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Flux-Conservative Initial Value Problems

The prototypi
al Example: One-Dimensional Linear Adve
tion

Models transport of a s
alar quantity u (
on
entration, temperature. . . ) in a medium


owing with velo
ity v (
ow dire
tion for v > 0 in positive x-diretion).

u

t

+ vu

x

= 0 for u = u(x; t); 0 < x < 1; t > 0;

v given, 
onstant;

u(x; 0) = u

0

(x) initial 
ondition for t = 0; 0 � x � 1;

u(0; t) = a boundary 
ondition at x = 0; t > 0:

(1)

Analyti
al solution

Exe
utive Summary: The exa
t solution is the initial pro�le u

0

(x) moving with velo
ity

v along the x-axis.

For 
onstant v and an arbitrary fun
tion u

0

(x), de�ne

u(x; t) = u

0

(x � vt):

Assuming suitable di�erentiability, you will easily 
he
k that this u(x; t) ful�lls the

di�erential equation (1) with initial 
ondition u(x; 0) = u

0

(x) for 0 � x � 1, and the

boundary 
ondition u(0; t) = u

0

(�vt) for t > 0.

The solution of 1 therefore is

u(x; t) =

{

a for 0 � x < vt;

u

0

(x � vt) for vt � x < 1:

(2)

Sample initial 
ondition: a triangular spike

u

0

(x) =







10x for 0 � x < 0:1

2� 10x for 0:1 � x < 0:2

0 else

(3)

Even though this initial 
ondition is not di�erentiable at x = 0; x = 0:1 and x = 0:2,

we will 
onsider u

0

(x � vt) as a solution of the PDE - wherever derivatives exists, it

ful�ls the PDE, and the di�erentiable pie
es �t together. (In the next se
tion, we will

give an integral formulation with more relaxed di�erentiability 
onditions.)

Figure 1 shows pro�les of this solution at two time levels in the xu-plane.

A solution u(x; t) of the PDE in (1) de�nes a surfa
e in xtu-spa
e. Figure 2 shows

this surfa
e.

One way to represent a surfa
e is by 
ontour lines (isolines) in the xt-plane. Consider

the family of straight lines

x � vt = 
: (4)
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Figure 1: Initial 
ondition and solution of u

t

+ u

x

= 0 after t = 0:15. Zero boundary


ondition at left end. The spike travels with velo
ity v = 1 from left to right.
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Figure 2: The solution, represented as a surfa
e in xtu-spa
e. Compare Figure 1,

whi
h shows 
ross se
tions of this surfa
e along planes t = 0 and t = 0:15. Figure 3

shows isolines of this surfa
e in the xt-plane.

Simple fa
t: If a fun
tion u = u(x; t) solves the PDE in Equation (1), then the straight

lines (4) are isolines. Proof: set x(t) = 
 � vt, insert in u: u = u(x(t); t) and show

that

d

dt

u(x(t); t) = 0

Figure 3 shows isolines of this surfa
e in the xt-plane. The straight lines de�ned by

Equation (4) are an example of 
hara
teristi
 lines|see later!

S
alar 
onservation, integral and quasilinear form

The general form of a s
alar 
onservation law is

u

t

+ f (u)

x

= 0 (5)

for a fun
tion u = u(x; t), the 
onserved quantity (e.g. some sort of mass or energy

density), and a 
ux fun
tion f = f (u).
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Figure 3: The solution of our simple adve
tion problem, represented by 
ontour lines

in the xt-plane.

Integrate Equation (5) form x = a to x = b:

∫

b

a

u

t

dx +

∫

b

a

f (u)

x

dx = 0

Swit
h in the �rst term di�erentiation with respe
t to time with integration in x , and

evaluate the se
ond term to get

d

dt

∫

b

a

udx = f (a)� f (b)

Interpretation: The rate of 
hange for the total amount of u in the interval [a; b℄ is

the di�eren
e of in
ow at a minus out
ow at b.

Di�erentiating with the 
hain rule gives the quasilinear form of Equation (5)

u

t

+ f (u)

x

= 0 �! u

t

+ f

0

(u)u

x

= 0 (equivalent for di�erentiable f and u):

Expli
it di�eren
e s
hemes for the linear adve
tion problem

Exer
ises Derive di�eren
e s
hemes for the simple linear adve
tion equation and try

them for the spike initial 
ondition.

Try also a linear adve
tion equation with spatially variable velo
ity v = v(x),

u

t

+ (v(x)u)

x

= 0

Spe
i�
ally, assume v(x) = x or v(x) = 1 + x(x � 1).

FTCS

FTCS = \Forward-in-Time, Centered-in-Spa
e". For

C =

v�t

h

Courant Number
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the FTCS-Sten
il is

1

"

C

2

| 1 | �

C

2

� Straightforward, easy to derive, unstable and useless.

� Note, however, that FTCS works (
onditionally stable) for the heat equation.

Lax-Friedri
hs

repla
es u

n

j

in the FTCS s
heme by the arithmeti
 average of its neighbors, (u

n

j�1

+

u

n

j+1

)=2).

1

"

1+C

2

| 0 |

1�C

2

� Conditionally stable for jCj � 1

� se
ond-order in spa
e (theoreti
ally), but very di�usive (pra
ti
ally)

� works for positive and negative v

� mesh de
oupling

� jCj = 1 gives the exa
t solution; in pra
ti
e, however, v is not 
onstant, and you


annot have jCj = 1 everywhere in your problem)

Lax-Wendro�

adds just the ne
essary amount of di�usion to the FTCS s
heme to make it 
ondi-

tionally stable.

1

"

C

2

+

C

2

2

| 1� C

2

| �

C

2

+

C

2

2

� Conditionally stable for jCj � 1

� se
ond order in spa
e, less di�usive than Lax-Friedri
hs and Upwind

Upwind

One-sided formula for spatial derivative

1

"

C | 1� C |

� Conditionally stable for 0 � C � 1
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� standard �rst-order s
heme for 
onve
tive terms (espe
ially in nonlinear prob-

lems).

� if v 
hanges sign, you have to swit
h the upwind dire
tion in the s
heme

� motivated by underlying physi
s of hyperboli
 PDEs: only data from the dire
tion

of in
oming 
ow 
an 
ausally in
uen
e the solution.

Beam-Warming

A two-point upstream s
heme

1

"

�

C

2

+

C

2

2

| 2C � C

2

| 1�

3C

2

+

C

2

2

Method of 
hara
teristi
s for �rst-order PDEs

(I borrowed mu
h of this paragraph from the English Wikipedia; the German Wikipedia

arti
le ,,Methode der Charakteristiken" links to a skript of ETH Z�uri
h. It dis
usses


hara
teristi
s for the adve
tion equation, with just a bit more mathemati
s. )

For a �rst-order PDE the method of 
hara
teristi
s dis
overs 
urves (
alled 
hara
-

teristi
 
urves or 
hara
teristi
s) along whi
h the PDE degenerates into an ordinary

di�erential equation (ODE). On
e the ODE is found it 
an be solved along the 
har-

a
teristi
 
urves and transformed into a solution for the original PDE.

Consider a �rst-order PDE of the general form

au

t

+ bu

x

= 
;

where a; b and 
 may be 
onstant or fun
tions of x; t and u. The adve
tion equation

u

t

+ vu

x

= 0 is a very simple 
ase with a = 1; b = v; 
 = 0.

We want to �nd a 
urve in the xtu-spa
e in parametri
 form, depending on the pa-

rameter s,

x = x(s)

t = t(s)

u = u(s)

so that the PDE 
an be reformulated into an ODE along the 
urve; i.e. something of

the form

d

ds

u(x(s); t(s)) = F (u; x(s); t(s))

.

The 
urve (x(s); t(s); u(s)) (or just its proje
tion in the xt-plane) is 
alled a 
hara
-

teristi
 line. To �nd it, we di�erentiate by the 
hain rule.

d

ds

u(x(s); t(s)) = u

x

dx

ds

+ u

t

dt

ds

5



Now, noti
e if we set

dx

ds

= b and

dt

ds

= a we get au

t

+ bu

x

, whi
h happens to be the

left-hand side of the PDE we started with. Thus

d

ds

u = au

t

+ bu

x

= 
:

In fa
t, we now have a 
oupled system of three ODEs to solve:

dx

ds

= b

dt

ds

= a

du

ds

= 


In the 
ase of the linear, 
onstant-
oeÆ
ient adve
tion equation u

t

+ vu

x

= 0, the

ODEs are simple to solve.

dt

ds

= 1; letting t(0) = 0 we know t = s

dx

ds

= v; letting x(0) = x

0

we know x = vs + x

0

du

ds

= 0; letting u(0) = u

0

(x

0

) and substituting from above x

0

= x � vt;

we get u(x(s); t(s)) = u

0

(x

0

) = u

0

(x � vt)

This set of equations de�nes 
hara
teristi
 
urves as parametri
 
urves in xtu-spa
e.

Sometimes (like in the Wikipedia arti
le) also the proje
tions of these 
urves in the

xt-plane are 
alled 
hara
teristi
s.

For our example, the linear, 
onstant-
oeÆ
ient adve
tion equation, the 
hara
teristi


lines in the xt-plane are straight lines with slope 1=v . In general, they 
ould be 
urves.

The value of u remains 
onstant along the 
urve | whi
h means, they are 
ontour

lines of u. (This property holds only be
ause 
 = 0).

Chara
teristi
s are a powerful tool for gaining qualitative insights into PDE. This kind

of knowledge is useful when solving PDEs numeri
ally as it 
an indi
ate whi
h �nite

di�eren
e s
heme is best for the problem.

Di�erenzenverfahren und Charakteristiken

F�ur die lineare Advektionsglei
hung u

t

+ vu

x

sind die 
harakteristis
hen Kurven in der

xt-Ebene Gerade mit Steigung 1=v . Entlang dieser Geraden ist u konstant.
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Die Abbildung zeigt L�osungswerte u

n

j�1

; u

n

j

; u

n

j+1

; u

n+1

j

in den Gitterpunkten eines Di�e-

renzenverfahrens (den

"

Stern\). Eingezei
hnet ist au
h die Charakteristik dur
h u

n+1

j

.

Das Zeitniveau n s
hneidet sie zwis
hen u

n

j�1

und u

n

j

. Dort l�asst si
h der Wert u

�

auf

der Charakteristik aus linearer Interpolation bestimmen:

u

�

= u

n

j

+

�

h

(u

n

j�1

� u

n

j

)

Weil u konstant entlang der Charakteristik ist, ergibt si
h daraus u

n+1

j

= u

�

.

� Dr�u
ken Sie � dur
h v und �t und ans
hlie�end

�

h

dur
h die Courant-Zahl C aus.

Stellen Sie eine explizite Formel f�ur u

n+1

j

auf.

� Verglei
hen Sie: ist diese Formel neu oder entspri
ht sie einem bekannten Di�e-

renzenverfahren?

� Was erhalten Sie bei linearer Interpolation zwis
hen u

n

j�1

und u

n

j+1

?

� Und was ergibt quadratis
he Interpolation?

Other linear and quasi-linear examples

The adve
tion equation is a simple example for a �rst-order linear partial di�eren-

tial equation. The general form for this type of equation for an unknown fun
tion

u(x

0

; : : : ; x

n

) would be

n

∑

i=0

a

i

u

x

i

= a;

where a

i

and a are 
ontinuously di�erentiable fun
tions of x

0

; : : : ; x

n

; in the 
ase of a

quasilinear equation the 
oeÆ
ients do not only depend on x

0

; : : : ; x

n

but also on the

unknown u.

In our �rst example, the adve
tion equation, the independent variables are x

0

= t and

x

1

= x ; the attribute \one-dimensional" refers to the spatial 
oordinate.

Spatially three-dimensional versions for a 
ow �eld v = v(x) and a sour
e term S(x; t)

(
onservation equation for a passive s
alar):

u

t

+ div(v u) = S:
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Quasi-linear relatives: invis
id Burgers' equation (models gravity waves in shallow wa-

ter)

u

t

+ u u

x

= 0:

Burgers' equation 
an be written in a di�erent form (
onservation form, see below),

whi
h is equivalent for smooth solutions.

u

t

+

(

1

2

u

2

)

x

= 0:

If we multiply the quasilinear equation by 2u �rst,

2uu

t

+ 2u

2

u

x

= 0;

the 
onservation form is

(u

2

)

t

+

(

2

3

u

3

)

x

= 0:

Another formulation, also in 
onservation form: for solutions u(x) 6= 0 8x we 
ould

divide by u and write

(log u)

t

+ u

x

= 0

Now set w = logu, then

w

t

+ (expw)

x

= 0

is another 
onservation equation, equivalent for smooth solutions but giving di�erent

front positions when dis
ontinuities develop.

Whi
h of the three equations is \the right one"? This depends on the quantity that is


onserved in physi
al reality: u, u

2

or logu, respe
tively.

Exer
ises

Che
k di�eren
e s
hemes for a nonlinear adve
tion equation u

t

+(v(u)u)

x

= 0 where

v depends on u in the form v = u=2 (Burgers' equation). Try them for the spike initial


ondition.

Systems of 
onservation laws

General form of a system of 
onservation laws in one spa
e dimension

u

t

+ F(u)

x

= 0

In two- or three-dimensional spa
e

u

t

+ divF(u) = 0

also written as

u

t

+r � F(u) = 0

The ve
tor u 
ontains the 
onserved quantities; their transport is governed by a 
on-

served 
ux ve
tor F(u). Meaning: for any 
omponent of u and any interval on the

x-axis (or area or volume in spa
e), a

umulation equals the net 
ux a
ross the bound-

ary.
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Remember Equation (5), the s
alar equation u

t

+ f (u)

x

= 0. Integrate it over an

interval,

∫

b

a

(u

t

+ f (u)

x

)dx = 0; gives

d

dt

∫

b

a

u dx = f (a)� f (b)

for arbitrary intervals [a; b℄ in the spatial domain of u.

Interpretation: The rate of 
hange of the \total amount of u", i.e. the integral of

u in some spatial domain is the di�eren
e of in- and out
ow a
ross the ends of the

interval. The same statement holds in two or three spa
e dimensions.

A di�eren
e s
heme that preserves this property is 
alled 
onservative.

For smoothly di�erentiable u this integral formulation is mathemati
ally equivalent to

the di�erential equation.

Weak solutions

Be
ause

d

dt

∫

b

a

u dx is only de�ned for u suÆ
ientltly smooth with respe
t to t, we

integrate also over a time interval, so that the time derivative vanishes.

∫

t

1

t

0

∫

b

a

(u

t

+ f (u)

x

) dxdt = 0; yields

∫

b

a

uj

t=t

1

dx �

∫

b

a

uj

t=t

0

dx =

∫

t

1

t

0

(f (b)� f (a)) dt:

Verbal formulation: The di�eren
e of the \total amount" of u between t

0

and t

1

in

some spatial domain equals the di�eren
e between in- and out
ow during that time

interval.

We de�ne a weak solution of the 
onservation law as a fun
tion u whi
h ful�ls the

integral form above for arbitrary [a; b℄ and t

0

; t

1

within the domain of u.

A weak solution is de�ned for a mu
h larger 
lass of problems and initial 
onditions

than a solution of the PDE in the 
lassi
al sense. In our example with the adve
tion

equation, the traveling triangular spike is not everywhere di�erentiable, so it is not

really a 
lassi
al solution of the PDE, but it 
learly is a weak solution.

Rankine-Hugoniot Condition

Important features that may develop in weak solutions are sho
k fronts. These are

dis
ontinuities (steps, jumps), whi
h travel along in time.

Let there be a front at a position x

f

= x

f

(t) (between a and b in the drawing). The


onservation law provides a relation, the Rankine-Hugoniot 
ondition, between front

speed v

f

=

dx

f

dt

and jump height.
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The 
ondition is

v

f

=

[f (u)℄

[u℄

;

where the square bra
kets [�℄ denote di�eren
e between the limit values from left and

right at the front.

Eine L�osung der Burgers-Glei
hung im Charakteristiken-Diagramm

F�ur die Burgers-Glei
hung u

t

+ (u

2

=2)

x

= 0 sind die Charakteristiken in der xt-Ebene

Gerade mit Steigung

dx

dt

= u. Entlang einer Charakteristik ist der Wert von u konstant.

Das Diagramm zeigt Charakteristiken zu den Werten u = 0;

1

10

;

2

10

; : : :1 f�ur eine drei-

e
kige Za
ke als Anfangsbedingung (linearer Anstieg von u

0

= 0 auf u

0

= 1 zwis
hen

x = 0 und x =

1

10

, dana
h linearer Abfall auf u

0

= 0 bis x =

2

10

Ab t =

1

10

entsteht eine S
ho
kfront. An ihr tre�en Charakteristiken f�ur u > 0 von

links mit Charakteristiken f�ur u = 0 von re
hts zusammen.

0.1 0.2 0.3 0.4 0.5
x

0.1

0.2

0.3

0.4

0.5

t

� Bes
hriften Sie die Charakteristiken im linken Berei
h, soweit es der Platz zul�asst,

mit den entspre
henden u-Werten.

� Skizzieren Sie den Verlauf der L�osung zur Zeit t =

1

2

f�ur 0 � x � 0:5. A
hten

Sie insbesondere auf die korrekte Frontposition und -h�ohe.
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� Zu t = 0;45 tri�t von links die Charakteristik zu u = 0;603 auf die Front. Wel
he

Frontges
hwindigkeit ergibt si
h aus den Rankine-Hugoniot-Bedingungen?

� Die Steigung der Front-Linie im Charakteristiken-Diagramm h�angt mit der Front-

ges
hwindigkeit zusammen. Die Glei
hung der Kurve in diesem Diagramm lautet

x

f

=

p

10t + 1

5

p

2

Bestimmen Sie die Frontges
hwindigkeit f�ur t = 0;45.

Examples for Nonlinear Systems of Conservation Laws

Euler's equations for one-dimensional gas 
ow





�

�v

E





t

+





�v

�v

2

+ p

v(E + p)





x

= 0

Here, p is de�ned via the polytropi
 equation

p = (
 � 1)(E �

1

2

�v

2

); 
 =

7

5

in air :

Isothermal 
ow (
 is the sound speed)

[

�

�v

]

t

+

[

�v

�v

2

+ 


2

�

]

x

= 0

Shallow-water waves (' stands for gh)

[

v

'

]

t

+

[

v

2

=2 + '

v'

]

x

= 0

Although the system is frequently written in this form (whi
h is in 
onservation form), it

delivers the 
orre
t solution only as long as it remains smooth. For sho
k fronts (means

breaking waves) the jump 
onditions 
ome out wrong. Physi
ally, not the velo
ity v

but the momentum v' is the 
orre
t 
onserved quantity. Thus, the physi
ally 
orre
t


onservation form is

[

v'

'

]

t

+

[

v

2

'+ '

2

=2

v'

]

x

= 0

Hyperboli
 systems

The system

u

t

+ F(u)

x

= 0

is 
alled hyperboli
 if for all values u all eigenvalues of the Ja
obian F

0

are real and the


orresponding eigenve
tors are linearly independent. Hyperboli
 systems des
ribe phe-

nomena with �nite speed of propagation. The solution u(x; t) in some point (x; t) 
an

be in
uen
ed by initial 
onditions in a bounded interval. Whatever the initial 
onditions

may look like outside this interval, they have no bearing on the solution in (x; t).
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Why this eigenvalue 
ondition? For a general linear, 
onstant 
oeÆ
ient one-dimensional

system of partial di�erential equations

u

t

+ Au

x

= 0

hyperboli
ity means that all eigenvalues of A are real, and the 
orresponding eigenve
-

tors are linearly independent. In this 
ase, A 
an be written as

A = S �D � S

�1

where the 
olumns of S are the eigenve
tors of A and D is a diagonal matrix of


orresponding eigenvalues. Then,

u

t

+ A � u

x

= 0

u

t

+ S �D � S

�1

� u

x

= 0 j �S

�1

S

�1

� u

t

+D � S

�1

� u

x

= 0

We 
an de�ne a new ve
tor of unknowns, v = S

�1

� u and redu
e the system to an

un
oupled system of equations

v

t

+Dv

x

= 0

Ea
h equation of that system is then a one-dimensional adve
tion equation of the form

treated already.

In the general 
ase, the eigenve
tors and eigenvalues are no longer 
onstant, and the

transformation to an un
oupled system is more 
ompli
ated (if possible at all). There

are 
hara
teristi
 
urves in the xt-plane, along whi
h the Riemann invariants (fun
tions

of the dependent variables) remain 
onstant. A Riemann invariant propagates quite like

the solution of the prototypi
al one-dimensional adve
tion equation.

The situation is di�erent for paraboli
 equations. Take the prototypi
al example, the

one-dimensional heat equation. Initial 
onditions far away from some point a�e
t the

solution there instantly (in�nite signal speed; no 
ontradi
tion to relativity, though,

be
ause this equation is not valid on the atomi
 s
ale). Still, as for hyperboli
 equations,

boundary 
onditions in the future do not a�e
t the past.

For ellipti
 equations, the solution is in
uen
ed by the whole boundary (therefore a

reasonable ellipti
 equation does not 
ontain a time variable).
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