
1 Nonlinear Equations in One Unknown

1.1 Exploring Equations—A Short Tour

Let us start this course with some standard methods for solving equations in one unknown.
Such equations are called linear if they can be expressed in the form

kx = d, k, d given, x unknown.

If k ̸= 0, a unique solution exists. Not much else is to say in this simple case, and so, for the
time being, we only care about nonlinear equations. (Linear equations will concern us more
intensively when they appear in masses, as systems with several unknowns).

Analytical versus numerical solutions If algebraic transformations make it possible to
write the solution of an equation explicitly in the form x = . . . (in the above example: x = d/k,
in general some mathematical expression that uses a finite number of standard operations),
one speaks of an analytical solution. However, in the vast majority of real-world problems,
only numerical solutions are possible.

Analytically solvable are, for example, quadratic equations, i.e. those that can be expressed
as

x2 + px + q = 0 p, q given, x unknown.

You certainly know the quadratic formula

x1,2 = −p

2 ±
√

p2

4 − q

But it is not enough to write down a solution formula; you must also be sure it will deliver
reliable results. In this example, the seemingly trivial solution of a quadratic equation calcu-
lated by the above formula can become entirely inaccurate. Let your calculator use it to find
the smaller solution of the quadratic equation

x2 − 12345678x+ 9 = 0.

The exact value, up to sixteen digits, is x1 = 7,290 000 597 780 479 × 10−7. Although common
calculators work with ten to fourteen digits of precision, they return only the first few digits
correctly. The numerically more accurate method first calculates the solution larger in absolute
value, x1, using the classical formula and then finds the second solution x2 with the alternative
solution formula

x2 =
q

x1
.

Algebraic versus transzendental equations Linear, quadratic and cubic equations are
the simplest examples of polynomial equations. A polynomial in a variable x is a sum of
powers of x, multiplied by coefficients, i.e. an expression of the form

anxn + · · ·+ a2x2 + a1x + a0.

1

The highest power occurring is the order of the polynomial or the equation. Both cubic and
fourth-order equations are, in principle, analytically solvable, but the formulas (Cardano1-
Tartaglia2 formula, Ferrari’s3 solution) are so unwieldy that they are hardly used in practice.
Numerical methods for such equations are computationally more straightforward and more
elegant. They provide approximations that stepwise, with ever-increasing accuracy, approxi-
mate the solutions. For equations of order five or higher, no algebraic solution formulas exist
anyway.

In 1826, the young Norwegian mathematician Niels Henrik Abel proved the impossibility of
solving the general quintic equation by some algebraic formula. Thus, from the fifth degree on,
equations cannot (in general) be solved by a finite number of elementary arithmetic operations
(i.e., addition, subtraction, multiplication, division, taking roots).

Let us conclude the introduction of the different types: Equations involving also fractions,
roots or rational exponents can be transformed (but maybe only by cumbersome manipula-
tions) into systems of polynomial equations. An equation containing functions that cannot
be formulated through a finite number of elementary arithmetic operations is something that
exceeds the powers of algebra; “quod vires algebrae transcendit”, said Leibnitz) and is there-
fore called transcendental . For example, the trigonometric functions, the exponential function
and the corresponding inverse functions are transcendental functions. If an equation involves
algebraic and transzendental terms, normally only numerical methods can solve it.

Explicit solution formulas exist for low-order polynomial and very simple tran-
szendental equations only. In all other cases, only numerical methods can find
solutions.

1.2 Definitions, problems, solutions

Types of problems covered here:

g(x) = h(x), finding a solution of an equation
f(x) = 0, finding a zero of the function f

x = ϕ(x), finding a fixed point of the function ϕ

A zero of the function f is a solution of the equation f(x) = 0.
A fixed point of the function ϕ is a solution of the equation x = ϕ(x).

Of course, any equation in fixed-point form x = ϕ(x) can be transormed into ϕ(x) − x = 0.
Thus, any fixed point of ϕ is also a zero of f(x) = ϕ(x) − x.
Moreover, the names f and ϕ are not reserved for problems involving zeros or fixed points,
respectively. These notes, however, usually write x = ϕ(x) for an equation resulting from some
transformation of f(x) = 0.

An analytical solution , also called a closed-form expression , is an explicit expression invol-
ving only well-known quantities and functions. In contrast, a numerical solution repeatedly
uses a set of calculations to improve a known approximation step by step.

Which functions are assumed to be “well-known” is not exactly defined. Trigonometric func-
tions like sine or cosine definitely count as well-known, but even these can be evaluated by
numerical methods only. (You just don’t notice, because your calculator does this work for
you.)

1Girolamo Cardano is also known for the Cardan shaft and the gimbal suspension, which he did not invent
either.

2Niccolò Fontana Tartaglia, revealed the solution to Cardano under the promise to keep it secret; was extre-
mely upset when Cardano published the formula anyway.

3Lodovico Ferrari was mainly responsible for the solution of quartic equations that Cardano published.

2

Multiple zeros : A function f has at x a root of multiplicit n, if f(x) = 0, f ′(x) = 0, f ′′(x) =
0, . . . , f (n−1)(x) = 0 and f (n)(x) ̸= 0 (assuming continuous derivatives up to order n exist).

In this lecture, the functions f, g, . . . and variables x, y, . . . denote real quantities. The complex
numbers, however, are the natural environment for polynomials and functions (among other
things because there polynomials of degree n always have exactly n zeros; fundamental theorem
of algebra). Most definitions and methods can be easily generalized for complex variables and
complex-valued functions. Nevertheless, we restrict ourselves (apart from occasional hints) to
computational procedures in the real numbers.

Checklist for solving nonlinear equations

Serves also as table of contents and review for the following sections.

• Preliminary work

– Examine the shape of your functions (table of values, graphical representation).

– Domain of the functions? Where may a solution lie? How many solutions can exist?

– Can you find suitable transformations?

• Basic methods using computer or pocket calculator

– Systematically compute a table of values

– Plot the function and zoom in

• Standard methods

– Interval bisection

– Secant method and Regula Falsi

– Newton’s method (also known as the Newton-Raphson method)

– Fixed point iteration

1.3 Warm-Up Examples

The exercises and the lecture discuss examples of the following type. Also the next Sections 1.5
and 1.6 present some further explanations.

From financial mathematics

A loan of € 100 000 will be repaid in 180 monthly installments of € 900 each. What is the
interest rate on these terms?

The annuity formula for payment in arrears yields for the (monthly) compounding factor q
the equation

900 = 100 000 q − 1
1− q−180 . (1)

3

Equation of state of a real gas

What is the molar volume of nitrogen at 20 C and 1 bar = 1 × 105 Pa according to the Van
der Waals equation?

The equation of state

(
p + a

V 2
mol

)
(Vmol − b) = RT

describes the relationship between pressure p, molar volume Vmol and Temperature T . For
nitrogen, the constants a and b are

a = 0,129 Pa m6/mol2, b = 38,6× 10−6 m3/mol.

The molar gas constant is R = 8,3145 J/molK. Inserting all numerical values leaves an equation
for Vmol,

(
100 000 + 0,129

V 2
mol

)
(Vmol − 0,000 038 6) = 2437,4 (2)

Friction losses in pipe flow

The friction factor f depends on the Reynolds number Re. For laminar flow, the simple rule
is f = 64/Re. In the turbulent range, from about Re > 2000, technical manuals list different,
partly empirical formulas for f . For a smooth pipe, Prandtl found the relation

f = 1
(2 log10(Re

√
f)− 0,8)2 , (3)

which agrees with experiments up to Re = 3,4×106. What is the value of f at Re = 1×106?

No deeper meaning

It is good if the examples so far have given you the impression of certain practicality. However,
the technical background of the equations and the related difficulties in understanding them
may obscure the view of the mathematical contents. These notes do not intend to teach physics
but numerical methods, which are easier to illustrate with simple examples.

Therefore: Find the solutions to the equation

3 cos x = log x (4)

Important note: here log, of course, means the natural logarithm4. Arguments in trigonometric
functions are always in radians!

4There are hardly any arguments in favor of the decadic logarithm, except for the evolutionary coincidence
that humans have ten fingers. For people who cannot count to three, the base e = 2,718 281 8 . . . is more
natural anyway.

4

5 10 15 20 25

-4

-2

2

Abbildung 1: Diagram for the equation 3 cos x = log x. The x-values at the intersections of the
graphs correspond to the solutions of the equation.

5 10 15 20 25

-6

-4

-2

2

4

Abbildung 2: Graph of the function f(x) = 3 cos x − log x. The zeros of f correspond to the
x-values at the intersections in Figure 1

.

1.4 Graphical solution: A picture says more than a thousand
formulas

According to the checklist from chapter 1.2, we use the example of Equation 4 to get a first
overview. Looking at the equation, it is not immediately evident if, where and how many
solutions may exist. Since cosine and logarithm are well-known functions, a graphical repre-
sentation is helpful. (Figure 1). The graph immediately shows the number and approximate
position of the solutions. Computational environments can easily calculate a table of values
or zoom into the function graph. This way, they quickly provide suitable values. (the checklist
calls these procedures “basic methods using computer or pocket calculator”).

1.5 Suitable transformations; zeroes and fixed points

The solutions of the equation 3 cos x = log x are exactly the zeros of the function f(x) =
3 cos x−log x. A comparison of Figure 1 with Figure 2 clarifies this fact and shows, for example,
that in the vicinity of x = 5, at any rate in the range 4 < x < 6, one of the zeros of f must
lie.

5

0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

Abbildung 3: The function ϕ(x) = arccos((log x)/3) with one fixed point. It corresponds to
the zero of f near 1,4. Additional fixed points of ϕ do not exist. Due to the
reformulation, all other solutions to the original equation have been lost!

Which form of graphical representation is best chosen depends on the given equation. In
this example, the well-known functions cos and log can be quickly sketched. Therefore, the
visualization of the solution by the (x-values of) intersections is clear. On the other hand, the
representation of f(x) = 3 cos x− log x lets recognize the immediately. The classical methods
for finding zeros from Chapter 1.7 require such a transformation of the equation anyway.

It is, for example, also possible to formulate the equation 3 cos x = log x as

x = arccos log x

3 . (5)

In this form, it is a fixed-point problem x = ϕ(x), with ϕ(x) = arccos((log x)/3).

Fixed-point iteration

What happens if you insert a value for x on the right-hand side of Equation 5, evaluate the
term, and substitute the result back into the right-hand side? Starting, for example, with
x = 1, this procedure yields the sequence

1; 1,5708; 1,419 69; 1,453 72; 1,445 76; 1,447 61; 1,447 18 . . .

The sequence converges to ξ = 1,447 258 6, which is the smallest solution of the given equation
and at the same time, the only fixed point of the function

ϕ(x) = arccos log x

3 .

You can see here an example of a fixed-point iteration .

6

Fixed-point iteration
Given an equation x = ϕ(x).

Start with initial value
Insert value on right-hand side and evaluate
Repeat inserting and evaluating until values no longer change

More examples of fixed-point iterations:

• Enter a number into the calculator and press the root key repeatedly. The results converge
to 1 (fixed point of f(x) =

√
x).

• Enter a number < 20 into the calculator and press the exp and 1/x keys alternately
several times. The results (after the 1/x step) converge toward 0,567 14 (fixed point of
f(x) = 1/ exp x).

• Calculation of square roots was an important problem already in Greek antiquity and
(for rational numbers) solved. The nonlinear equation defining the square root of a is
x2 = a. For x ̸= 0, this is equivalent to

x = 1
2

(
x + a

x

)
.

Already the Babylonians are said to have used the iteration (often called Heron’s method)

x(0) = a; x(k+1) = 1
2

(
x(k) + a

x(k)

)
for k = 0, 1, 2, . . .

• Equation 3 is a fixed-point equation. With the initial value of 0,05 few fixed-point itera-
tions provide an accurate solution.

But it doesn’t always work: another possible fixed-point form of Equation 4 is

x = exp(3 cos x) .

If you substitute here x = 1 on the right, evaluate and iterate, you get the sequence

1; 5,057 68; 2,760 46; 0,061 745 5; 19,971; 3,6805 . . .

These values change irregularly and do not converge.

Summary

Not every fixed-point iteration converges. Suitable transformations are not always easy to find.
On the other hand, many numerical methods are of the fixed-point iteration type. This justifies
a detailed theoretical investigation of such methods in Chapter 1.12.

1.6 Discussion of the Examples: Important and Unimportant Terms

Here we discuss in detail the examples presented in Chapter 1.1

7

1.6.1 A Nearly Linear Equation

The equation mentioned at the beginning of Chapter 1.1,

x2 − 12345678x + 9 = 0 ,

is, when it comes to the smaller of the two solutions, actually not a quadratic equation! Reason:
The sought solution is of order 10−6 bis 10−7; the term x2 in the equation is smaller than the
linear term 12345678x by more than ten orders of magnitude. For all practical purposes, such
an equation is just a linear one with a small quadratic correction term. Therefore, solve for
the linear term:

x = 1
12345678(x2 + 9) .

The starting valuex(0) = 0 already gives, even on the cheapest calculators without a root key,
a better approximation x(1) = 7,290 000 597 78 × 10−7 than most calculators can achieve by
using the standard solution formula.

Loosely speaking, many equations contain terms in which the unknown has little influence
compared to other terms. If an equation becomes more manageable this way, you may neglect
those terms in a first approximation. In the following steps, you correct the result, using the
approximate values for the unimportant terms.

1.6.2 Van der Waals Equation

You may transform the Equation (2) to a cubic equation,

− 4.9794 · 10−6 + 0.129Vmol − 2441.3V 2
mol + 100000V 3

mol = 0 , (6)

which would be, in principle, analytically solvable. Please don’t do it! A little insight into the
physical background of this equation suggests a different procedure: At room temperature,
nitrogen is almost an ideal gas, which obeys the equation

pVmol = RT .

In the Van der Waals equation (
p + a

V 2
mol

)
(Vmol − b) = RT , (7)

the term a/V 2
mol is a correction of the ideal gas equation and is, compared to p, negligibly small

for the given data. Even if you don’t see it in the polynomial (6): the original Equation (7)
does not stand for a “real” cubic equation but a linear equation in Vmol plus a small correction
term a/V 2

mol. You can solve this equation if you move the “unimportant” terms to the right
side. Here we reshape to

Vmol = RT

p + a/V 2
mol

+ b = 2437,4
100000 + 0,129/V 2

mol

+ 0,000 038 6 .

Let’s ignore, for the moment, the correction term a/V 2
mol. We get a zero approximation for the

molar volume,
V0 = 2437,4

100000 + 0,000 038 6 = 0,024 413 .

8

Now, the trick is to insert this approximation for Vmol on the right-hand side of the equation.
It produces an improved approximation

V1 = 2437,4
100000 + 0,129/0,024 4132 + 0,000 038 6 = 0,024 360 .

Repeated insertion does not yield any further improvement:

V2 = 2437,4
100000 + 0,129/0,024 3602 + 0,000 038 6 = 0,024 360 .

Thus we have calculated (at least to five decimal places) the value Vmol = 0,024 360 m3.

Penitential exercise for Lent: Look up the Cardan formulae in Wikipedia and solve the problem
this way. Compare the time required with the method above.

1.6.3 Financial Mathematics

In equation 1, we expect the compounding factor q to be just above 1. The term q−180 in the
denominator is likely to be≪ 1 and unimportant. Thus, we solve the equation for the q in the
numerator.

q = 1 + 900
100000(1− q−180)

If we ignore q−180 on the right side, then the zero approximation is

q0 = 1 + 900
100000 = 1,009

Again, the trick works to insert q0 on the right-hand side and gets us an improved approxi-
mation

q1 = 1 + 900
100000(1− 1,009−180) = 1,007 206 .

Repeated insertion yields

q2 = 1,006 529 q3 = 1,006 210 q4 = 1,006 047 . . .

However, it takes a total of 14 iterations here for the values to stabilize at 1,005 851.

Concluding Remarks

If an equation is given in the form f(x) = g(x) (example: Equation 4), it is not immediately
recognizable which terms are “important” or “unimportant”. Rule: ignore the unknown on that
side of the equation with the less steep function graph at the intersection.

Suitable transformations for fixed point iterations often require a deeper understanding of the
individual terms in an equation. Fortunately, black-box type solution methods exist. The next
chapter presents one of them.

1.7 Bisection

Do you know the story of the two possibilities? It begins with the intermediate value theorem.

9

Intermediate Value Theorem

A function f that is continuous on a closed interval [a, b] takes on any give value between f(a)
and f(b) somewhere inside the interval.

In particular, if f is negative for x = a and positive for x = b (or vice versa), then the
intermediate value theorem guarantees that f has at least one zero in this interval.

There are always two possibilities. . .

Suppose we are looking for a zero of a function continuous in the range a ≤ x ≤ b. We can
immediately check whether f(a) and f(b) have different signs. If so, then the intermediate
value theorem guarantees the existence of a zero in the domain a ≤ x ≤ b, but we do not know
where it lies. Now there are two possibilities: Either b− a is already small, in which case it is
good: we can take both a and b as approximations for a zero of f . Otherwise, we calculate the
midpoint c of the interval, c = (a + b)/2. Now there are again two possibilities. If f(c) = 0, it
is good: We have found a zero there. Otherwise, f has different signs at the ends of one of the
subintervals a ≤ x ≤ c or c ≤ x ≤ b (got it? That’s the point!). So there must be a zero in one
of the two intervals. Let’s consider this interval and, for simplicity, call its boundaries a and b
again.

Now there are two possibilities: Either b − a is small, in which case it is good: we can take
both a and b as approximations for a zero of f . Otherwise we form c = (a + b)/2. Now there
are again two possibilities. . .

You can now continue the story yourself. But note that the interval length gets halved each
time you take the story one step further. For any arbitrarily small given precision ϵ > 0, you
reach an interval with length b − a < ϵ after a finite number of steps. So, the story ends just
as in real life: There may always be two choices, but each decision restricts the freedom for
further actions. At some point, the alternatives are exhausted.

Written down in formalized form, this procedure is the

Bisection Method
Given a function f , two values a and b with f(a)·f(b) < 0, and an error tolerance
ϵ > 0. If f is continuous in the interval a ≤ x ≤ b, then this algorithm finds the
approximation c to a zero ξ of f with error |cξ| < ϵ.

Repeat
set c← (a + b)/2
if f(a) · f(c) < 0

set b← c
else

set a← c
until |b− a| < ϵ or f(c) = 0

Linear convergence

The best estimate for the zero is the midpoint of the interval. In this case, the error ϵ0 ≤ |b−a|/2
cannot be larger than half the interval width. Interval bisection reduces this error bound by a
factor of 1/2 per step or, since (

1
2

)3,3
≈ 1

10 ,

10

by a factor of 1/10 per (average) 3,3 steps. One can say: interval bisection produces one correct
decimal per 3,3 iterations. The maximum error after the i-th step, ϵi, is at most half as large
as the previous maximum error ϵi−1 . It is thus holds

ϵi ≤ Cϵi−1 with C = 1
2 .

In general: If in a procedure the error bounds of successive iteration steps fulfil

ϵi ≤ Cϵi−1 mit C < 1 .

this behaviour is called linear convergence.

Advantages and Disadvantages

Advantages of interval bisection: easy to understand and simple to program. If the assumptions
are met, it converges with certainty. It is an inclusion method , which means that it not only
provides an approximate value but also bounds the solution from both sides.

Disadvantages: One needs initial values—but that is a problem for any numerical method.
Interval bisection is slow, it converges only linearly—but that is for sure.

1.8 Regula Falsi (false position method)

Functions running smoothly in the vicinity of a zero can be approximated there by a straight
line. Instead of choosing, as with interval bisection, the value c exactly in the middle between a
and b, we take c as the zero of the straight line through (a, f(a)) and (b, f(b)), see Figure 4.

c = a− f(a) a− b

f(a)− f(b) = af(b)− bf(a)
f(b)− f(a)

Regula Falsi (false position method)
Given a function f , two values a and b with f(a) · f(b) < 0 and an error
tolerance ϵ > 0. If f(x) is continuous in the interval a ≤ x ≤ b, then this
algorithma finds an approximation c to a zero ξ of f with error |c− ξ| < ϵ.

Repeat
set c← a− f(a) a− b

f(a)− f(b)
if f(b) · f(c) < 0

set a← b
else

(standard version) do nothing
(Illinois version) reduce f(a) to 1

2 f(a)

(Pegasus version) reduce f(a) to f(a)f(b)
f(b) + f(c)

set b← c
until |b− a| < ϵ or f(c) = 0

ahowever, for the stopping criterion given here, only the non-standard versions

11

a

b

c ξ

f

x

y

Abbildung 4: Regula falsi computes c, the zero of the connecting staight line, as an approxi-
mation to ξ, the zero of f .

However, compared to simple bisection, the standard version of regula falsi will not signifi-
cantly improve the convergence behavior. Typically, aafter the first few iterations the interval
boundary a will remain fixed. The other bound b will converge to the zero, but the stopping
criterion |b−a| < ϵ will never be reached. Therefore, careful programmers would add an emer-
gency exit in the algorithm above: count the number of iterations and abort if they exceed a
maximum number.

The Illinois or Pegasus variants improve the convergence behavior compared to bisection;
brave programmers would, in this case, dispense with the query for a maximum number of
iterations.

Interval bisection and the various versions of regula falsi have in common that they bracket
the zero from both sides - they are inclusion methods, which is good. The disadvantage is that
at the beginning of the method, you need two approximations, one on each side of the zero.
Moreover, these methods can only find zeros where the function changes sign. They will not
work for multiple zeros of even order.

What is “false” in the regula falsi? Not the rule itself, of course, just the assumed starting
values a and b. From these two “false solutions,” the rule calculates a better approximate
solution.
The method is ancient. Babylonians, Egyptians, Indians, and Chinese used it centuries before
Christ to solve linear problems. From Arabic sources, Leonardo of Pisa, known as Fibonacci,
brought it to Europe around 1200. He describes among several variants the regula duarum
falsarum positionum, the “method of the two false positions.” This is what it should be called,
but it has been sloppily shortened to regula falsi.
Fibonacci solved only linear problems with it; there, the rule calculates the correct solution
from two wrong starting values immediately. The application as an iterative method for zeros
of non-linear functions is not so old. Small but significant modifications (as in the Illinois or
Pegasus variants) have been found around the middle of the last century. Even as recent as
2020, Oliveira und Takahashi proposed a new variant (https://en.wikipedia.org/wiki/ITP_
method)

12

https://en.wikipedia.org/wiki/ITP_method
https://en.wikipedia.org/wiki/ITP_method

a bc

ξ

f

x

y

Abbildung 5: The secant method computes the next approximation c from a straight line
(secant) cutting through two points in the graph of f . The values a and b do not
necessarily bracket the root ξ.

1.9 Secant Method

The secant method computes a new approximation by interpolation in the same way as the
Regula Falsi, but does not request that the values a and b bracket the zero, see Figure 5.

The formal description of the algorithm here denotes the initial values a and b by x(0) und
x(1) and writes x(k), x(k+1), . . . for the iteratively computet approximations.

Secant Method
Given a function f , two values x(0) and x(1), an error tolerance ϵ > 0, and a
maximum number of iterations kmax. For sufficiently good initial values x(0)

and x(1) this algorithm finds the approximation x(k) to a zero ξ of f with
accuracy |x(k) − ξ| ≈ ϵ or terminates after a maximum number of kmax steps.

set k = 1
repeat

set x(k+1) = x(k) − f(x(k)) x(k) − x(k−1)

f(x(k))− f(x(k−1))
increase k = k + 1

until |x(k+1) − x(k)| < ϵ or k ≥ kmax

Superlinear Convergence

The secant method shows superlinear convergence. (Necessary technical details: f twice conti-
nuously differentiable, no multiple zeros). That is, for the error bounds |x(k+1)−ξ| and |x(k)−ξ|
of successive steps, provided that |x(k) − ξ| is already sufficiently is sufficiently small:

|x(k+1) − ξ| ≤ C|x(k) − ξ|p with p > 1 .

13

Thus, the error is not only reduced by a factor C but additionally by the power p. For the
secant method, it can be shown that

p = 1 +
√

5
2 ≈ 1,618 .

Assume that |x(k)− ξ| = 0,01. Consider which reduces the error more: Multiplying by a factor
C = 1/2, or exponentiating by p = 1,6!

1.10 Newton’s method
Also known as the Newton–Raphson method. However, it was Thomas Simpson who, some
decades after Isaac Newton and Joseph Raphson, formulated the method as we know it today.

We are looking for a zero of the function f . Let x(0) be a starting value in the vicinity of
the zero. Then, the Newton method tries, similar to the secant method, to approximate the
function f by a linear function and uses the tangent to f at the point (x(0), f(x(0))). The point
of intersection of the tangent with the x-axis is the next approximation, see Figure 6.

Derivation from the Taylor expansion of f around the point x(0). If f is sufficiently differen-
tiable,

f(x) = f(x(0)) + (x− x(0))f ′(x(0)) + (x− x(0))2

2! f ′′(x(0)) + . . .

We want f(x) = 0. Neglecting higher-order terms in the expansion results in the equation

0 = f(x(0)) + (x− x(0))f ′(x(0)) ,

which we can solve for x,

x = x(0) − f(x(0))
f ′(x(0)) .

Newton’s method
Given a differentiable function f and an initial value x(0).
Wanted: a zero of f .

Iteration

x(k+1) = x(k) − f(x(k))
f ′(x(k)) for k = 0, 1, 2 . . .

Quadratische Konvergenz

Das Newton-Verfahren zeigt quadratische Konvergenz. Das heißt, für die Fehlerschranken
ϵk+1 = |x(k+1) − x| und ϵk = |x(k) − x| aufeinanderfolgender Schritte gilt, sofern ϵk schon
hinreichend klein ist:

ϵk+1 ≤ Cϵ2
k

Der neue Fehler ist also um einen Faktor C kleiner als das Quadrat des alten Fehlers. Der
genaue Wert von C ist dabei nicht so wichtig.

Angenommen, es ist ϵk = 1 × 10−4. Das heißt, der Fehler beträgt eine Einheit in der vierten
Nachkommastelle. Dann gilt bei quadratischer Konvergenz ϵk+1 = C · 1 × 10−8. Der Fehler
beträgt also C Einheiten in der achten Nachkommastelle. Wenn C größenordnungsmäßig im
Bereich 1 ist, hat sich die Anzahl der korrekten Stellen ungefähr verdoppelt.

14

x(0)x(1)x(2)

ξ

f

x

y

Abbildung 6: Visualization of Newton’s method: The tangent to f in point (x(0), f(x(0))) in-
tersects the x-axis in x(1). The value x(2) from the next step is alresdy close to
the zero ξ.

Quadratische Konvergenz: Neuer Fehler ∼ Quadrat des alten Fehlers.

Faustregel: Sofern schon einige signifikante Stellen exakt sind, sind im nächsten
Näherungswert etwa doppelt so viele signifikante Stellen korrekt.

1.11 Stopping criteria

Computers use only a fixed number of binary digits to store floating point numbers. It is
possible that f(x) does not reach the exact value zero for any floating point argument x. If
the zero ξ is in the neighborhood of 1, you can easily find an approximation x with absolute
error |x − ξ| < 10−6. If the zero lies around ξ ≈ 1022, you will not be able to achieve an
absolute error of this quality. A usual choice of the error tolerance ϵ isεm(|a| + |b|)/2 if εm

is the machine precision and a, b are the original interval boundaries. If a, b, and the zero ξ
itself are close to zero, you should apply this formula with some caution only. In any case, the
termination bound must not be smaller than the smallest positive machine number (typically
around 10−38 for 4-byte data types, 10−308 for 8-byte data types).

Machine precision

The machine precision εm is the smallest positive floating point number which, when added
to the floating point number 1,0, results in a sum different from 1,0 (typically around 10−7for
4-byte data types, 10−16 for 8-byte data types).

15

1.12 Fixpunkt-Iteration

In section 1.5, we have already determined fixed points of functions by repeated insertion.
Many numerical methods are just special cases of a fixed-point iteration. Therefore statements
about the convergence behavior of fixed-point iterations are of general importance.

Fixed-point iteration
Given a function ϕ and an initial value x(0).
Wanted: a fixed point ξ von ϕ.

Iteration
x(k+1) = ϕ(x(k)) for k = 0, 1, 2 . . .

Fixed-point iterations converge for contraction mappings
Let ϕ be a function with fixed point ξ. Let I be an open interval (ξ − r, ξ + r)
around the fixed point ξ. If ϕ acts in I as a contraction mapping , i. e.,

|ϕ(x)− ϕ(y)| ≤ C|x− y| , C < 1 for all x, y ∈ I ,

then the fixed-point iteration x(k+1) = ϕ(x(k)) converges for all x(0) ∈ I at least
linearly to ξ.

Proof: First, we show by induction x(k) ∈ I for all k = 0, 1, 2 . . . The statement is true for
k = 0.

If, by induction, already x(k) ∈ I, this means |x(k)−ξ| < r. We apply the contraction property
to x(k) and the fixed point ξ and get

|x(k+1) − ξ| = |ϕ(x(k))− ϕ(ξ)| ≤ C|x(k) − ξ| < Cr .

Since C < 1, it also holds that

|x(k+1) − ξ| < r and thus, x(k+1) ∈ I

From this argument, it also follows for the errors ϵ(k) = |x(k)− ξ| and ϵ(k+1) = |x(k+1)− ξ| :

ϵ(k+1) ≤ Cϵ(k) ≤ Ckϵ0, and thus, ϵ(k+1) → 0 for k →∞ .

As formulated here, the theorem already assumes the existence of a fixed point. This condition
makes the convergence proof quick and easy. However, a more general formulation and a
technically more elaborate argument can prove the existence and uniqueness of a fixed point
from the contraction property alone. This version is the famous Banach fixed-point theorem.

Relationship between slope and contraction

The property |ϕ(x)− ϕ(y)| ≤ C|x− y| means for C < 1: function values differ less than input
values. In the limit for small changes, the function’s slope determines how much function values
change in relation to input values.

If ϕ is continuously differentiable in a neighborhood of ξ and |ϕ′(ξ)| < 1, the contraction
property is satisfied in some neighborhood of ξ: Because of the continuity of ϕ′ there is an
open interval I around ξ in which |ϕ′| ≤ C < 1. For x, y ∈ I, according to the mean value
theorem of calculus,

ϕ(x)− ϕ(y) = (x− y)ϕ′(η) for some η ∈ I .

16

Thus also
|ϕ(x)− ϕ(y)| ≤ C|x− y| , C < 1

A short version of this statement:

The fixed point method converges locally if |ϕ′(ξ)| < 1.

Figure 7 illustrates the convergence behavior of fixed-point iteration for different functions
ϕ.

Abbildung 7: Fixed-point iterations illustrated for different functions ϕ. Possible cases: one-
sided approach to the fixed point if 0 < ϕ′ < 1 in a neighborhood around the
fixed point; alternating convergence if −1 < ϕ′ < 0, divergence if ϕ′ > 1 or
ϕ′ < −1.

1.13 Order of Convergence

We have already mentioned linear, superlinear and quadratic convergence. Here, we make the
definition more precise.

17

Order of convergence
Let ξ be a fixed point of ϕ, and for all initial values from an interval around ξ and
the corresponding sequence {x(k)} generated by the rule x(k+1) = ϕ(x(k)), k =
0, 1, 2 . . . holds

|x(k+1) − ξ| ≤ C|x(k) − ξ|p

with p ≥ 1 and C < 1 if p = 1.
Then the iteration is said to have an order of convergence of (at least) p.

For the local convergence behavior of a fixed-point iteration, the value of the first derivative
at the fixed point is decisive. For |ϕ′(ξ)| < 1, linear convergence is ensured; the smaller the
magnitude of the derivative, the faster the method converges. Moreover, C ≈ |ϕ′(ξ)|. However,
when |ϕ′(ξ)| = 0, the convergence behavior becomes superlinear.

Taylor expansion can show : If ϕ(x) in a neighborhood of ξ is sufficiently often differentiable
and

ϕ′(ξ) = 0, ϕ′′(ξ) = 0, . . . , ϕ(p−1)(ξ) = 0, and ϕ(p)(ξ) ̸= 0 ,

then for p = 2, 3, . . . the method is of order p. If p = 1, first-order convergence requires the
additional condition |ϕ′(ξ)| < 1.

1.14 Convergence of Newton’s Method

Newton’s method, applied to the function f , corresponds to a fixed point method for the
function ϕ,

ϕ(x) = x− f(x)
f ′(x)

Now,
ϕ′(x) = f ′′(x)f(x)

(f ′(x))2 ,

and since at a simple zero f(x) = 0, f ′(x) ̸= 0, the value ϕ′(x) vanishes there. It is easy to
check that ϕ′′(x) ̸= 0, provided that f ′′(x) ̸= 0. From this follows the quadratic convergence
of Newton’s method for single zeros. For multiple zeros, linear convergence can be proved.

18

2 Systems of Non-Linear Equations

Section 1.2 defines the terms solution, zero, and fixed point for scalar functions R→ R. These
notations can be easily generalized to vector-valued functions Rn → Rn. As in the scalar case,
there are different ways to formulate equations.

Notation for vectors and vector-valued functions: Bold

Real-valued functions, scalars: f : R→ R , y = f(x)
Vector-valued functions, vectors: f : Rn → Rn , y = f(x)

Components of a vector x ∈ Rn:

x =


x1
x2
...

xn

 or xT = [x1, x2, . . . , xn]

Normally, x denotes a column vector while xT denotes a row vector.
To count iterations, we set indices (to distinguish them from indices for vector
components) as superscripts enclosen in brackets), e. g., x(k), k = 0, 1, 2 . . .

2.1 Solution, Zero, Fixed Point: the Multi-Dimensional Case

Types of problems for equations in Rn

Let f , g, h, Φ be functions Rn → Rn and x ∈ Rn

Find an x that fulfils. . .

g(x) = h(x), (Find a solution for a system of equations)
f(x) = 0, (Find a zero of the function f)

x = Φ(x), (Find a fixed point of the function Φ)

Compared to the definitions of Section 1.2, almost nothing has changed except the typeface.

For example a nonlinear system of equations with two unknowns

4x1 − x2 + x1x2 = 1
−x1 + 6x2 = 2− log(x1x2)

has the form g(x) = h(x) with

g(x) =
[
g1(x1, x2)
g2(x1, x2)

]
=

[
4x1 − x2 + x1x2
−x1 + 6x2

]
, h(x) =

[
h1(x1, x2)
h2(x1, x2)

]
=

[
1

2− log(x1x2)

]
This System can be transformed to

4x1 − x2 + x1x2 − 1 = 0
−x1 + 6x2 + log(x1x2)− 2 = 0

19

In this formulation the problem is to find zeros of the vector-valued function f : R2 → R2,
that is, solutions of f(x) = 0 with

f(x) =
[
f1(x1, x2)
f2(x1, x2)

]
=

[
4x1 − x2 + x1x2 − 1

−x1 + 6x2 + log(x1x2)− 2

]
Another equivalent transformation would be

x1 = 1
4(x2 − x1x2 + 1)

x2 = 1
6(x1 − log(x1x2) + 2)

Now, fixed points of the vector-valued function Φ : R2 → R2 are requested, that is, solutions
of x = Φ(x) with

Φ(x) =
[
ϕ1(x1, x2)
ϕ2(x1, x2)

]
=

[1
4 (x2 − x1x2 + 1)

1
6 (x1 − log(x1x2) + 2)

]
One more note on notation: When we have found a particular fixed point, we denote it by ξ
in the following to distinguish it from other general x values.

2.2 Multidimensional Fixed-Point Iterations

Fixed-point iterations are also possible in the multidimensional case. A fixed point of a mapping
Φ : Rn → Rn is—entirely analogous to the one-dimensional definition— a value ξ ∈ Rn, for
which holds

ξ = Φ(ξ) .

Just as in the one-dimensional case, fixed-point iteration (if it converges) finds a fixed point.
Once again, we write here vectors from the Rn and vector-valued functions in boldface type
(Φ, ξ, x . . .), to distinguish them from variables and real-valued functions (ϕ, ξ, x, . . .). Other-
wise, nothing changes in the scheme of fixed-point iteration.

Multidimensional fixed-point iteration
Given a mapping Φ : Rn → Rn, x→ Φ(x) .
To find a fixed point ξ of Φ,

start with initial value x(0).
iterate

x(k+1) = Φ(x(k)) for k = 0, 1, 2 . . .

Check the convergence conditions (Section 2.4)!

Example: Fixed-point iteration for a system of two nonlinear equations

Let the following system of nonlinear equations be given (where naturally, log denotes the
natural logarithm).

4x− y + xy − 1 = 0
−x + 6y + log(xy)− 2 = 0

Start with the approximative solution x0 = y0 = 1 and use a suitable fixed-point iteration to
determine better approximations.

20

In the first equation and for the given initial values, the term 4x makes the most substan-
tial contribution. The second equation depends most strongly on 6y. In this situation, you
should make variables x and y explicit from these equations where they have the most decisive
influence.

x =
1
4

(y − xy + 1)

y =
1
6

(x− log(xy) + 2)

Here, the function Φ is a vector of two real-valued functions ϕ and ψ, the vector x has two
components x and y.

Φ(x) =
[
ϕ(x, y)
ψ(x, y)

]
=

[
1
4 (y − xy + 1)

1
6 (x− log(xy) + 2)

]
Iteration provides the sequence (1; 1), (1/4; 1/2), (0,343 75; 0,721 574),
(0,368 383; 0,622 985), . . ., which converges to the fixed point (0,353 443 88; 0,639 968 47)
.

2.3 Norms

The exact solution, the approximate solution, and the error in systems of equations are all
vectors in Rn. We need to measure the magnitude, or length, of error vectors and also the
distance of an approximation from the exact solution. In the one-dimensional case, we calculate
the “size” of x by the absolute value x, and the distance between two values x and y on the
real axis by |y − x|.

But while there is only one reasonable definition for the absolute value in R, several possibilities
are open in Rn. First, there is the usual definition for the length of a vector, also called
Euclidean length or 2-Norm . But often, it is easier to work with other norms. We will use
here the 1-Norm and the ∞-Norm .

Norms in Rn for a vector x = (x1, x2, . . . , xn)T

∥x∥1 =
n∑

i=1
|xi| , 1-norm, taxicab norm, Manhattan norm

∥x∥2 =

√√√√ n∑
i=1

(xi)2 , euklidian norm, 2-norm

∥x∥∞ = max
i
|xi| , infinity norm, maximum norm

Do you remember the definition of a norm from Mathematics 2?

A norm in Rn is a function that assigns to each vector x ∈ Rn a nonnegative real number
∥x∥ ∈ R+

0 , so that ∀x, y ∈ Rn, ∀α ∈ R must satisfy three conditions.

• Only the zero vector has norm 0

∥x∥ = 0 ⇒ x = 0

• Absolute value of scalar α can be factored out

∥α · x∥ = |α| · ∥x∥

21

• The triangle inequality holds

∥x + y∥ ≤ ∥x∥+ ∥y∥

Norm and distance

A norm can also measure the distance between two points x and y.

dist(x, y) = ∥x− y∥

• Cabs in Manhattan measure distances in the 1-norm.

Therefore the 1-norm is also called taxicab norm or Manhattan norm

• Distance as the crow flies corresponds to the 2-norm.

• Biggest difference in components: ∞-norm.

Matrix norms

• The fundamental destiny of matrices is to multiply vectors.

• The result of a matrix-vector multiplication is also a vector; it is usually rotated and
longer or shorter than the original vector.

• A matrix norm measures how strong it acts on vectors.

• A given matrix cannot extend vectors arbitrarily. For each matrix, there is a “maximum
lengthening factor.”

The “maximum lengthening factor” is a matrix norm.

Some matrix norms

The 1-, 2- and ∞-norms are defined via the corresponding vector norms: They specify how
much matrix-vector multiplication maximally can enlarge y = A · x compared to x. It is easy
to calculate the 1-norm or the ∞-norm of a matrix.

∥A∥1 1-norm : maximum absolute column sum
∥A∥∞ ∞-Norm : maximum absolute row sum

Unfortunately, for the frequently used matrix 2-norm no such simple calculation rule exists.

However, MATLAB can easily calculate all norms. ∥A∥1 = norm(A,1), ∥A∥2 = norm(A),
∥A∥∞ = norm(A,Inf).

22

Matrix norm, general definition

You can add Matrices and multiply them by scalars. In this sense, they act precisely like vectors
of Rn. We can interpret everything that behaves like a vector as a “vector”: The m×n-matrices
form a vector space . Therefore, term “norm of a matrix” can be defined in the same way as
the norm of vectors of Rn. Compare the definition of a norm in Rn on page 22 and try to find
the differences—there are hardly any!

A norm in Rm × Rn is a function that assigns to each m × n matrix A a nonnegative real
number ∥A∥ ∈ R+

0 , so that ∀A, B ∈ Rm × Rn, ∀α ∈ R must satisfy three conditions.

• Only the zero matrix has norm 0

∥A∥ = 0 ⇒ A = 0

• Absolute value of scalar α can be factored out

∥α ·A∥ = |α| · ∥A∥

• The triangle inequality holds

∥A + B∥ ≤ ∥A∥+ ∥B∥

These three basic rules must apply to every norm. However, there are bonus features for the
1-, 2-, or ∞-norm. For these matrix norms, the following additional rules apply.

∥A ·B∥ ≤ ∥A∥ · ∥B∥ (8)

∥A · x∥ ≤ ∥A∥ · ∥x∥ (9)

Compare with the absolute value |a · b| = |a| · |b|

Frobenius norm

The Frobenius-Norm ∥A∥F is calculated like the 2-norm of a vector: square root of sum of
squares

Frobenius-Norm: ∥A∥F =
√∑

a2
ij

It is easier to calculate the Frobenius norm instead of the 2-Norm, and you can use it as an
upper bound.

∥A∥2 ≤ ∥A∥F

Moreover, ∥A∥F also provides bonus features similar to those of the 1-, 2-, or ∞-norm,

∥A ·B∥F ≤ ∥A∥F · ∥B∥F , ∥A · x∥2 ≤ ∥A∥F ∥x∥2

MATLAB: ∥A∥F = norm(A,’fro’).

Matrix norms—the small print5

5Don’t think much about it;
incomplete this text would be without it.

23

The informal explanation “matrix norm is maximum extension factor” is mathematically
correct for 1-, 2-, and ∞-norms when vector lengths are measured in the respective norms.
However, the Frobenius norm usually overestimates the maximum extension factor when vec-
tor lengths are measured in the 2-norm. Nevertheless, it provides an upper bound for the
lengthening factor.
There is also another rule, ∥A∥ = max

i,j
|aij |, which satisfies the three conditions of a norm, but

is not always an upper bound for the lengthening factor.

2.4 Convergence

As in the one-dimensional case, convergence of an n-dimensional fixed-point iteration depends
on a contraction property.

Fixed-point iterations in Rn converge for contraction mappings
Let Φ(x) be a function with fixed popint ξ: Φ(ξ) = ξ. Also, let B be an open
neighborhood around ξ in the form B = {x : ∥ξ−x∥ < r}, r > 0. If Φ acts in
B as a contraction mapping in some norm ∥ · ∥, i. e

∥Φ(x)−Φ(y)∥ ≤ C∥x− y∥ , C < 1 for all x, y ∈ B ,

then the fixed-point iteration x(k+1) = Φ(x(k)) converges for all x(0) ∈ B at
least linearly to ξ.

One can prove the convergence of the multidimensional fixed point iteration in the same way
as in the one-dimensional case when a contraction property holds. Also, the concept of the
order of convergence can be directly applied to the multidimensional case by using norms.

Contraction and Jacobian matrix

The convergence criterion |ϕ′(ξ)| < 1 from the one-dimensional case (compare Page 17) can
be generalized to several dimensions. For this end, one collects the partial derivatives of Φ in
a matrix Dϕ, called the Jacobani matrix.

Jacobian matrix Dϕ of a function Φ : Rn → Rn

Dϕ =



∂ϕ1
∂x1

∂ϕ1
∂x2

. . .
∂ϕ1
∂xn

∂ϕ2
∂x1

∂ϕ2
∂x2

. . .
∂ϕ2
∂xn...

...
...

∂ϕn

∂x1

∂ϕn

∂x2
. . .

∂ϕn

∂xn


Then, similar to the one-dimensional case, one can state

Fixed-point iterations converge locally,
if in the 1-,2-, Frobenius- oder ∞-norm holds

∥Dϕ∥ < 1

24

2.5 Newton’s Method for Systems of Equations

Given a vector-valued function f : Rn → Rn. Let us find a zero of f . The zero is a vector
x ∈ Rn that solves

f(x) = 0
This is the general formulation of a system of n linear or nonlinear equations in n unknowns.
And once again, let us note: we put vectors from Rn and vector-valued functions in bold type
(x, f(x), . . .), as distinguished from variables and real-valued functions (x, f(x), . . .).

Component-wise written out for

f =


f1
f2
...

fn

 and x =


x1
x2
...

xn

 , the system is

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

. . .
fn(x1, x2, . . . , xn) = 0

.

Newton’s method for systems reduces the solution of a nonlinear system to the solution of
a sequence of linear systems. Solving linear equations is comparatively simple compared to
nonlinear systems. We will treat systems of linear equations in detail later, but for the time
being, we will assume that you are familiar enough with them from school.

Assuming that the corresponding partial derivatives exist, we define the Jacobian matrix Df

of f as

Df =



∂f1
∂x1

∂f1
∂x2

. . .
∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . .
∂f2
∂xn...

...
...

∂fn

∂x1

∂fn

∂x2
. . .

∂fn

∂xn


Let us assume that an initial value x(0) is given in the vicinity of a zero. Then Taylor’s theorem
approximates f in the neighborhood of x(0),

f(x(0) + ∆x) = f(x(0)) + Df (x(0)) ·∆x + R

with a remainder term R that vanishes in the limit ∆x → 0 with higher order. We drop this
remainder term and require f(x(0) + ∆x) = 0. From the resulting equation

0 = f(x(0)) + Df (x(0)) ·∆x

it is easy to determine the correction vector ∆x and thus an improved approximation x(1) =
x(0) + ∆x.

Newton’s method for systems
Given a differentiable vector-valued function f and an initial value x(0).
Wanted a zero of f .

iterate

x(k+1) = x(k) + ∆x(k)

with ∆x(k) as solution of Df (x(k))∆x(k) = −f(x(k))

25

Actually, this method is a fixed-point iteration for the function

Φ(x) = x−D−1
f (x)f(x).

Of course, D−1
f must exist for the method to work.

One can show: If D−1
f exists at the zero then Newton’s method converges quadratically for

sufficiently accurate initial values.

Since it is often very tedious to calculate all elements of Df for each iteration, one someti-
mes computes Df just for the initial value x(0) and keeps this Df for the next iterations.
This procedure is called the simplified Newton method. Here x(0) should already be a useful
approximation. However, this simplified Newton method converges only linearly.

The Newton method for systems requires the solution of a linear system of equations in each
step. Therefore, the next chapter brings the systematic treatment of linear systems.

Example: the nonlinear system from Section 2.2
The function f and its Jacobian Df are in this example

f(x) =
[

4x− y + xy − 1
−x+ 6y + log(xy) − 2

]
, Df =

[
4 + y −1 + x

−1 + 1
x

6 + 1
y

]
.

Inserting the initial value (1; 1) gives

f(x) =
[

3
3

]
, Df =

[
5 0
0 7

]
.

Now, Newton’s method requires the solution of the linear system[
5 0
0 7

] [
∆x
∆y

]
= −

[
3
3

]
Thus, we get the correction vector and the next approximation

∆x(0) =
[

−0, 6
−0, 428571

]
, x(1) = x(0) + ∆x(0) =

[
0, 4

0, 571429

]
.

The next step evaluates f and Df for the new values of x, solves the linear system for the
correction term ∆x(1), and calculates from this the improved approximation x(2) = x(1) +
∆x(1). However, the new matrix Df does not have such nice entries as the initialDf . Therefore,
the system of equations is not as directly solvable as in the first step. The simplified version
of Newton’s method would re-evaluate f but keep the simpler diagonal matrix Df of the first
step. The effect would be a more straightforward calculation for the cost of only linear instead
of quadratic convergence.

26

	Nonlinear Equations in One Unknown
	Exploring Equations—A Short Tour
	Definitions, problems, solutions
	Warm-Up Examples
	Graphical solution: A picture says more than a thousand formulas
	Suitable transformations; zeroes and fixed points
	Discussion of the Examples: Important and Unimportant Terms
	A Nearly Linear Equation
	Van der Waals Equation
	Financial Mathematics

	Bisection
	Regula Falsi (false position method)
	Secant Method
	Newton's method
	Stopping criteria
	Fixpunkt-Iteration
	Order of Convergence
	Convergence of Newton's Method

	Systems of Non-Linear Equations
	Solution, Zero, Fixed Point: the Multi-Dimensional Case
	Multidimensional Fixed-Point Iterations
	Norms
	Convergence
	Newton's Method for Systems of Equations

