.

Altogether, this shows that Φ maps E to itself as claimed.

Arguing similarly, i.e. considering the deterministic and the stochastic integral separately
where for the stochastic integral we use Doob’s maximal inequality and the Burkholder-
Davies-Gundy inequality, one shows that there is a constant Kp such that for 0 < r ≤ T we
have

E sup
t∈[0,r]

|Φ(X)(t)− Φ(Y )(t)|p ≤ Kpr
p−1

∫ r

0
E|X(s)− Y (s)|p ds .

This implies inductively that

‖Φ(X)− Φ(Y )‖E ≤
Kn
p T

n

n!
‖X − Y ‖E .

Now Banach’s fixed point theorem implies that Φ has a unique fixed point X∗. �

This ends our brief intermezzo. We now return to the problem of proving that solutions
of stochastic differential equations belong to D1,∞ :=

⋂
p≥1D

1,p.
The basic strategy for the proof is as follows. The proof of Theorem 2.3.4 shows that

the solutions of a SDE can be approximated (in Lp) by the Picard iteration. Thus to proof
that the solution belongs to D1,∞ it suffices to show that the Picard approximations belong
to D1,p for every p and that the derivatives are bounded in Lp(Ω;H). In this case Lemma
1.2.8 yields the claim.

To prove that the Picard iterates are smooth, one proceeds inductively and uses the
Lipschitz condition on the coefficients and the chain rule 1.2.9 and Proposition 1.7.2 about
the differentiability of Itô integrals. Note, that the latter is a Hilbert space result, i.e. it can
only be used for p = 2. To overcome this, we will also use the following result, which will be
proved in the next chapter.

Proposition 2.3.5. Let p > 1 and X ∈ D1,1+ε for some ε > 0 be such that X ∈ Lp(Ω)
and DX ∈ Lp(Ω;H). Then X ∈ D1,p.

We now have the following result about differentiability of solutions of stochastic differ-
ential equations.

Theorem 2.3.6. Assume Hypothesis 2.3.3, let x0 ∈ Rm and let (X(t))t∈[0,τ ] be the unique
solution of the SDE

X(t) = x0 +

∫ t

0
B(s,X(s)) ds+

d∑
j=1

∫ t

0
Vj(s,X(s)) dBj

s

which exists as a consequence of Theorem 2.3.4. Then the components Xj(t) belong to D1,∞

for j = 1, . . . ,m and we have

sup
0≤r≤t

E sup
r≤s≤τ

∣∣Dk
rXj(s)

∣∣p <∞
for all p and k = 1, . . . ,m.

Moreover, there exists uniformly bounded and adapted m-dimensional processes akl and
bk, for k = 1, . . . ,m and l = 1, . . . , d, such that the derivative DjX(t) satisfies the stochastic
equation

Dj
rX(t) = Vj(r,X(r)) +

m∑
k=1

∫ t

r
bk(s)D

j
rXk(s) ds+

m∑
k=1

d∑
l=1

∫ t

r
akl(s)D

j
rXk(s) dB

l
s .
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In the case where the coefficients Vj and B are continuously differentiable, the processes akl
and bk are given by

akl(s) := (∂kVl)(s,X(s)) and bk = (∂kB)(s,X(s)) .

Proof. We consider the Picard iterates Xn, defined inductively by X0 ≡ x0 and Xn+1 =
Φ(Xn) where Φ is as in the proof of Theorem 2.3.4.

We claim that components of Xn(t) belong to D1,∞ for all n and t ∈ (0, τ). Moreover,
if we set ψn(t) := sup0≤r≤tE sups∈[r,t] |DrXn(s)|p, we claim that ψn(t) < ∞ and there are

constants c1, c2 such that ψn+1(t) ≤ c1 + c2

∫ t
0 ψn(s) ds.

This is certainly true for the constant x0. Now assume that it is true for Xn(t) for all
t ∈ (0, τ). By the chain rule for Lipschitz functions in Proposition 1.2.9, B(s,Xn(s)) and

Vj(s,Xn(s)) belong to D1,∞. Moreover, there exist random vectors bn,i,k(s) and an,i,j,k(s)

which are bounded by L such that

Dr

[
Bi(s,Xn(s))

]
=

m∑
k=1

bn,i,k(s)DrX
k
n(s) and Dr

[
V i
j (s,X(s))

]
=

m∑
k=1

an,i,j,k(s)DrX
k
n(s) .

The proof of Proposition 1.2.9 shows that bn,i,k and an,i,j,k are obtained as a weak limit of Fs-
measurable random variables and are thus Fs-measurable themselves. It follows that the
processes (DrB(s,Xn(s)))r<s and (DrVj(s,Xn(s)))r<s are adapted and square integrable.

By Proposition 1.7.2,
∫ t

0 Vj(s,Xn(s)) dBj
s ∈ D1,2 and

Dr

∫ t

0
Vj(s,Xn(s)) dBj

s = Vj(r,Xn(r)) +

∫ t

r
DrVj(s,Xn(s)) dBj

s .

Now note that for p > 1 the right hand side belongs to Lp(Ω;L2(0, τ)) where the second
integration is with respect to r. Indeed, for the first term on the right hand side this follows
from the Lipschitz assumption on the Vj together with the integrability properties of Xn. For
the stochastic integral, this follows from the Burkholder-Davies-Gundy inequality, standard
estimates and the boundedness of ψn.

It follows from Proposition 2.3.5 that
∫ t

0 Vj(s,Xn(s)) dBj
s ∈ D1,∞. As for the deter-

ministic integral, it is a consequence of the closedness of the Malliavin derivative on L2

that integration and differentiation can be interchanged. Now a similar argument as above
shows that the deterministic integral belongs to D1,∞. By the definition of Φ, it follows that
Xn+1(t) ∈ D1,∞.

Moreover, standard estimates show that

E sup
s∈[r,t]

|DrXn+1(s)|p ≤ cp
[
γp + T p−1Lp

∫ t

r
E|DrXn(s)| ds

]
where γp = supn,j E sups∈(0,τ) |Vj(s,Xn(s))|p. Since Xn converges in Lp(Ω;C([0, τ ])), it is
bounded in that space and the Lipschitz assumption on Vj yields that γp is finite.

This shows that ψn(t) ≤ c1 + c2

∫ t
0 ψn(s) ds. Taking into account that ψ0(s) ≡ 0, it

follows inductively that ψn(t) ≤ c1
∑n

j=0
cj2t

j

j! . In particular, the ψn are uniformly bounded

on (0, τ) whence the sequence of derivatives is bounded in Lp(Ω;H). It follows from Lemma
1.2.8 that the components of X(t) belong to D1,∞. The stochastic equation for the Malliavin
derivatives follows by differentiating the SDE, taking into account Proposition 1.7.2 and the
chain rule. �

In the case where the coefficients B and Vj are C∞ with all partial derivatives bounded,
the above argument can be iterated to show that X(t) has also higher order Malliavin
derivatives in every Lp. The actual proof contains no new ideas but makes it necessary to
keep track of rather involved notations for the higher order derivatives. We omit it here and
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refer the reader to [6, Lemma 2.2.2 and Theorem 2.2.2] for more information. However, we
formulate the result:

Theorem 2.3.7. Assume Hypothesis 2.3.3 and, additionally, assume that the functions
B and Vj are infinitely differentiable functions of x with all partial derivatives bounded. Then
the unique solution of the stochastic differential equation

X(t) = x0 +

∫ t

0
B(s,X(s)) ds+

d∑
j=1

∫ t

0
Vj(s,X(s)) dBj

s

has components in D∞.

2.4. Hörmander’s Theorem

By what was done so far, the solutions of stochastic differential equations with smooth
coefficients have components in D∞. Theorem 2.2.14 shows that to conclude that the law
of the solution has a smooth density with respect to m-dimensional Lebesgue measure, we
need to show that the Malliavin matrix γ is almost surely invertible with (det γ)−1 ∈ Lp for
all p ≥ 1.

To insure the latter, we need an extra assumption on the coefficients. In fact, whether
or not the solution has a density with respect to m-dimensional Lebesgue measure somehow
depends on “algebraic” properties of the fields B and Vj . For example, if B = Vj ≡ 0, then
the solution X ≡ x0 has degenerate distribution.

Moreoever, there is a difference between B and Vj . Indeed, if m = d = 1 and B ≡ 0 and
V1 ≡ 1, then the solution is Brownian motion and has a smooth density. If, on the other
hand, B ≡ 1 and V1 ≡ 0, then the solution is a deterministic function and has degenerate
diestribution.

We can also take another look at Example 2.1.9. In the first example discussed there, we
have B(x, y) = (y, 0)∗ and V1(x, y) = (0, 1)∗. We have showed that in this case, the solution
has a density with respect to 2-dimensional Lebesgue measure.

On the other hand, in the second example discussed, B(x, y) = (x, 0)∗, V1(x, y) = (0, 1)∗

the solution fails to have a density with respect to 2-dimensional Lebesgue measure.
Note that the only difference between these to examples is in exchanging an x for a y.

The “correct” condition to ensure invertibility of the Malliavin matrix goes back to
the seminal work of Hörmander [2] on hypoelliptic differential operators. We recall that a
differential operator A is called hypoelliptic, if for a distribution u the statement Au ∈ C∞
implies that u is in C∞. Hörmanders condition is formulated in the language of differential
geometry.

A (smooth) vector field on Rm is a map U : Rm → Rm with C∞ entries. Given two
vector fields U and V , the Lie Bracket [U, V ] is the vector field defined by [U, V ](x) =
DV (x) ·U(x)−DU(x) ·V (x), where DU is the derivative matrix with entries (DU)ij = ∂jUi
and “·” is matrix-vector multiplication.

In this section we will consider coefficients B, V1, . . . , Vd as in Hypothesis 2.3.3 but inde-
pendent of time and infinitetly differentiable with bounded partial derivatives. Given such
coefficients, we put

V0 := B − 1

2

d∑
j=1

DVj · Vj .

This vector fields appear when rewriting our stochastic differential equation in Stratonovich
form. We now introduce Hörmander’s condition.

Definition 2.4.1. Define S0 := {V1, . . . , Vd} and, inductively,

Sk+1 := Sk ∪ {[U, Vj ] : U ∈ Sk, j = 0, 1, . . . , d}.
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Moreover, we put Vk(x) := span{U(x) : U ∈ Sk}. We say that B, V1, . . . , Vd satisfies
Hörmander’s condition if

⋃
k≥0 Vk(x) = Rm for all x ∈ Rm.

Example 2.4.2. Let us again consider the situation of Example 2.1.9 where B(x, y) =
(y, 0)∗ and V1(x, y) = (0, 1)∗. Note that in this case DV1 = 0, so that V0 = B. Then we have
S0 = {(0, 1)∗} so that V1 = R(0, 1)∗. As for the commutator [V1, V0], we find

[V1, V0](x, y) =

(
0 1
0 0

)(
0
1

)
−
(

0 0
0 0

)(
y
0

)
=

(
1
0

)
so that V2(x, y) = span{(0, 1)∗, (1, 0)∗} = R2 so Hörmander’s condition is satisfied.

On the other hand, if B(x, y) = (x, 0)∗ and V1(x, y) = (0, 1)∗, we have

[V1, V0](x, y) =

(
1 0
0 0

)(
0
1

)
−
(

0 0
0 0

)(
x
0

)
=

(
0
0

)
so that V2(x, y) = V1(x, y) = R(0, 1)∗. Note that also further “bracketing” yields does yield
a larger space (we either bracket [V1, V0] = 0 or [V1, V1] = 0 trivially). Thus in this situation,
Hörmander’s condition is not satisfied.

We can now formulate the main result of this section, which can be though of as a
probabilistic version of Hörmander’s theorem.

Theorem 2.4.3. Let m, d ∈ N, x0 ∈ Rm and B, V1, . . . , Vd : Rm → Rm be Lipschitz
continuous with C∞ components such that all partial derivatives are bounded. If Hörmanders
condition is satisfied, then the law of the solution X(t) to the stochastic differential equation

(2.2) X(t) = x0 +

∫ t

0
B(X(s)) ds+

d∑
j=1

∫ t

0
Vj(X(s)) dBj

s

has a density pt(x) ∈ S (Rm) with respect to m-dimensional Lebesgue measure.

In view of Theorem 2.3.6 and Theorem 2.2.14, to prove Theorem 2.4.3, it suffices to prove
that the Malliavin matrix γ is almost surely invertible with (det γ)−1 ∈

⋂
p≥1 L

p(Ω). To that
end, we will use the following

Lemma 2.4.4. Let M be a random, symmetric, positive semidefinite matrix with entries
in
⋂
p≥1 L

p(Ω). Assume that for p ≥ 2 there exists a constant Cp and an εp > 0 such that
for 0 < ε < εp we have

sup
|x|=1

P(x∗Mx ≤ ε) ≤ Cpεp .

Then (detM)−1 ∈
⋂
p≥1 L

p(Ω).

Proof. Let λ := inf |x|=1 x
∗Mx be the smallest eigenvalue of M . Then λm ≤ detM .

Consequently, it suffices to prove that Eλ−q < ∞ for all q ≥ 2 as this entails the assertion.
Noting that

Eλ−q =

∫ ∞
0

qtq−1P(λ−1 > t) dt) =

∫ ∞
0

qtq−1P(λ < t−1) dt

we see that it suffices to show that fpr p ≥ 2 there exists a constant C such that P(λ < ε) ≤
Cεp for all ε small enough.

Given ε > 0 we can cover the unit sphere {|x| = 1} by finitely many balls of radius ε2.
We thus find x1, . . . , xn such that for every x with |x| = 1, we find a k ∈ {1, . . . , n} with
|x− xk| ≤ ε2. Cleary, n can be bounded by a constant times ε−2m.

Now let x with |x| = 1 be given and pick k with |x− xk| ≤ ε2. Then

〈x,Mx〉 = 〈xk,Mxk〉+ 〈x− xk,Mx〉+ 〈x− xk,Mxk〉 ≥ 〈xk,Mxk〉 − 2‖M‖ε2 .

Consequently, {‖M‖ < ε−1} ∩
⋂n
k=1{x∗kMxk > 3ε} ⊂ {x∗Mx > ε ∀ |x| = 1}. Thus

P(λ ≤ ε) = P
(
{∃ |x| = 1 : x∗Mx ≤ ε}

)
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≤ P(‖M‖ ≥ ε−1) +

n∑
k=1

P(x∗kMxk ≤ 3ε)

≤ εpE‖M‖p + n sup
|x|=1

P(x∗Mx ≤ 3ε) .

Note that E‖M‖p is finite, since M has entries which belong to all Lp’s. And our assumption
imlies that the last sum is bounded by a constant times nεp+2m for ε < εp+2m. Noting that
nε2m is bounded, we are done. �

Intermezzo: Itô’s Formula

Before proceeding, let us briefly recall Itô’s formula. It will be convienient to formulate
Itô’s formula basis free, i.e. we consider processes taking values in a finite dimensional vector
space E. Moreover, we assume that B1, . . . , Bd are independent Brownian motions and we
are given an E-valued stochastic X process which has the representation

X(t) = x0 +

∫ t

0
ϕ(s) ds+

d∑
j=1

∫ t

0
Φj(s) dB

j
s .

Here, ϕ,Φj ∈ L2
F((0,∞) × Ω;E). Finally, we are given a twice continuously differentiable

function f : E → F to another finite dimensional vector space F . We recall that the
derivative f ′ takes values in L (E,F ), the (bounded) linear maps from E to F . Picking
bases, f ′ can be identified with the Jacobian matrix whose entries are the partial derivatives
of the components of f . Applying the linear operator f ′(x) to the vector h ∈ E is expressed
by mere concatenation: f ′(x0)h. The second derivative f ′′ takes values in L (E,L (E,F ))
which can canonically be identified with the bilinear maps from E × E to F . We write
f ′′(x0)[hs, h2] for (f ′′(x0)h1)h2.

With these notation at hand, Itô’s formula asserts that the stochastic process f(X) can
be represented in the form

f(X(t)) =f(x0) +

∫ t

0
f ′(X(s))ϕ(s) ds+

d∑
j=1

∫ t

0
f ′(X(s))Φj(s) dB

j
s

+
1

2

d∑
j=1

∫ t

0
f ′′(X(s))[Φj(s),Φj(s)] ds .

After this brief excursion, let us now look at the Malliavin derivative itself. If we put
γt = (γij(t)) then, by definition,

γij(t) = 〈DXi(t), DXj(t)〉L2((0,τ);Rd) =
d∑

k=1

∫ t

0
Dk
rXi(t)D

k
rXj(t) dr .

As a consequence of Theorem 2.3.6, we have stochastic equations for the Malliavin derivatives
Dk
rXi(t). However, inserting these into the equation above yields integrands which are

not adapted. Our next task will be to establish a different representation of the Malliavin
derivative, involving an integral over an adapted process, thus enabling us to use some results
about Itô stochastic integrals.

To that end, let Y (t) be the matrix valued process which solves the stochastic equation

Y (t) = I +

∫ t

0
B′(X(s))Y (s) ds+

d∑
j=1

∫ t

0
V ′j (X(s))Y (s) dBj

s .

Formally, Y can be thought of as the derivative of the solutionX(t) = X(t, x0) with respect to
the initial datum x0 (differentiate the equation solved by X with respect to x0 not worrying
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about interchanging differentiation and integration!) This actually can be made precise,
however we can also take the above equation as the definition of Y .

We claim that Y (t) is almost surely invertible. If that was the case, then we can (formally)
obtain a stochastic differential equation for Y (t)−1 from Itô’s formula. Indeed if we define f
on the invertible matrices by f(A) = A−1, then f is twice continuously differentiable with
f ′(A)H = −A−1HA−1 and f ′′(A)[H1, H2] = 2A−1H1A

−1HsA
−1. Thus Itô’s formula yields,

formally,

Y (t)−1 = I−1 −
∫ t

0
Y (s)−1B′(X(s))Y (s)−1 ds−

d∑
j=1

∫ t

0
Y (s)−1V ′j (X(s))Y (s)Y (s)−1 dBj

s

+
d∑
j=1

∫ t

0
Y (s)−1V ′j (X(s))Y (s)Y (s)−1Vj(X(s))Y (s)Y (s)1−1 ds .

Performing some calculations, we would thus expect that Y (t)−1 is the solution Z of the
following equation:

(2.3) Z(t) = I −
∫ t

0
Z(s)B′(X(s))−

d∑
j=1

Z(s)V ′j (X(s))2 ds−
d∑
j=1

Z(s)V ′j (X(s)) dBj
s .

As this equation has coefficients of linear growth, it can easily be proved that this equation
does, in fact, have a unique solution Z(t). By Itô’s formula (applied to the map f(A,B) =
AB) we find

Z(t)Y (t) = I +

∫ t

0
Z(s)B′(X(s))Y (s) ds+

d∑
j=1

∫ t

0
Z(s)V ′j (X(s))Y (s) dBj

s

−
∫ t

0
Z(s)B′(X(s))Y (s) ds+

d∑
j=1

∫ t

0
Z(s)V ′j (X(s))2Y (s) ds

−
d∑
j=1

∫ t

0
Z(s)V ′j (X(s))Y (s) dBj

s −
d∑
j=1

∫ t

0
Z(s)V ′j (X(s))V ′j (X(s))Y (s) ds

= I .

By linear algebra, Y (t) is almost surely invertible and Y (t)−1 = Z(t).

We claim that Dj
rX(t) = Y (t)Y (r)−1Vj(X(s)). Indeed, we have

Vj(X(r)) +

∫ t

r
B′(X(s))Y (s)Y (r)−1Vj(X(r)) ds

+
d∑
j=1

∫ t

0
V ′j (X(s))Y (s)Y (r)−1Vj(X(r)) dBj

s

= Vj(X(r)) +
[ ∫ t

r
B′(X(s))Y (s) ds+

d∑
j=1

V ′j (X(s))Y (s) dBj
s

]
Y (r)−1Vj(X(r))

= Vj(X(r)) +
[
Y (t)− Y (r)

]
Y (r)−1Vj(X(r)) = Y (t)Y (r)−1Vj(X(r)) .

Thus Y (t)Y (r)−1Vj(X(s)) solves the same stochastic equation as, according to Theorem

2.3.6, does Dj
r(X(t)). Thus the two are equal as claimed.

It follows that

γt =
d∑
j=1

∫ t

0
Dj
rX(t))(Dj

rX(t))∗ dr
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=
d∑
j=1

∫ t

0
Y (t)Y (r)−1Vj(X(r))Vj(X(r))∗(Y (r)−1)∗Y (t)∗ dr

= Y (t)
d∑
j=1

∫ t

0
Y (r)−1Vj(X(r))Vj(X(r))∗(Y (r)−1)∗ drY (t)∗

=: Y (t)C(t)Y (t)∗ .

We have now achieved our goal. The matrix C(t) is a sum of integrals over adapted
processes. Moreover, the matrix Y (t) is almost surely invertible. Finally, we have a stochastic
differential equation for its inverse which shows that (cf. Theorem 2.3.4) that the entries of
the inverse have finite moments of all orders. In particular, it follows that (det γt)

−1 belongs
to all Lp’s if and only if (detC(t))−1 belongs to all Lp’s.

By the observations made so far, Theorem 2.4.3 follows at once from the following The-
orem.

Theorem 2.4.5. Under the assumptions of Theorem 2.4.3, for every p ≥ 2 there exists
a constant Cp and an εp > 0 such that for 0 < ε < εp we have

sup
|x|=1

P(x∗C(t)x ≤ ε) ≤ Cpεp .

We next explain how the brackets [Vk, Vl] come into play. Fixing x with |x| = 1 and
given a smooth vector field U , let us write ZU (t) :=

〈
x, Y (t)−1U(X(s))

〉
, where X solves

(2.2) and Y −1 solves (2.3). Then we have

(2.4)

〈x,C(t)x〉 =

d∑
j=1

∫ t

0

〈
x, Y (r)−1Vj(X(r))Vj(X(r))∗(Y (r)−1)∗x

〉
dr

=
d∑
j=1

∫ t

0
|ZVj (r)|2 dr .

Moreover, using equations (2.2), (2.3) and Itô’s formula, we can compute ZU explicitly:

Y (t)−1U(X(t)) = U(x0) +
d∑
j=1

∫ t

0
Y (s)−1

[
U ′Vj − V ′jU

]
dBj

s

+

∫ t

0
Y (s)−1

[
U ′B −B′U

]
(X(s)) ds+

d∑
j=1

∫ t

0
Y (s)−1

[
V ′jV

′
jU
]
(X(s)) ds

+
1

2

∫ t

0
Y (s)−1

d∑
j=1

U ′′(X(s))[Vj(X(s)), Vj(X(s))] ds

−
d∑
j=1

∫ t

0
Y (s)−1

[
V ′jUVj

]
(X(s)) ds .

Observe that U ′Vj − VjU = [Vj , U ] and U ′B−B′U = [B,U ]. Moreover, a somewhat tedious
but straightforward computation shows

[V0, U ] +
1

2

d∑
j=1

[
Vj , [Vj , U ]

]
− [B,U ] =

d∑
j=1

(VjVjU +
1

2
U ′′[Vj , Vj ]− V ′jUVj)
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so that alltogether, we have

Y (t)−1U(X(t)) =U(x0) +

∫ t

0
Y (s)−1

(
[V0, U ] +

1

2

d∑
j=1

[
Vj , [Vj , U ]

])
(X(s)) ds

+
d∑
j=1

Y (s)−1[Vj , U ](X(s)) dBj
s .

Taking inner products with x, it follows that ZU satisfies the following stochastic equation

(2.5) ZU (t) = 〈x, U(x0)〉+

∫ t

0
Z[V0,U ]+ 1

2

∑d
j=1[Vj ,[Vj ,U ]](s) ds+

d∑
j=1

∫ t

0
Z[Vj ,U ](s) dB

j
s .

Motivated by the above equation for ZU , we introduce the sets S′k and the vector spaces
V ′K(x) as follows:

We put S′0 := S0 = {V1, . . . , Vd} and then, inductively,

S′k+1 :=
{

[Vj , U ], j = 1, . . . , d, U ∈ S′k; [V0, U ] +
1

2

d∑
j=1

[
Vj , ]Vj , U ]

]
, U ∈ S′k

}
.

Moreover, V ′k (x) := span{U(x), U ∈ Sk}. It is better to use the vector spaces V ′k (x) rather
than Vk(x) due to the above equation for SU . This equation, in turn, is a consequence of
our using Itô integrals rather than Stratonovich integrals.

We can now sketch the strategy for the proof of Theorem 2.4.5. We need to proof that
x∗C(t)x gets small only with small probability. At to get the idea of the proof, let us assume
that we would like to prove the (deterministic) statement that x∗C(t)x 6= 0. Aiming for a
contradiction, assume that x∗C(t)x = 0 for all x with |x| = 1. Then equation (2.4) implies
that ZVj ≡ 0 for j = 1, . . . , d. Equation (2.5) gives the semimartingale decomposition for
ZVj . As this decomposition is unique, it follows that both the martingale part and the
bounded variation part are zero. Consequently, Z[V0,Vk]+ 1

2

∑d
j=1[Vj ,[Vj ,Vk]] ≡ 0 for k = 1, . . . , d

and Z[Vj ,Vk] ≡ 0 for j, k = 1, . . . , d. Stated differently, if ZU ≡ 0 for U ∈ S′0, then (2.5)

implies that ZU ≡ 0 for all U ∈ S′1. Inductively, SU ≡ 0 for U ∈ S′k for all k ≥ 0. It would
thus follow that 0 = SU (0) = 〈x, U(x0)〉 for all U ∈

⋃
k≥0 V ′k (x0). As the latter is all of Rm

by Hörmander’s condition, it follows that x = 0 – a contradiction.

For the actual proof of the theorem, we need a “qualitative version” of the above argument
and thus a “qualitative version” of the semimartingale decomposition. This result is due to
Norris [5] and somtimes referred to as Norris Lemma. In order to highlight the above
strategy, we follow Hairer [1] for the proof. In particular, we make use of the notion of
“almost truth” and “almost implication” introduced there to streamline the proof.

Given a family A = (Aε)ε∈(0,1] of events we say that A is almost false if, for every p ≥ 1
there exists a constant Cp such that P(Aε) ≤ Cpεp for all ε ∈ (0, 1]. We say that it is almost
true if Ac = (Acε)ε∈(0,1] is almost false. Given two such families A and B, we say that A
almost implies B and write A⇒ε B if A \B = (Aε \Bε) is almost false.

Example 2.4.6. If X ∈
⋂
p≥1 L

p, then ({|X| ≤ ε−r}) is almost true for every r ∈ (0, 1).

Indeed, by Chebyshev’s inequality P(|X| > ε−r) ≤ εrqE|X|q so that for p ≥ 1 > r we can

choose Cp = E|X|
p
r .

We will use this notions to formulate our version of Norris Lemma 2.4.8 below. In the
proof, we use the following estimate, in which ‖f‖α refers to the best possible α-Hölder
constant of f , i.e. ‖f‖α = supt6=s |t− s|−α|f(t)− f(s)|.
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Lemma 2.4.7. Let f : [0, 1] → R be continuously differentiable, α ∈ (0, 1] and assume
that f ′ is α-Hölder continuous. Then

‖f ′‖∞ = ‖f‖1 ≤ 4‖f‖
α

1+α
∞ ‖f ′‖

1
1+α
α .

Proof. Let us first note that if |f ′| ≥ r on some closed interval [a, b], then at some point
t1 ∈ [a, b], we have |f(t1)| ≥ r(b − a)/2. To see this, first note that by continuity, f ′ does
not change its sign on [a, b] so that we can assume without loss of generality that f ′ > 0 on
[a, b]. If |f(a)| ≥ r(b− a)/2, then we are done. Otherwise, f(a) > −r(b− a)/2. In this case

f(b) = f(a) +

∫ b

a
f ′(s) ds > −r(b− a)/2 +

∫ b

a
r ds = r(b− a)/2 .

Now let t0 be such that |f ′(t0)| = ‖f ′‖∞. By the definition of Hölder continuity, if

|t| ≤ (2−1‖f ′‖−1
α ‖f ′‖∞)

1
α , then |f ′(t0 + t)− f ′(t0)| ≤ ‖f ′‖∞/2. Thus |f ′(t0 + t)| ≥ ‖f ′‖∞/2

for such t. Applying the above estimate with r = ‖f ′‖∞/2 and [a, b] = {t0 + t : |t| ≤
(2−1‖f ′‖−1

α ‖f ′‖∞)
1
α } it follows that

1

2
‖f ′‖∞

( ‖f ′‖∞
2‖f ′‖α

) 1
α ≤ |f(t1)| ≤ ‖f‖∞ .

Now the thesis follows with elementary computations. �

Lemma 2.4.8. Let B be a d-dimensional Wiener process, a and b be R respectively Rd-
valued adapted processes such that, for α = 1/3, we have ‖a‖α, ‖b‖α ∈

⋂
p L

p. Moreover, let
Z be defined by

Z(t) = Z0 +

∫ t

0
a(s) ds+

d∑
j=1

∫ t

0
bj(s) dB

j
s .

Then there exists a universal constant r ∈ (0, 1) such that

{‖Z‖∞ < ε} ⇒ε {‖a‖∞ < εr}&{‖b‖∞ < εr} .

Proof. In the proof, we use the following “exponential martingale inequality” see [7,
Exercise 3.16]. If M is a continuous martingale with quadratic variation 〈M〉, then

P
(

sup
t≤T
|M(t)| ≥ x, 〈M〉T ≤ y

)
≤ 2e

−x
2

2y .

Applying this to the martingale M(t) :=
∑d

j=1

∫ t
0 bj(s)dB

j
s =:

∫ t
0 b(s)dBs, whose quadratic

variation is 〈M〉t =
∫ t

0 ‖b(s)‖
2 ds and noting that ‖b‖∞ < ε implies that 〈M〉T ≤ Tε2, we see

that

P
(

sup
t≤T

∥∥∥∫ t

0
b(s) dBs

∥∥∥ ≥ εq, ‖b‖∞ ≤ ε) ≤ 2e−
ε2q

2ε2T .

For q ∈ (0, 1), the latter converges exponentially to zero as ε ↓ 0. Consequently, we have
proves that

(2.6) {‖b‖∞ < ε} ⇒ε

{∥∥∥∫ ·
0
b(s) dBs

∥∥∥
∞
< εq

}
for q ∈ (0, 1).

We now apply Itô’s formula to Z2, obtaining

Z(t)2 = Z2
0 + 2

∫ t

0
Z(s)a(s) ds+ 2

∫ t

0
Z(s)b(s) dBs +

∫ t

0
|b(s)|2 ds .

As ‖a‖∞ ≤ ε−1/4 is almost true by the example above, we see that

{‖Z‖∞ < ε} ⇒ε

{∥∥∥∫ ·
0
Z(s)a(s) ds

∥∥∥
∞
≤ ε3/4

}
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Taking equation (2.6) into account, it follows similarly that

{‖Z‖∞ < ε} ⇒ε

{∥∥∥∫ ·
0
Z(s)b(s) ds

∥∥∥
∞
≤ ε2/3

}
Now note that for a random variable X we have {|X| < εr} ⇒ε {|X| < εs} for s < r, since
{|X| < εr, |X| ≥ εs} ⊂ {εs < εr} = ∅ for ε ∈ (0, 1). We can thus insert the above estimates
for the deterministic and the stochastic integral back into the equation for Z2 and obtain

{‖Z‖∞ < ε} ⇒ε

{∫ T

0
|b(s)|2 ds ≤ ε

1
2

}
⇒
{∫ T

0
|b(s)| ds ≤ ε

1
4

}
as
∫ T

0 |b(s)| ds ≤
√
T
∫ T

0 |b(s)|
2 ds. We now use Lemma 2.4.7. We find

‖b‖∞ ≤ 4
(∫ T

0
|b(s)| ds

) 1
4 ‖b‖

3
4
α .

By the above, ‖Z‖∞ < ε almost implies
∫ T

0 |b(s)| ds ≤ ε
1
4 . Moreover it follows from our

assumption that ‖b‖α ≤ ε−q is almost true, for every q ∈ (0, 1). Together, this implies that

{‖Z‖∞ ≤ ε} ⇒ε {‖b‖∞ ≤ εs}

for any s < 1
16 , say s = 1

17 . By equation (2.6) this almost implies that ‖
∫
b(s)dBs‖∞ ≤ εq

1
17

for q < 1, thus it almost implies that ‖
∫
b(s)dBs‖∞ ≤ ε

1
18 . This, in turn, together with the

equation for Z implies that {‖Z‖∞ < ε} almost implies {‖
∫
a(s)ds‖∞ ≤ ε1/18}. Employing

Lemma 2.4.7 as above, we see that

{‖Z‖∞ ≤ ε} ⇒ε {‖a‖∞ ≤ ε
1
80 } .

Altogether, the claim is proved with r = 1/80. �

We have now all tools at hand to prove Hörmander’s theorem.

Proof of Theorem 2.4.5. Fix x with |x| = 1. It follows from (2.4), using Lemma
2.4.7 as above that

{x∗C(T )x ≤ ε} ⇒ε {‖ZVk‖∞ ≤ ε
1
5 } .

Using Equation (2.5) and Lemma 2.4.8, it follows inductively that

{x∗C(T )x ≤ ε} ⇒ε

⋂
V ∈V ′k

{‖ZV ‖∞ ≤ εrk}

for suitable rk > 0. Now observe that ZV (0) = 〈x, U(x0)〉. By Hörmander’s condition,
V ′k (x0) = Rm for k large enough. However, if Vk(x

′
0) = Rm, we can pick V ∈ V ′k (x0) such

that ZV (0) = 1, so that the right-hand-side in the above equation is the empty set. We have
thus proved {xtC(T )x ≤ ε} ⇒ε ∅, which is exactly the thesis. �
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