Numerische Methoden 11, 170 024, und Ubungen, 170 025
Course Notes, Summer Term C. Brand, May 20, 2015

Flux-Conservative Initial Value Problems

The prototypical Example: One-Dimensional Linear Advection

Models transport of a scalar quantity v (concentration, temperature. ..) in a medium
flowing with velocity v (flow direction for v > 0 in positive x-diretion).

up 4+ vuy =0 foru=u(x,t);, 0<x<1l t>0;
v given, constant;

u(x,0) = up(x) initial condition for t =0, 0<x<1;

u(0,t) =a boundary condition at x =0, t> 0.

(1)

Analytical solution
Executive Summary: The exact solution is the initial profile ug(x) moving with velocity
v along the x-axis.

For constant v and an arbitrary function up(x), define
u(x, t) = up(x — vt).

Assuming suitable differentiability, you will easily check that this u(x, t) fulfills the
differential equation (1) with initial condition u(x,0) = ug(x) for 0 < x < 1, and the
boundary condition u(0, t) = ug(—vt) for t > 0.

The solution of 1 therefore is

a for 0 < x < vt,
ulx.t) = { up(x — vt) forvt < x < 1. (2)
Sample initial condition: a triangular spike
10x for0 < x<0.1
up(x) =¢ 2—10x for0.1<x<0.2 (3)
0 else

Even though this initial condition is not differentiable at x = 0,x = 0.1 and x = 0.2,
we will consider up(x — vt) as a solution of the PDE - wherever derivatives exists, it
fulfils the PDE, and the differentiable pieces fit together. (In the next section, we will
give an integral formulation with more relaxed differentiability conditions.)

Figure 1 shows profiles of this solution at two time levels in the xu-plane.

A solution u(x, t) of the PDE in (1) defines a surface in xtu-space. Figure 2 shows
this surface.

One way to represent a surface is by contour lines (isolines) in the xt-plane. Consider
the family of straight lines
X—Vvt=c. (4)



t=0 1=0.15

Figure 1: Initial condition and solution of u; + uy = 0 after t = 0.15. Zero boundary
condition at left end. The spike travels with velocity v = 1 from left to right.

Figure 2: The solution, represented as a surface in xtu-space. Compare Figure 1,
which shows cross sections of this surface along planes ¢ = 0 and t = 0.15. Figure 3
shows isolines of this surface in the xt-plane.

Simple fact: If a function u = u(x, t) solves the PDE in Equation (1), then the straight
lines (4) are isolines. Proof: set x(t) = ¢ — vt, insert in u: u = u(x(t), t) and show
that

d
Eu(x(t), t)=0
Figure 3 shows isolines of this surface in the xt-plane. The straight lines defined by

Equation (4) are an example of characteristic lines—see later!

Scalar conservation, integral and quasilinear form
The general form of a scalar conservation law is
g+ f(u)x =0 (5)

for a function v = u(x, t), the conserved quantity (e.g. some sort of mass or energy
density), and a flux function f = f(u).
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Figure 3: The solution of our simple advection problem, represented by contour lines
in the xt-plane.

Integrate Equation (5) form x = a to x = b:

b b
/ utdx~|—/ f(u)xdx =0
a a

Switch in the first term differentiation with respect to time with integration in x, and
evaluate the second term to get

b

% udx = f(a) — f(b)

Interpretation: The rate of change for the total amount of v in the interval [a, b] is
the difference of inflow at a minus outflow at b.

Differentiating with the chain rule gives the quasilinear form of Equation (5)

up+f(u)xy =0 —  ur+f(u)u,=0 (equivalent for differentiable £ and v).

Explicit difference schemes for the linear advection problem

FTCS

Exercises Derive difference schemes for the simple linear advection equation and try
them for the spike initial condition.

Try also a linear advection equation with spatially variable velocity v = v(x),
ur + (V(X)U)x =0

Specifically, assume v(x) = x or v(x) = 1 4+ x(x — 1).

FTCS = “Forward-in-Time, Centered-in-Space". For
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the FTCS-Stencil is

e Straightforward, easy to derive, unstable and useless.

e Note, however, that FTCS works (conditionally stable) for the heat equation.

Lax-Friedrichs

replaces uf in the FTCS scheme by the arithmetic average of its neighbors, (uj’_1 +
uli1)/2).
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Conditionally stable for |C| <1

second-order in space (theoretically), but very diffusive (practically)

works for positive and negative v

mesh decoupling

|C| = 1 gives the exact solution; in practice, however, v is not constant, and you
cannot have |C| = 1 everywhere in your problem)

Lax-Wendroff

adds just the necessary amount of diffusion to the FTCS scheme to make it condi-

tionally stable.
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e Conditionally stable for |C| <1

e second order in space, less diffusive than Lax-Friedrichs and Upwind

Upwind

One-sided formula for spatial derivative
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e Conditionally stable for 0 < C <1



e standard first-order scheme for convective terms (especially in nonlinear prob-
lems).

e if v changes sign, you have to switch the upwind direction in the scheme

e motivated by underlying physics of hyperbolic PDEs: only data from the direction
of incoming flow can causally influence the solution.

Beam-Warming

A two-point upstream scheme
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Method of characteristics for first-order PDEs

(I borrowed much of this paragraph from the English Wikipedia; the German Wikipedia
article , Methode der Charakteristiken™ links to a skript of ETH Ziirich. It discusses
characteristics for the advection equation, with just a bit more mathematics. )

For a first-order PDE the method of characteristics discovers curves (called charac-
teristic curves or characteristics) along which the PDE degenerates into an ordinary
differential equation (ODE). Once the ODE is found it can be solved along the char-
acteristic curves and transformed into a solution for the original PDE.

Consider a first-order PDE of the general form
aus + buy, = c,

where a, b and ¢ may be constant or functions of x, t and u. The advection equation
ur + vuy =0 1is a very simple case with a=1,b=v,c =0.

We want to find a curve in the xtu-space in parametric form, depending on the pa-

rameter s,
x = x(s)
t=t(s)
u=u(s)

so that the PDE can be reformulated into an ODE along the curve; i.e. something of
the form

%u(x(s), t(s)) = F(u,x(s), t(s))

The curve (x(s), t(s), u(s)) (or just its projection in the xt-plane) is called a charac-
teristic line. To find it, we differentiate by the chain rule.

d dx dt
T U(x(5), (5)) =t e+



Now, notice if we set % = b and % = a we get auy + buy, which happens to be the
left-hand side of the PDE we started with. Thus

d
—u = auy + bu, = c.
ds

In fact, we now have a coupled system of three ODEs to solve:

dx
b
ds

@ _,
ds
du _
ds

In the case of the linear, constant-coefficient advection equation u; + vu, = 0, the
ODEs are simple to solve.

dt

e 1, letting t(0) = 0 we know t =5

dx :

Fraaid letting x(0) = xo we know x = vs + Xxp

d

d—:l =0, letting u(0) = up(xp) and substituting from above xp = x — vt,

we get u(x(s), t(s)) = ug(xo) = tp(x — vit)

This set of equations defines characteristic curves as parametric curves in xtu-space.
Sometimes (like in the Wikipedia article) also the projections of these curves in the
xt-plane are called characteristics.

For our example, the linear, constant-coefficient advection equation, the characteristic
lines in the xt-plane are straight lines with slope 1/v. In general, they could be curves.
The value of u remains constant along the curve — which means, they are contour
lines of u. (This property holds only because ¢ = 0).

Characteristics are a powerful tool for gaining qualitative insights into PDE. This kind
of knowledge is useful when solving PDEs numerically as it can indicate which finite
difference scheme is best for the problem.

Differenzenverfahren und Charakteristiken

Fiir die lineare Advektionsgleichung uy + vuy sind die charakteristischen Kurven in der
xt-Ebene Gerade mit Steigung 1/v. Entlang dieser Geraden ist u konstant.
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Die Abbildung zeigt Lésungswerte uj’_l, uf’, ”f+1' uf’“ in den Gitterpunkten eines Diffe-
n+1

renzenverfahrens (den , Stern™). Eingezeichnet ist auch die Charakteristik durch v/ .

Das Zeitniveau n schneidet sie zwischen v/’ ; und uj'. Dort lasst sich der Wert g auf

der Charakteristik aus linearer Interpolation bestimmen:

ug = u + %(uf’,l —ul')

n+l _

Weil u konstant entlang der Charakteristik ist, ergibt sich daraus u; Ue .

Driicken Sie € durch v und At und anschlieBend % durch die Courant-Zahl C aus.

Stellen Sie eine explizite Formel fiir uf’“ auf.

Vergleichen Sie: ist diese Formel neu oder entspricht sie einem bekannten Diffe-
renzenverfahren?

Was erhalten Sie bei linearer Interpolation zwischen v | und uf’, ;7

Und was ergibt quadratische Interpolation?

Other linear and quasi-linear examples

The advection equation is a simple example for a first-order linear partial differen-
tial equation. The general form for this type of equation for an unknown function

u(xo, ..., Xp) would be
n
Z djly, = a,
i=0
where a; and a are continuously differentiable functions of xg, ..., X,; in the case of a
quasilinear equation the coefficients do not only depend on xp, .. ., Xn but also on the
unknown u.

In our first example, the advection equation, the independent variables are xg = t and
X1 = X; the attribute “one-dimensional” refers to the spatial coordinate.

Spatially three-dimensional versions for a flow field v = v(x) and a source term S(x, t)
(conservation equation for a passive scalar):

ug +div(vu) = S.



Quasi-linear relatives: inviscid Burgers’ equation (models gravity waves in shallow wa-
ter)
us + uuyx = 0.

Burgers’ equation can be written in a different form (conservation form, see below),
which is equivalent for smooth solutions.

1
ug + <—U2> =0.
2 X

If we multiply the quasilinear equation by 2u first,

2uuy +2u® uy = 0,

(u?)¢ + <§u3>x =0.

Another formulation, also in conservation form: for solutions u(x) # 0 Vx we could
divide by v and write

the conservation form is

(logu)t +ux =0

Now set w = log u, then
w + (expw)yx =0

is another conservation equation, equivalent for smooth solutions but giving different
front positions when discontinuities develop.

Which of the three equations is “the right one”? This depends on the quantity that is
conserved in physical reality: u, u? or logu, respectively.

Exercises

Check difference schemes for a nonlinear advection equation u; + (v(u)u)x = 0 where
v depends on v in the form v = u/2 (Burgers' equation). Try them for the spike initial
condition.

Systems of conservation laws

General form of a system of conservation laws in one space dimension
u; + F(u)y =0
In two- or three-dimensional space
u; +divF(u) =0

also written as
u+V-F(u)=0

The vector u contains the conserved quantities; their transport is governed by a con-
served flux vector F(u). Meaning: for any component of u and any interval on the
x-axis (or area or volume in space), accumulation equals the net flux across the bound-
ary.



Remember Equation (5), the scalar equation us + f(u), = 0. Integrate it over an
interval,

/ab(ut FF(u))dx =0, gives % /ab U dx = £(a) — F(b)

for arbitrary intervals [a, b] in the spatial domain of u.

Interpretation: The rate of change of the “total amount of u”, i.e. the integral of
u in some spatial domain is the difference of in- and outflow across the ends of the
interval. The same statement holds in two or three space dimensions.

A difference scheme that preserves this property is called conservative.

For smoothly differentiable u this integral formulation is mathematically equivalent to
the differential equation.

Weak solutions

Because % fab udx is only defined for u sufficientltly smooth with respect to t, we
integrate also over a time interval, so that the time derivative vanishes.

t1 b
/ / (ur + f(u)x) dxdt =0, yields
to a

/ab Ule—p, dx — /ab Ulp—g, dx = /t:l (f(b) — f(a)) dt.

Verbal formulation: The difference of the "“total amount” of u between ty and t in
some spatial domain equals the difference between in- and outflow during that time
interval.

We define a weak solution of the conservation law as a function v which fulfils the
integral form above for arbitrary [a, b] and ty, t; within the domain of u.

A weak solution is defined for a much larger class of problems and initial conditions
than a solution of the PDE in the classical sense. In our example with the advection
equation, the traveling triangular spike is not everywhere differentiable, so it is not
really a classical solution of the PDE, but it clearly is a weak solution.

Rankine-Hugoniot Condition

Important features that may develop in weak solutions are shock fronts. These are
discontinuities (steps, jumps), which travel along in time.

Let there be a front at a position xf = x¢(t) (between a and b in the drawing). The
conservation law provides a relation, the Rankine-Hugoniot condition, between front
speed vr = % and jump height.



U=U(a)

The condition is

[F ()]

[u] -
where the square brackets [-] denote difference between the limit values from left and
right at the front.

VF =

Eine Losung der Burgers-Gleichung im Charakteristiken-Diagramm

Fiir die Burgers-Gleichung ug + (u?/2)x = 0 sind die Charakteristiken in der xt-Ebene
Gerade mit Steigung % = u. Entlang einer Charakteristik ist der Wert von u konstant.

Das Diagramm zeigt Charakteristiken zu den Werten u =0, {5, 5, ... 1 fiir eine drei-

eckige Zacke als Anfangsbedingung (linearer Anstieg von ug = 0 auf ug = 1 zwischen

x=0und x = 1—10, danach linearer Abfall auf ug = 0 bis x = 1%

Ab t = 1—10 entsteht eine Schockfront. An ihr treffen Charakteristiken fur v > 0 von

links mit Charakteristiken fiir u = 0 von rechts zusammen.
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e Beschriften Sie die Charakteristiken im linken Bereich, soweit es der Platz zuldsst,
mit den entsprechenden u-\Werten.

e Skizzieren Sie den Verlauf der Losung zur Zeit t = % fiir 0 < x < 0.5. Achten
Sie insbesondere auf die korrekte Frontposition und -hohe.
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e Zu t = 0,45 trifft von links die Charakteristik zu v = 0,603 auf die Front. Welche
Frontgeschwindigkeit ergibt sich aus den Rankine-Hugoniot-Bedingungen?

e Die Steigung der Front-Linie im Charakteristiken-Diagramm hangt mit der Front-
geschwindigkeit zusammen. Die Gleichung der Kurve in diesem Diagramm lautet

o VIOE+T

Bestimmen Sie die Frontgeschwindigkeit fiir t = 0,45.

Examples for Nonlinear Systems of Conservation Laws

Euler’s equations for one-dimensional gas flow

p pv
pv | +| pv?+p | =0
E v(E +p)

t X

Here, p is defined via the polytropic equation

1 7
PZ(’Y—l)(E—EpVQ), T=% in air .

Isothermal flow (c is the sound speed)

p pv B
[va—i_[pvz—i—Csz_O

Shallow-water waves (¢ stands for gh)
2
BN
¥ t Ve X

Although the system is frequently written in this form (which is in conservation form), it
delivers the correct solution only as long as it remains smooth. For shock fronts (means
breaking waves) the jump conditions come out wrong. Physically, not the velocity v
but the momentum v is the correct conserved quantity. Thus, the physically correct

conservation form is ) )
2
HER R
(2 4% X

Hyperbolic systems

The system
u; + F(u), =0

is called hyperbolic if for all values u all eigenvalues of the Jacobian F’ are real and the
corresponding eigenvectors are linearly independent. Hyperbolic systems describe phe-
nomena with finite speed of propagation. The solution u(x, t) in some point (x, t) can
be influenced by initial conditions in a bounded interval. Whatever the initial conditions
may look like outside this interval, they have no bearing on the solution in (x, t).
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Why this eigenvalue condition? For a general linear, constant coefficient one-dimensional
system of partial differential equations

ur+Au, =0

hyperbolicity means that all eigenvalues of A are real, and the corresponding eigenvec-
tors are linearly independent. In this case, A can be written as

A=S.D.Ss7!

where the columns of S are the eigenvectors of A and D is a diagonal matrix of
corresponding eigenvalues. Then,

ur+A-u, =0
u+S-0-Stu=0 | St
St u+D-Stou =0

We can define a new vector of unknowns, v = S~! - u and reduce the system to an
uncoupled system of equations
vi +Dvy, =0

Each equation of that system is then a one-dimensional advection equation of the form
treated already.

In the general case, the eigenvectors and eigenvalues are no longer constant, and the
transformation to an uncoupled system is more complicated (if possible at all). There
are characteristic curves in the xt-plane, along which the Riemann invariants (functions
of the dependent variables) remain constant. A Riemann invariant propagates quite like
the solution of the prototypical one-dimensional advection equation.

The situation is different for parabolic equations. Take the prototypical example, the
one-dimensional heat equation. Initial conditions far away from some point affect the
solution there instantly (infinite signal speed; no contradiction to relativity, though,
because this equation is not valid on the atomic scale). Still, as for hyperbolic equations,
boundary conditions in the future do not affect the past.

For elliptic equations, the solution is influenced by the whole boundary (therefore a
reasonable elliptic equation does not contain a time variable).
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