
3 Systems of Linear Equations, Direct Methods

We use the standard notation for systems of linear equations,

Ax = b ,

where A denotes the coefficient matrix, b the right-hand side, and x the solution vector. If the
system consists of n equations and unknowns, then A is an n × n matrix.

Solution methods for linear systems of equations fall into two main categories: Direct and
iterative methods.

• Direct methods compute an exact solution (assuming no rounding error during compu-
tation). For example, elimination, substitution, and Cramer’s rule fall into this category.
If you want to use paper and pencil to solve systems with two or three unknowns, they
are the methods of choice. Computers can easily use direct methods for thousands of
equations and unknowns.

• Iterative methods start with some initial guess and compute progressively better appro-
ximate solutions. They are only suitable for systems of equations with a specific matrix
structure. This way, computers can solve huge systems of equations (several million un-
knowns), such as those arising in numerical flow simulations or structural analysis.

This chapter deals with direct methods and repeats (what you should know from mathematics
1) theoretical statements on the existence and uniqueness of the solution; Chapter y will treat
iterative methods.

Software of recognized high quality is freely available in the LAPACK program library (http:
//www.netlib.org/lapack/). Even in commercially available software packages you will not
find anything better. MATLAB also contains the LAPACK algorithms. (By the way, MATLAB
was initially created as a simple user interface to this package).

3.1 Triangular matrices

If A is a lower or upper triangular matrix, one can solve the system Ax = b directly by forward
or backward substitution, respectively.

Otherwise, you could transform the equations to triangular form as desdribed in Section 3.2.
Alternatively, you could factorize A into a product of triangular matrices. The corresponding
procedure is described in Section 3.5.

We denote triangular matrices by L and U . In the usual notation, in L only the entries in the
lower left triangle are different from zero and all entries of the main diagonal are equal to one.
In U , only entries in the upper right triangle, including the main diagonal are not equal to
zero. Example for n = 4:

L =

1 0 0 0

ℓ21 1 0 0
ℓ31 ℓ32 1 0
ℓ41 ℓ42 ℓ43 1

 , U =

u11 u12 u13 u14
0 u22 u23 u24
0 0 u33 u34
0 0 0 u44

If the elements of a triangular matrix L are stored on an array a[i][j] and the right-hand side
b on a vector b[i], the following Java program segment solves the system Lx = b stepwise
by forward substitution .

28

http://www.netlib.org/lapack/
http://www.netlib.org/lapack/

Note that Java counts array indices from 0 to n − 1; conventional math notation counts rows
and columns from 1 to n.)

for (int i=0; i<n; i++) {
x[i] = b[i];
for (int j=0; j<i; j++) {

x[i] -= a[i][j] * x[j];
}

}

A similarly compact formulation is possible for a system of equations with an upper triangular
matrix. Differences from before: the backward substitution starts in the last row and proceeds
from bottom to top; dividing by the main diagonal element is necessary; the right side is
already stored on x[] at the beginning; the algorithm overwrites x[] with the solution
vector.

for (int i=n-1; i>-1; i--) {
for (int j=i+1; j<n; j++) {

x[i] -= a[i][j] * x[j];
}
x[i] /= a[i][i];

}

The computational effort for the forward substitution, measured by the number of multipli-
cations and divisions, is n2/2 − n/2. On the other hand, the backward substitution needs
n2/2 + n/2 point operations. For large n, only the quadratic term is essential. Therefore we
say:

Computational effort for Forward- or backward substitution
Solving an n × n triangular system requires O(n2) floating-point operations.
Computational effort grows quadratically with the number of equations.

Question: What do you do when a system of equations is not triangular? Answer: You trans-
form it into a triangular system. Of course, you must do this so that the original and the
transformed system are equivalent (which means both systems have exactly the same soluti-
ons).

The following section shows how to do so.

3.2 Gaussian Elimination

The following box describes a basic version of Gaussian elimination.

29

Gaussian elimination, basic form
Given an n × n matrix A and right-hand side b. Provided it will not divide by a
zero akk, this algorithm transforms the system Ax = b to an equivalent upper
triangular system Ux = c.

for all columns k = 1, . . . n − 1
in column k eliminate all entries below the main diagonal

Elimination in column k proceeds in the following manner
for all rows i = k + 1, . . . , n below the main diagonal

set p = aik/akk

subtract the p-th multiple of row k from row i

This subtraction is done via
for all columns j = k, . . . n

aij = aij − pakj

for right-hand side: bi = bi − pbk

This algorithm overwrites entries in A and b repeatedly by intermediate results
and, finally, by the enties of U und c. Entries below the main diagonal, which
should be zero in U , will not be erased, however. (It will turn out later, in
Section 3.5, that these entries are quite important.)

This algorithm performs n3/3 − n/3 operations (counting multiplications and divisions only)
to transform the matrix, and n2/2 − n/2 operations to transform the right-hand side.
In JAVA source code, Gaussian elimination looks surprisingly simple. Assuming that x[]
initially contains the right-hand side, the algorithm performs three nested loops so that x[]
finally stores the solution vevtor.

for (int k=0; k<n; k++) {
for (int i=k+1; i<n; i++) {

double p = a[i][k] / a[k][k];
for (int j=k+1; j<n; j++) {

a[i][j] -= p * a[k][j];
}
x[i] -= p * x[k];

}
}

The program does not calculate results that will be zero anyway. Thus, in step k, it will
not erase the elements below the main diagonal in column k. (Actually, these entries will be
necessary for the LU matrix decomposition discussed in Section 3.5.)

The stepwise backward insertion can be done with n2/2 + O(n) operations according to the
program segment from the previous section. Note that te double loop in that code uses only
the the upper triangle of A. Therefoer, any values ̸= 0 below the main diagonal do not affect
the computation.

These two code segments combined provide a simple equation solver.

Computational effort for basic Gaussian elimination grows cubically
with the number of equations
To solve an n×n system Ax = b, Gaussian elimination needs O(n3) operations.

(A precise count of multiplications and divisions results in n3/3 + n2 − n/3 = n3/3 + O(n2)
operations.)

30

3.3 Pivoting

Our basic implementation of Gaussian eliminationhas a catch: At the step p = aik/akk, a
division by zero may occur. This is quite unlikely to happen for a matrix of randomly chosen
real numbers, but Murphy’s law says: If anything can go wrong, it will. Actually, the method
fails already for systems as simple as

[
0 1
1 0

] [
x1
x2

]
=

[
1
1

]
,

because the very first operation would be a division by zero. This failure is not the fault of
the equations, which have the unique solution x1 = 1, x2 = 1.

If you switch the first and second equations, the procedure runs without problems. Also, for
reasons of numerical accuracy, it may be beneficial to swap equations or unknowns systema-
tically. This procedure is called pivoting.

Gaussian elimination with complete pivoting
Given an n × n-Matrix A and righ-hand side b. This algorithm transforms the
system Ax = b to upper triangular form Ux = c. It overwrites the matrix A
with U and the vector b with c.

for all columns k = 1, . . . , n − 1
find the element largest in absolute value in
the square submatrix ranging from rows and
columns k to n.

switch equations and unknowns so that this
element ends up in position akk.

if akk = 0
stop.

else
in column k eliminate all entries
below the main diagonal in the same way as
in the basic version ofGaussian Elimination

The pivotal step in Gaussian elimination is selecting which equation to use to eliminate the
corresponding unknown in the remaining equations. Therefore, the element akk used in the cal-
culation p = aik/akk is called the pivot element. To find a favorable pivot element by suitably
swapping or reordering equations and unknowns is called pivot search or pivot selection .

Row and column interchanges complicate the algorithm considerably compared to the triple
loop of Gaussian elimination in its basic form. We will not list code for a complete pivot search
because any possible gain of additional insight is not reasonably related to the cumbersome
technical details.

Usually, equation solvers do not perform complete but only row pivot search. That means they
only swap rows (=equations) for simplicity7 . As a result, this procedure is somewhat more
sensitive to numerical errors than a full pivot search.

7For example, the entry Gaussian elimination in Wikipedia lists pseudocode.

31

3.4 Existence of Solutions

The rule of thumb, “If there are as many equations as unknowns, there is always a solution,”
is wrong . I repeat (because I hear it again and again during exams): IS WRONG!

For the three linear systems

x + y = 2 x + y = 2 x + y = 2
2x + 2y = 4 x + 2y = 3 2x + 2y = 3

you hopefully see with the naked eye: x = 1, y = 1 solves the first and the second ones.
The third system is unsolvable. However, for the first system, there are infinitely many more
solutions. These examples illustrate the general case.

Linearer Systems—three cases
There are three possibilities for a linear system of equations. It may have

• infinitely many solutions;

• a single unique solution;

• no solution.

(You should remember this from your Mathematics introductory lecture.)

This section deals only with systems with the same number of equations and unknowns, but the
above statement also applies to linear systems with more equations than unknowns. Only two
cases are possible for fewer equations than unknowns: no solution or infinitely many solutions.

An essential property of the Gaussian elimination method is that it can distinguish the three
cases

3.4.1 Elimination

Gaussian elimination with complete or row pivot search transforms the original matrix A and
the right-hand side b into a system in row echelon form: From each row to the next one, the
number of leading zeroes (seen from the left) increases by at least one.

Possible outcomes of the elimination procedure
The system is in row echelon form.

• Zero rows occur in A, and all corresponding entries in b are zero as well:
infinitely many solutions.

• Zero rows occur in A, but at least one corresponding entry in b is not zero:
no solution.

• No zero rows occur in A: a unique solution.

When computers perform the elimination in floating-point arithmetic, it is not so easy to
check whether entries are precisely equal to zero. Due to roundoff errors in the input data and
during the calculation, matrix elements that should be zero might become tiny floating point
numbers. It is a delicate numerical question to decide how small an entry can be considered
zero. Those dubious cases when matrix rows are nearly zero so that the algorithm just barely
can find the solution are called numerically singular.

32

3.4.2 Rank of matrix and augmented matrix

The rank of an m × n matrix is the number of its linearly independent rows or, equivalently,
columns.

Even if the matrix has different numbers of rows and columns, there are always exactly as
many linearly independent rows as columns; in short: row rank = column rank.The numbers
of linearly independent rows or columns are always the same; in short: row rank = column
rank.

The MATLAB command rank(A) determines the rank of the n × n matrix A. or columns) of
the n×n matrix A, and rank([A,b]) determines the rank of the augmented coefficient matrix
(this is the linear system matrix combined with the right-hand side as its last column).

Rank determines solution set

• rank(A) = rank([A,b]) < n : infinitely many solutions.

• rank(A) < n und rank(A) ̸= rank([A,b]): no solution

• rank(A) = n: a unique solution

There are several methods to calculate the rank of a matrix, for example, transformation to
step form by Gaussian elimination: The rank is the number of non-zero rows in the matrix.
However, there is no simple decision whether a value is non-zero due to rounding errors or
truly non-zero. MATLAB uses a sophisticated procedure (singular value decomposition), which
provides a reliable rank estimate. If a system of equations has infinitely many solutions, you
may read off the general solution from the rref([A,b]) result or use the following commands:

pinv(A)*b returns a particular solution
null(A) returns the null space of A: a list of linearly independent solutions of
the homogeneous system Ax = 0.

The general solution is the sum of a particular solution and an arbitrary linear combination
from the null space.

null(A,’r’) You may use null(A,’r’) if A is a small matrix with small integer elements.
This variant also returns a list of linearly independent solutions, but with "nicer"numbers,
i.e., ratios of small integers. However, this method is numerically less accurate than null(A) .
(Never let yourself be blinded by external beauty if falseness lurks behind it).

For example, consider the system Ax = b with

A =

1 2 3 4
2 4 5 6

−1 −2 −2 −2
3 6 8 10

 , b =

1
1
0
2

 , rref([A,b]) =

1 2 0 −2 −2
0 0 1 2 1
0 0 0 0 0
0 0 0 0 0

The result of the rref([A,b]) command means: you may choose x2 = λ and x4 = µ as free
parameters; x3 = 1 − 2µ, x1 = −2 − 2λ + 2µ. In vector notation,

x =

−2
0
1
0

 + λ

−2
1
0
0

 + µ

2
0

−2
1

33

MATLAB can also compute a partial solution in the form x=A\b and the null space via
null(A,’r’) for a matrix as simple as this one. However, these commands ares not recom-
mended for real-world problems. Nevertheless, here they yield (apart from a warning message)
the “more beautiful” result

x =

0

−1
1
0

 + λ

−2
1
0
0

 + µ

2
0

−2
1

pinv(A)*b and null(A) return the numerically preferred representation,

x =

−0.2069
−0.41379
0.034483
0.48276

 + λ

−0.77069
0.10421
0.56227

−0.28113

 + µ

−0.48335
0.54725

−0.61115
0.30558

MATLAB calculates this result using sophisticated and reliable numerical procedures. Howe-
ver, in contrast to the previous representations of the solution, substitution into the expression
Ax−b does not yield precisely zero, but due to rounding errors, values in the range of 1×10−15.
(Sometimes, beauty signals some sort of truth indeed.)

3.4.3 Determinant

The determinant determines wether a linear system has a unique solution.

Linear systems Ax = b with det A ̸= 0 have a unique solution.
However, this rule is useless for numerical computation.

For example, the MATLAB command A=rosser creates the 8 × 8 matrix

A =

611 196 −192 407 −8 −52 −49 29
196 899 113 −192 −71 −43 −8 −44

−192 113 899 196 61 49 8 52
407 −192 196 611 8 44 59 −23
−8 −71 61 8 411 −599 208 208

−52 −43 49 44 −599 411 208 208
−49 −8 8 59 208 208 99 −911
29 −44 52 −23 208 208 −911 99

For this matrix, MATLAB currently8 computes det A = −9480,580 , so you definitely would
think det A ̸= 0. Thus, a linear system with this matrix A should have a unique solution.
However, MATLAB correctly computes the rank of A as rank(A)=7. Because 7 < 8, a unique
solution cannot exist. MATLAB’s value for the determinant is plainly wrong.

For the 6 × 6matrix H, a so-called Hilbert matrix,

H =

1 1

2
1
3

1
4

1
5

1
6

1
2

1
3

1
4

1
5

1
6

1
7

1
3

1
4

1
5

1
6

1
7

1
8

1
4

1
5

1
6

1
7

1
8

1
9

1
5

1
6

1
7

1
8

1
9

1
10

1
6

1
7

1
8

1
9

1
10

1
11

8with version 2022b. The value for version 2021b was det A = −10 611. Previous versions around 2018 gave

det A = −9478,9; the version from 2015 gives −9448,8; prior to 2013 the value was det A = −13 017 . It
should worry you deeply that a numerical result varies that much depending on the program version!

34

MATLAB computes det A = 5,3673 × 10−18, and this you could quite reasonably round off
and interpret as det A = 0. However, for the rank MATLAB (correctly) calculates rank(H)=6.
Thus, linear systems with H do have a unique solution (although, in this case, the solution is
highly sensitive to roundoff errors).

These examples illustrate:

The numerically calculated value of a determinant says nothing about the sol-
vability of a linear system.

3.5 LU decomposition

The simple Gauss elimination yields (if it does not break down) more than the transformation
to a triangular shape. It can, at the same time, give the decomposition

A = LU

where L is a lower triangular matrix with ones in the main diagonal and U is an upper
triangular matrix.

LU decomposition
Gaussian elimination without pivot search factorizes (if it does not break down)
a matrix A into a product A = LU of a lower triangular matrix L and an upper
triangular matrix U .

In case of Gaussian elimination with pivoting, the product of the lower and upper triangular
parts does not give the original matrix, but a matrix with permuted rows and columns.

The elements of L are 1 along the main diagonal, and below that equal to the multipliers
p = aik/akk at the corresponding positions (i, k). The elements of U are exactly those that
the elimination procedure writes into the upper right triangle.

The only change in the algorithm on page 30 is remembering the intermediate results p.
Conveniently, one can store each p at the position of the corresponding field element a[i][k];
the procedure eliminates just this entry, thus generating a zero. Instead of this zero, the
algorithm stores the intermediate result p at this position.

Computer programs usually formulate the procedure in such a way that the original matrix
A is overwritten by R and U . The upper triangle of A contains, after successful completion,
the non-zero entries of U . The all-ones main diagonal of L is self-evident, no values need to be
stored. Below the main diagonal of A the remaining non-zero elements of L are stored. The
elegance of this storage method is that it arises in the course of the procedure quasi by itself.

See the lab notes for more information!

For the LU decomposition, you don’t need a right-hand side. It comes into play later. The way
to solve a system Ax = b when A = LU is already available is a sequence of transformations.

Ax = b
(LU)x = b
L(Ux) = b set y = Ux

Ly = b forward substitution solves for y
Ux = y backward substitution solves forx

The computational process and effort are completely equivalent to standard Gaussian elimina-
tion. However, the advantage of the LU decomposition becomes apparent when solving several

35

systems with the same matrix A and different right-hand sides b1, b2, . . . The LU decompo-
sition is the labor-intensive part (∼ n3/3 multiplications) and has to be performed only once.
The individual solutions then cost only ∼ n2 multiplications per right-hand side.

Special variants of Gaussian elimination exist for symmetric matrices. Exploiting the symmetry
saves arithmetic operations and storage space. A possible decomposition is

A = LDLT ,

with a diagonal matrix D. The Cholesky decomposition

A = LLT

is the method of choice for symmetric positive definite matrices.

3.6 A Numerical Example for Gaussian Elimination

Gaussian elimination is an algorithm for systematically eliminating unknowns. For small linear systems with
“nice” numbers, one often deviates from the systematic way and tries to shorten the calculation (e.g., to use
already existing zeros). On the other hand, there is always the danger of calculating “around in circles,” not
using equations, or using them twice. Therefore, while taking shortcuts for uncomplicated systems is perfectly
OK, having a well-defined algorithm for the general case is essential.

Now, given is the system A · x = b with

A =

[
5 6 7
10 20 23
15 50 67

]
, b =

[
6
6
14

]

You work with the augmented coefficient matrix

[A b] =

[
5 6 7 6
10 20 23 6
15 50 67 14

]

Eliminating the first column

(Compare the algorithm on Page 30.)

n = 3; in column k = 1 all entries below the main diagonal will be eliminated, i.e., the entries in rows i = 2, 3

k = 1, i = 2: Elimination in first column, second row

Eliminate aik = a21 = 10 using the diagonal element akk = 5 from row k = 1. Multiply first row by aik/akk = 2
and subtract.

10 20 23 6
10 12 14 12 |−
0 8 9 −6

k = 1, i = 3: Elimination in first column, third row

Eliminate aik = a31 = 15 using the diagonal element akk = 5 from row k = 1. Multiply first row by aik/akk = 3
and subtract.

15 50 67 14
15 18 21 18 |−
0 32 46 −4

36

Transformed augmented matrix

after processing first column:

[A b](1) =

[
5 6 7 6
0 8 9 −6
0 32 46 −4

]

Eliminating the second column

In column k = 2 all entries below the main diagonal will be eliminated. Here, this is the element in row i = 3
only.

k = 2, i = 3: Elimination in second column, third row

Eliminate aik = a32 = 32 using the diagonal element akk = 8 from row k = 2. Multiply second row by
aik/akk = 4 and subtract.

0 32 46 −4
0 32 36 −24 |−
0 0 10 20

Transformed augmented matrix

Having processed the second column, Gaussian elimination is complete.

[A b](2) =

[
5 6 7 6
0 8 9 −6
0 0 10 20

]

Backsubstitution

From the third row,

10x3 = 20
x3 = 2

Substitute for x3 in second row

8x2 + 9x3 = −6
8x2 + 18 = −6

8x2 = −24
x2 = −3

Substitute for x2 and x3 in first row,

5x1 + 6x2 + 7x3 = 6
5x1 − 18 + 14 = 6

5x1 = 10
x1 = 2

MATLAB’s command x = A\b basically works this way, but in addition may interchange rows when selecting
the pivot element.

multiple right-hand sides

To solve for several right-hand sides with the same matrix A, you augmente the matrix by all
right-hand sides as additional columns and proceed as above.

37

Pivoting

In this example, no reordering of equations is necessary to avoid division by zero. However, a
column pivot search would exchange first and third equation before the first step. Thus, the
element largest in absolute value would be in position (1, 1).

LU decomposition

The transformed matrix and the corresponding pivot factors also provide the LU decomposi-
tion. A right-hand side is not necessary for the LU decomposition. 5 6 7

10 20 23
15 50 67

 =

1 0 0
2 1 0
3 4 1

 ·

5 6 7
0 8 9
0 0 10

The MATLAB command [L, U]=lu(A) uses the Gaussian elimination method in principle
but delivers a different LU decomposition for this numerical example. The matrix U is a
genuinely upper triangular matrix, but L is a permuted lower triangular matrix. Reason:
Column pivot search switches rows in the matrix during the elimination process. (Pivoting
reduces the rounding errors.)

Decomposition obtained by [L, U]=lu(A) 5 6 7
10 20 23
15 50 67

 =

1/3 4/5 1
2/3 1 0
1 0 0

 ·

15 50 67
0 −40/3 −65/3
0 0 2

3.7 More Applications of LU decomposition

3.7.1 Determinant

Determinant
Given a decomposition A = LU , the determinant of A is the product of all
entries along the main diagonal of U .

Proof: The determinant of a triangular matrix is always the product of all entries along its
main diagonal. Since L has an all-ones main diagonal, det L = 1. Now, from the properties of
the determinant,

det A = det(LR) = (det L)(det R) = det R .

Counting multiplications and divisions only, computing an n × n matrix determinant this way
requires n3/3 + 2n/3 − 1 operations.

38

Compare this number of operations to the computational costs of the classical method Laplace
expansion along rows or columns. For an n×n matrix, let w(n) be the computational cost. For
this matrix, Laplace expansion computes n subdeterminants of (n − 1) × (n − 1) matrices and
multiplies them with corresponding matrix entries. For the computational effort thus applies
the recursive relationship

w(n) = nw(n − 1) + n = n(w(n − 1) + 1) .

The function w(n) grows rapidly, even stronger than the factorial n!. A moderately fast PC
(performing 107 multiplications per second) would compute det A for a 10 × 10 matrix in less
than one second. However, already for a 13×13 matrix, a quarter-hour coffee break is in order.
For the result in case of a 15 × 15 matrix you will wait two and a half days, thirteen millennia
for a 20 × 20 matrix, and a 25 × 25 matrix would not be ready after 80 billion years.
The following table illustrates the rapid growth of w(n) and the comparatively small effort
of the LU decomposition. It intends to point out the importance of computationally efficient
algorithms and the difference between polynomial and exponential runtime.

n w(n) n3/3 + 2n/3 − 1
2 2 3
3 9 10
4 40 23
5 205 44
6 1 236 75
7 8 659 118
8 69 280 175
9 623 529 248
10 6 235 300 339
15 2 246 953 104 075 1 134
20 4 180 411 311 071 440 000 2 679
25 26 652 630 354 867 072 870 693 625 5 224

3.7.2 Inverse

You will rarely need the inverse matrix A−1 of a given (nonsingular) matrix A explicitly.
example, if some algorithm requires the vector x = A−1y, you can as well solve the linear
system Ax = y with less computational effort and better numerical accuracy.

Warning 1: Before calculating an inverse, ask yourself thrice whether you need the inverse
explicitly.

Warning 2: If you still remember the formula known from linear algebra (the one with the
determinants of the cofactors): forget it. It is of theoretical importance because it proves the
existence of the inverse of a non-singular matrix. You should never (except in trivial examples)
compute the inverse in this way. Consider: computational effort O(n5), if you calculate the
individual subdeterminants employing LU decomposition; exponential computational effort,
if you calculate determinants by Laplacian expansion.

If you can’t avoid it, proceed this way. Call the first column of the inverse x1. The first column
of the identity matrix I is the unit vector e1 = (1, 0, . . . , 0)T . By definition,

AA−1 = I .

The first column in this matrix equality is

Ax1 = e1 .

Thus, you get the first column of the inverse by solving a linear system with the unit vector
e1 on its right-hand side.

A straightforward generalization of this argument:

39

Inverse
The i-th column vector of A−1 solves the linear system

Axi = ei .

So you have to solve a linear system with multiple right-hand sides. Recipe:

decompose A = LU ; (needs (n3 − n)/3 operations).
for i = 1, . . . , n

solve LUxi = ei; (needs n2 operations per step).

Computational costs (counting multiplications and divisions) (4n3 − n)/3.

The Gauss–Jordan elimination is an exceptionally well-organized variant of Gaussian elimi-
nation. It is well suited for pen-and-paper calculations. (You should know this algorithm from
the introductory mathematics lectures.)

3.7.3 symmetric positive-definite matrices

Elementary arguments from linear algebra show: for symmetric positive-definite matrices, the
basic variant of Gaussian elimination will never break down because of some akk = 0. Therefo-
re, no pivoting is necessary. Conversely, symmetric positive-definite matrices are characterized
by the property akk > 0 during all steps of an LU decomposition.

However, as mentioned on Page 36, in the case of symmetric positive-definite matrices, the
decomposition is usually done in the form A = LLT (Cholesky decomposition) orA = LDLT .
Benefits: efficient implementations use less storage space and arithmetic operations as compa-
red to a general LU decomposition.

3.7.4 Incomplete LU factorization

Even if most entries are zero in some matrix A, the factors L and U can have a much lar-
ger number of nonzero entries. Gaussian elimination introduces additional nonzeros during
computation. These entries ̸= 0 at positions where the initial matrix had elements = 0 are
called fill-in . Simply ignoring all fill-in (or all fill-in entries smaller than some threshold)
will significantly reduce the computational effort and memory size. Of course, then no lon-
ger LU = A, but LU = Ã for an approximation Ã to A. In this case, LU = Ã is called
an incomplete factorization (or incomplete decomposition). Many iterative solvers for linear
systems work with incomplete factorizations.

A tiny change in the example program for the LU decomposition illustrates the basic idea (see
the lab matrial for further information): Replace in the innermost loop

For j = k + 1 To n
a(i, j) = a(i, j) - p * a(k, j)

Next

by

For j = k + 1 To n
if a(i, j) <> 0 then

a(i, j) = a(i, j) - p * a(k, j)
Next

40

Thus, the LR decomposition has become an incomplete factorization. However, the program
does not save any memory space or computing time in this form. Particular data structures that
store only the non-zero elements would be necessary for an efficient implementation (sparse
data structures).

3.8 Sensitivity to Small Perturbations

Roundoff errors and noisy input data may change a matrix from A to A + δA and the right-
hand side from b to b + δb. The solution of this perturbed system will deviate by a (hopefully,
small) δx from the true solution of the original system.

(A + δA)(x + δx) = b + δb .

How does δx depend on δA and δb?

Condition number
The condition number κ(A) measures for the system Ax = b, how the relative
error of x depends on small relative changes in A and b.

∥δx∥
∥x∥

≤ κ(A)
(

∥δA∥
∥A∥

+ ∥δb∥
∥b∥

)

In the inequality above, ∥ · ∥ denotes both a vector norm (for example, the 1-, 2-, or ∞-norm)
and the corresponding matrix norm. A short calculation using the properties of the norm (see
Section 2.3) shows

κ(A) = ∥A∥∥A−1∥

41

Sketch of the proof: Start with the perturbed system

(A + δA)(x + δx) = b + δb ,

expand the brackets,

Ax + A · δx + δA · x + δA · δx = b + δb ;

since Ax = b, we can cancel Ax on the left and b on the righ-hand side. For small δb and δA,
the product δA · δx is small of higher order; we neglect this term. Thus,

A · δx + δA · x = δb .

Make δx explicit,

δx = A−1 (δb − δA · x) ,

apply a vector norm on both sides,

∥δx∥ = ∥A−1 (δb − δA · x) ∥ ,

use a property of matrix norms, inequality (9)

∥δx∥ ≤ ∥A−1∥ · ∥ (δb − δA · x) ∥ ,

employ the triangle inequality

∥δx∥ ≤ ∥A−1∥ (∥δb∥ + ∥δA · x∥) ,

expand the terms in the bracket

∥δx∥ ≤ ∥A−1∥
(∥Ax∥

∥b∥
∥δb∥ +

∥A∥
∥A∥

∥δA · x∥
)

,

use again an inequality for matrix norms,

∥δx∥ ≤ ∥A−1∥ · ∥A∥
(∥δb∥

∥b∥
∥x∥ +

∥δA∥
∥A∥

∥x∥
)

,

and finally, divide by ∥x∥,

∥δx∥
∥x∥

≤ ∥A−1∥ · ∥A∥
(∥δb∥

∥b∥
+

∥δA∥
∥A∥

)
.

Thus, the relative error in x can be κ(A) times larger than the relative error in A and b. Errors
in the input data will strongly affect a system of equations whose matrix has a large condition
number. Such a system is called ill-conditioned . Geometric illustration: two straight lines
intersecting at a small angle.

The calculation of the condition number directly according to the definition would require
the computation of the inverse and would be nonsensically expensive. Many equation solvers
provide estimates of κ(A) as a byproduct. For example, it holds

κ(A) ≥ max |λ|
min |λ|

(Ratio of largest to smallest magnitude of eigenvalues; Section ?? treats eigenvalues.)

42

4 Iterative Solvers for Linear Systems

Let a linear system in n equations and unknowns be given.

a11x1 + a12x2+ . . . +a1nxn = b1
a21x1 + a22x2+ . . . +a2nxn = b2
...

...
...

an1x1 + an2x2+ . . . +annxn = bn

(10)

In matrix notation,
Ax = b . (11)

Gaussian elimination is the classical solution method, at least for systems with up to several
thousand equations. Chapter 3 treats it in detail. However, many applications (flow simulation,
seismics, tomography, structural analysis. . .) produce systems with hundred thousands or
millions of unknowns. Iterative solvers work well for large systems of this kind. Here you
will get to know some basic methods only. They are fundamental in building more powerful
iterative solvers.

4.1 Basic iterative solvers: Jacobi, Gauss-Seidel, SOR

Suppose the diagonal elements aii of an n × n matrix A are all nonzero. Then the following
recipe for solving Ax = b (a fixed point method) would be possible:

Jacobi mehtod for Ax = b, loosely formulated
Solve each equation for its diagonal element, set initial values, and iterate.

In more detail, using the component-wise notation (10): In row i, bring all terms except for
the i-th to the right-hand side, and solve for xi.

A correspondingly transformed 3 × 3 system then looks like this:

x1 = (b1 − a12x2 − a13x3)/a11

x2 = (b2 − a21x1 − a23x3)/a22

x3 = (b3 − a31x1 − a32x2)/a33

Suppose x(k) is some approximate solution. The Jacobi method computes a new approximation
by

x
(k+1)
1 = (b1 − a12x

(k)
2 − a13x

(k)
3)/a11

x
(k+1)
2 = (b2 − a21x

(k)
1 − a23x

(k)
3)/a22

x
(k+1)
3 = (b3 − a31x

(k)
1 − a32x

(k)
2)/a33

You may find matrix notation clearer. For this, we define a matrix D = [dij] with the same
diagonal elements as A and zero in all off-diagonal elements. The remaining elements of A we
write into a matrix E.

A = D + E with D = [dij], dij =
{

aii if i = j,
0 else. E = A − D . (12)

43

The linear system (11) then may be transformed,

Ax = b
(D + E)x = b

Dx = b − Ex
x = D−1(b − Ex) .

The last equation is in fixed-point form. The corresponding fixed-point iteration

x(k+1) = D−1(b − Ex(k)) (13)

is called Jacobi method .

Iteration step of the Jacobi method
In matrix notation for the splitting A = D + E:

x(k+1) = D−1(b − Ex(k))

Component-wise notation for i = 1, . . . , n

x
(k+1)
i =

bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k)
j

 /aii

The Jacobi method does not take advantage of the most recent information to calculate x
(k+1)
i .

For example, it uses x
(k)
1 when calculating x

(k+1)
2 , even though the more recent approximation

x
(k+1)
1 is already available. If we formulate the method in such a way that it always uses the

most current values of the xi, we get the Gauss-Seidel method .

For the matrix notation of the Gauss-Seidel method, we define a matrix C = [cij] with the
same elements as A in and below the main diagonal, and zero above the main diagonal. We
write the remaining elements of A into a matrix E:

A = C + E with C = [cij], cij =
{

aij if i ≥ j,
0 else. E = A − C . (14)

The same steps that led to the fixed point equation 13 for the Jacobi method, we can repeat
with the matrix C instead of D and obtain the iteration rule for the Gauss-Seidel method:

x(k+1) = C−1(b − Ex(k)) (15)

44

Iteration step of the Gauss-Seidel method
loosely formulated
Solve each equation for its diagonal element, set initial values, iterate using the
most recently calculated approximations.

Matrix notation for splitting A = C + E

x(k+1) = C−1(b − Ex(k))

Component-wise notation
for i = 1, . . . , n

x
(k+1)
i =

bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 /aii

It is possible to accelerate the Gauss-Seidel method considerably if the new value x
(k+1)
i is not

used directly, but in combinatio with the old value in the form ωx
(k+1)
i +(1−ω)x(k)

i with some
extrapolation factor ω > 1. This iterative procedure is called the SOR method (SOR stands
for successive overrelaxation). However, it is difficult to give a suitable value for ω. The theory
says 1 ≤ ω < 2 with values relatively close to 2. For ω = 1, SOR reduces to Gauss-Seidel.

Iteration step of the SOR method
loosely formulated
For each i, calculate first an intermediate result y

(k+1)
i via a Gauss-Seidel step;

get the new value by extrapolation (overrelaxation)from old value and interme-
diate result: x

(k+1)
i = ωy

(k+1)
i + (1 − ω)x(k)

i

The component-wise notation already looks a bit confusing here.

for i = 1, . . . , n

y
(k+1)
i =

bi −
i−1∑
j=1

aijx
(k+1)
j −

n∑
j=i+1

aijx
(k)
j

 /aii

x
(k+1)
i = ωy

(k+1)
i + (1 − ω)x(k)

i

This method can also be written with a decomposition A = B + E similar to equations 13
and 15,

x(k+1) = B−1(b − Ex(k)) (16)
For SOR, B is a combination of the matrices C and D from before (12, 14) in the form

B = C +
(

1
ω

− 1
)

D

4.2 Convergence Criteria for the Jacobi and Gauss-Seidel Methods

The three methods presented above will not necessarily converge for an arbitrary Matrix A.
However, it is possible to prove the convergence of the Jacobi method by showing that the
fixed point iteration is a contraction mapping. For this purpose, we define

45

An n × nmatrix A = [aij] is called strictly diagonally dominant , if

|aii| >

n∑
j=1,j ̸=i

|aij | for i = 1, 2, . . . , n

Thus, in each row the sum of the absolute values of the non-diagonal elements must be smaller
than the absolute value of the diagonal element.

Convergence of Jacobi Method
For linear systems with strictly diagonally dominant matrices the Jacobi method
converges to the unique solution.

Proof: We show that the function Φ(x) = D−1(b − Ex), which defines the iteration (13), is
a contration mapping in the maximum norm for all x, y ∈ Rn. According to section 2.4, this
ensures convergence.

Φ(x) − Φ(y) = D−1(b − Ex) − D−1(b − Ey) = D−1E(y − x)

Row i of the matrix D−1E is
ai1

aii

ai2

aii
· · · ai,i−1

aii
0 ai,i+1

aii
· · · ain

aii

The sum of the absolute values in this row is < 1 (diagonal dominance ensures that the nomi-
nator is smaller than the denominator). Since this holds for all rows of D−1E, the maximum
norm (infiniyty norm) fulfills

∥D−1E∥∞ < 1 .

A property of the norm, inequality (9), immediately gives the contraction property.
∥Φ(x) − Φ(y)∥∞ = ∥D−1E(y − x)∥∞ ≤ ∥D−1E∥∞ · ∥y − x∥∞ ≤ C∥y − x∥∞

mit C = ∥D−1E∥∞ < 1.
With considerably more effort convergence of the Jacobi method can be shown also for a
larger class of matrices (weakly diagonally dominant, irreducible matrices). This statement
is important, because many real-world problems yield exactly such matrices. For the sake of
completeness here are the definitions:
An n × n matrix A = [aij] is weakly diagonally dominant , if

|aii| ≥
n∑

j=1,j ̸=i

|aij | for i = 1, 2, . . . , n,

and at least for one i strict inequality holds. To check for irreducibility, you draw a point
for each i. For each matrix entry aij ̸= 0 in A you join points i and j by an arrow i → j.
This drawing represents a directed graph If you can reach, following the arrows, any point
starting from any other point, then this graph is connected, and the corresponding matrix A
is irreducible.

As a rule, the Gauss-Seidel method converges more rapidly than the Jacobi method. It typically
needs only half as many iterations for the same accuracy. The SOR method with optimally
chosen relaxation parameter ω needs O(

√
N) iterations, where the Jacobi method needs N

iterations. However, there are also matrices for which one method converges, but the other does
not. We quote here without proof two more theorems formulating convergence conditions.

If A has positive elements in the main diagonal and all other elements are ≤ 0,
then the Gauss-Seidel method converges if and only if the Jacobi method converges.
If both methods converge, then the Gauss-Seidel method is asymptotically faster
(theorem of Stein and Rosenberg).

If A is symmetric positive definite, then the Gauss-Seidel method converges.

46

4.3 Modern Iterative Solvers

Linear systems from flow simulation, structural analysis, financial mathematics, and many
other fields may easily reach a size of several million unknowns. However, only a few elements
per matrix row are different from zero. (Such a matrix is called sparse). Today, almost
exclusively iterative methods are used to solve such systems. The classical methods (Jacobi,
Gauss-Seidel) converge too slowly and therefore require too much computational effort.

These notes can only give an introductory overlook to some ideas used by modern iterative
solvers.

4.3.1 Matrix Splitting, Preconditioning

Let us assume you want to solve the system

Ax = b .

A clever idea: You replace the matrix A by another matrix Ã for which you can the linear
system more quickly. You can make it easy for yourself and choose for Ã the unit matrix I, or
the diagonal part of A, or selectively only certain matrix elements out of A.

Write A = Ã+E. This is called a splitting of A into an approximation, called the preconditioner ,
and a residual part E. You then reformulate the original system as a fixed point problem.

Ax = b
(Ã + E)x = b
Ãx + Ex = b

Ãx = b − Ex
x = Ã−1(b − Ex)

The Jacobi method uses this idea with Ã = D, the diagonal part. Alternatively, you will get
Ã for the Gauss-Seidel method if you set in A all elements above the main diagonal to zero.

In general, the better Ã approximates the original matrix, the faster such an iterative procedure
converges.

Particularly good splittings result from incomplete LU decomposition. These methods are
discussed in section 3.7.4.

However, you should not implement the method in the fixed-point form above since one should
explicitly compute the matrix Ã−1 in the simplest cases only (such as Ã = D). An algebraically
equivalent form but suitable for computers is

47

Basic iterative solver with A = Ã + E
For a suitable splitting A = Ã + E, an arbitrary initial vektor x(0) and some
given accuracy threshold ϵ > 0 this algorithm approximately solves Ax = b.

start with initial vector x(0)

set r(0) = b − Ax(0)

for k = 0, 1, 2, . . .
solve Ãd(k+1) = r(k)

set x(k+1) = x(k) + d(k+1)

set r(k+1) = r(k) − Ad(k+1)

until ∥r(k+1)∥ < ϵ
result: approximate solution x(k+1)

In an iterative solver of this type, Ã is called the preconditioner .

For a vector x and given A and b, the expression b − Ax is called the residual . Thus, solving
a linear system Ax = b is equivalent to finding an x with a vanishing residual. One can
easily verify that the vectors r(k) in the above basic scheme are indeed the respective residuals
r(k) = b − Ax(k). Thus, the stopping criterion of the method requires the residual norm to be
smaller than a given bound.

Caution! A small residual does not automatically mean that also the error xexc −x(k) between
exact and approximate solution is small. For example, if A is symmetric, the following bounds
hold.

∥r(k)∥2

|λmax|
≤ ∥xexc − x(k)∥2 ≤ ∥r(k)∥2

|λmin|
where λmax and λmin denote A’s largest and smallest eigenvalues, respectively. Therefore, if
λmin is close to zero, a small residual does not say much about the size of the error.

Likewise, small corrections d(k+1) = x(k+1) − x(k) will not automatically guarantee the small-
ness of the error. However, modern iterative methods approximate the eigenvalues with little
additional effort and thus provide reliable bounds for the error.

4.3.2 Minimizing the residual to accelerate convergence

One often observes with the above basic scheme that the vectors d(k), by which the approximate
solution vectors change per iteration, point in the right direction but not with the correct
magnitude. Instead of changing the vector x(k) by only the vector d(k+1) per iteration step,
one can therefore try to apply a multiple ω of this correction. (The SOR method already used
a similar approach.)

If the approximation vector changes by ωd(k+1) at the step from k to k + 1, then it is easy to
see that the residual vector changes by −ωAd(k+1). Accordingly, one changes the basic scheme
and sets

x(k+1) = x(k) + ωd(k+1)

r(k+1) = r(k) − ωAd(k+1)

At each step, one chooses ω so that the magnitude ∥r(k+1)∥ becomes as small as possible. How
does this work? The usual procedure when looking for an extreme value is to differentiate and

48

set the derivative to zero. (Here, ∥ · ∥ always denotes the 2-norm, that is, the Euclidean length
of a vector.)

∥r(k+1)∥2 = (r(k+1) · r(k+1))

=
(

(r(k) − ωAd(k+1)) · (r(k) − ωAd(k+1))
)

=
(

r(k) · r(k) − 2ω(r(k) · Ad(k+1)) + ω2(Ad(k+1) · Ad(k+1))
)

The individual inner products are all just scalar constants. Differentiation with respect to ω
and setting the derivative to zero yields

0 = d

dω
∥r(k+1)∥2

= d

dω

(
r(k) · r(k) − 2ω(r(k) · Ad(k+1)) + ω2(Ad(k+1) · Ad(k+1))

)
= −2(r(k) · Ad(k+1)) + 2ω(Ad(k+1) · Ad(k+1)) , daraus

ω = r(k) · Ad(k+1)

Ad(k+1) · Ad(k+1)

4.3.3 Orthogonalizing search directions to accelerate convergence

We have set
r(k+1) = r(k) − ωAd(k+1)

where ω is chosen optimally so that it minimizes the norm ∥r(k+1)∥. Thus, any further change
of the residual vector in direction Ad(k+1) will increase its norm. Now, if in the next iteration

r(k+2) = r(k+1) − ωAd(k+2)

the correction Ad(k+2) contains a component in direction Ad(k+1), any amount of correction
in that direction will deteriorate the approximation.

Therefore: If the residual is already minimized along some direction, it should not be changed
in this direction any more. So we need a method that removes the undesired component from
the new search direction Ad(k+2). This can be achieved by orthogonalization.

Let p and q be two vectors ̸= 0. The component of p in direction q is given by

(
p · q
q · q

)
q

Thus, the vector

p −
(

p · q
q · q

)
q

no longer contains a component in direction q, i.e., it is orthogonal to q. (Special case: if p is
a scalar multiple of q, this calculation gives the zero vector.)

This procedure can successively remove from p components of several vectors.

49

Orthogonalization
Given m nonzero vectors q1, q2, . . . , qm ∈ Rn and a vector p ∈ Rn. This algo-
rithm removes from p all components in directions q1, q2, . . . , qm.

for i = 1 . . . m
compute inner product ri = p · qi/qi · qi

subtract component by p = p − riqi

An early application of these ideas (preconditioning, minimization, orthogonalization) is the
ORTHOMIN algorithm (published in 1976 by P. K. W. Vinsome, then employed by a petro-
leum company). Since then, many methods based on similar principles have been developed.
They all belong to the class of what is now called Krylov-subspace methods.

A very elegant and powerful method exists for symmetric positive definite matrices, the con-
jugate gradient method (Hestenes and Stiefel, 1952). Combined with suitable preconditioning,
it is no routinely used for large linear systems.

For unsymmetric matrices, GMRES (for generalized minimal residual method), BiCG (for
biconjugate gradients) or CGS (for conjugate gradient squared) are common methods.

50

	Systems of Linear Equations, Direct Methods
	Triangular matrices
	Gaussian Elimination
	Pivoting
	Existence of Solutions
	Elimination
	Rank of matrix and augmented matrix
	Determinant

	LU decomposition
	A Numerical Example for Gaussian Elimination
	More Applications of LU decomposition
	Determinant
	Inverse
	symmetric positive-definite matrices
	Incomplete LU factorization

	Sensitivity to Small Perturbations

	Iterative Solvers for Linear Systems
	Basic iterative solvers: Jacobi, Gauss-Seidel, SOR
	Convergence Criteria for the Jacobi and Gauss-Seidel Methods
	Modern Iterative Solvers
	Matrix Splitting, Preconditioning
	Minimizing the residual to accelerate convergence
	Orthogonalizing search directions to accelerate convergence

