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Flux-Conservative Initial Value Problems

The prototypial Example: One-Dimensional Linear Advetion

Models transport of a salar quantity u (onentration, temperature. . . ) in a medium

owing with veloity v (ow diretion for v > 0 in positive x-diretion).

u

t

+ vu

x

= 0 for u = u(x; t); 0 < x < 1; t > 0;

v given, onstant;

u(x; 0) = u

0

(x) initial ondition for t = 0; 0 � x � 1;

u(0; t) = a boundary ondition at x = 0; t > 0:

(1)

Analytial solution

Exeutive Summary: The exat solution is the initial pro�le u

0

(x) moving with veloity

v along the x-axis.

For onstant v and an arbitrary funtion u

0

(x), de�ne

u(x; t) = u

0

(x � vt):

Assuming suitable di�erentiability, you will easily hek that this u(x; t) ful�lls the

di�erential equation (1) with initial ondition u(x; 0) = u

0

(x) for 0 � x � 1, and the

boundary ondition u(0; t) = u

0

(�vt) for t > 0.

The solution of 1 therefore is

u(x; t) =

{

a for 0 � x < vt;

u

0

(x � vt) for vt � x < 1:

(2)

Sample initial ondition: a triangular spike

u

0

(x) =







10x for 0 � x < 0:1

2� 10x for 0:1 � x < 0:2

0 else

(3)

Even though this initial ondition is not di�erentiable at x = 0; x = 0:1 and x = 0:2,

we will onsider u

0

(x � vt) as a solution of the PDE - wherever derivatives exists, it

ful�ls the PDE, and the di�erentiable piees �t together. (In the next setion, we will

give an integral formulation with more relaxed di�erentiability onditions.)

Figure 1 shows pro�les of this solution at two time levels in the xu-plane.

A solution u(x; t) of the PDE in (1) de�nes a surfae in xtu-spae. Figure 2 shows

this surfae.

One way to represent a surfae is by ontour lines (isolines) in the xt-plane. Consider

the family of straight lines

x � vt = : (4)
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Figure 1: Initial ondition and solution of u

t

+ u

x

= 0 after t = 0:15. Zero boundary

ondition at left end. The spike travels with veloity v = 1 from left to right.
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Figure 2: The solution, represented as a surfae in xtu-spae. Compare Figure 1,

whih shows ross setions of this surfae along planes t = 0 and t = 0:15. Figure 3

shows isolines of this surfae in the xt-plane.

Simple fat: If a funtion u = u(x; t) solves the PDE in Equation (1), then the straight

lines (4) are isolines. Proof: set x(t) =  � vt, insert in u: u = u(x(t); t) and show

that

d

dt

u(x(t); t) = 0

Figure 3 shows isolines of this surfae in the xt-plane. The straight lines de�ned by

Equation (4) are an example of harateristi lines|see later!

Salar onservation, integral and quasilinear form

The general form of a salar onservation law is

u

t

+ f (u)

x

= 0 (5)

for a funtion u = u(x; t), the onserved quantity (e.g. some sort of mass or energy

density), and a ux funtion f = f (u).
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Figure 3: The solution of our simple advetion problem, represented by ontour lines

in the xt-plane.

Integrate Equation (5) form x = a to x = b:

∫

b

a

u

t

dx +

∫

b

a

f (u)

x

dx = 0

Swith in the �rst term di�erentiation with respet to time with integration in x , and

evaluate the seond term to get

d

dt

∫

b

a

udx = f (a)� f (b)

Interpretation: The rate of hange for the total amount of u in the interval [a; b℄ is

the di�erene of inow at a minus outow at b.

Di�erentiating with the hain rule gives the quasilinear form of Equation (5)

u

t

+ f (u)

x

= 0 �! u

t

+ f

0

(u)u

x

= 0 (equivalent for di�erentiable f and u):

Expliit di�erene shemes for the linear advetion problem

Exerises Derive di�erene shemes for the simple linear advetion equation and try

them for the spike initial ondition.

Try also a linear advetion equation with spatially variable veloity v = v(x),

u

t

+ (v(x)u)

x

= 0

Spei�ally, assume v(x) = x or v(x) = 1 + x(x � 1).

FTCS

FTCS = \Forward-in-Time, Centered-in-Spae". For

C =

v�t

h

Courant Number
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the FTCS-Stenil is

1

"

C

2

| 1 | �

C

2

� Straightforward, easy to derive, unstable and useless.

� Note, however, that FTCS works (onditionally stable) for the heat equation.

Lax-Friedrihs

replaes u

n

j

in the FTCS sheme by the arithmeti average of its neighbors, (u

n

j�1

+

u

n

j+1

)=2).

1

"

1+C

2

| 0 |

1�C

2

� Conditionally stable for jCj � 1

� seond-order in spae (theoretially), but very di�usive (pratially)

� works for positive and negative v

� mesh deoupling

� jCj = 1 gives the exat solution; in pratie, however, v is not onstant, and you

annot have jCj = 1 everywhere in your problem)

Lax-Wendro�

adds just the neessary amount of di�usion to the FTCS sheme to make it ondi-

tionally stable.

1

"

C

2

+

C

2

2

| 1� C

2

| �

C

2

+

C

2

2

� Conditionally stable for jCj � 1

� seond order in spae, less di�usive than Lax-Friedrihs and Upwind

Upwind

One-sided formula for spatial derivative

1

"

C | 1� C |

� Conditionally stable for 0 � C � 1
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� standard �rst-order sheme for onvetive terms (espeially in nonlinear prob-

lems).

� if v hanges sign, you have to swith the upwind diretion in the sheme

� motivated by underlying physis of hyperboli PDEs: only data from the diretion

of inoming ow an ausally inuene the solution.

Beam-Warming

A two-point upstream sheme

1

"

�

C

2

+

C

2

2

| 2C � C

2

| 1�

3C

2

+

C

2

2

Method of harateristis for �rst-order PDEs

(I borrowed muh of this paragraph from the English Wikipedia; the German Wikipedia

artile ,,Methode der Charakteristiken" links to a skript of ETH Z�urih. It disusses

harateristis for the advetion equation, with just a bit more mathematis. )

For a �rst-order PDE the method of harateristis disovers urves (alled hara-

teristi urves or harateristis) along whih the PDE degenerates into an ordinary

di�erential equation (ODE). One the ODE is found it an be solved along the har-

ateristi urves and transformed into a solution for the original PDE.

Consider a �rst-order PDE of the general form

au

t

+ bu

x

= ;

where a; b and  may be onstant or funtions of x; t and u. The advetion equation

u

t

+ vu

x

= 0 is a very simple ase with a = 1; b = v;  = 0.

We want to �nd a urve in the xtu-spae in parametri form, depending on the pa-

rameter s,

x = x(s)

t = t(s)

u = u(s)

so that the PDE an be reformulated into an ODE along the urve; i.e. something of

the form

d

ds

u(x(s); t(s)) = F (u; x(s); t(s))

.

The urve (x(s); t(s); u(s)) (or just its projetion in the xt-plane) is alled a hara-

teristi line. To �nd it, we di�erentiate by the hain rule.

d

ds

u(x(s); t(s)) = u

x

dx

ds

+ u

t

dt

ds
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Now, notie if we set

dx

ds

= b and

dt

ds

= a we get au

t

+ bu

x

, whih happens to be the

left-hand side of the PDE we started with. Thus

d

ds

u = au

t

+ bu

x

= :

In fat, we now have a oupled system of three ODEs to solve:

dx

ds

= b

dt

ds

= a

du

ds

= 

In the ase of the linear, onstant-oeÆient advetion equation u

t

+ vu

x

= 0, the

ODEs are simple to solve.

dt

ds

= 1; letting t(0) = 0 we know t = s

dx

ds

= v; letting x(0) = x

0

we know x = vs + x

0

du

ds

= 0; letting u(0) = u

0

(x

0

) and substituting from above x

0

= x � vt;

we get u(x(s); t(s)) = u

0

(x

0

) = u

0

(x � vt)

This set of equations de�nes harateristi urves as parametri urves in xtu-spae.

Sometimes (like in the Wikipedia artile) also the projetions of these urves in the

xt-plane are alled harateristis.

For our example, the linear, onstant-oeÆient advetion equation, the harateristi

lines in the xt-plane are straight lines with slope 1=v . In general, they ould be urves.

The value of u remains onstant along the urve | whih means, they are ontour

lines of u. (This property holds only beause  = 0).

Charateristis are a powerful tool for gaining qualitative insights into PDE. This kind

of knowledge is useful when solving PDEs numerially as it an indiate whih �nite

di�erene sheme is best for the problem.

Di�erenzenverfahren und Charakteristiken

F�ur die lineare Advektionsgleihung u

t

+ vu

x

sind die harakteristishen Kurven in der

xt-Ebene Gerade mit Steigung 1=v . Entlang dieser Geraden ist u konstant.
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Die Abbildung zeigt L�osungswerte u

n

j�1

; u

n

j

; u

n

j+1

; u

n+1

j

in den Gitterpunkten eines Di�e-

renzenverfahrens (den

"

Stern\). Eingezeihnet ist auh die Charakteristik durh u

n+1

j

.

Das Zeitniveau n shneidet sie zwishen u

n

j�1

und u

n

j

. Dort l�asst sih der Wert u

�

auf

der Charakteristik aus linearer Interpolation bestimmen:

u

�

= u

n

j

+

�

h

(u

n

j�1

� u

n

j

)

Weil u konstant entlang der Charakteristik ist, ergibt sih daraus u

n+1

j

= u

�

.

� Dr�uken Sie � durh v und �t und anshlie�end

�

h

durh die Courant-Zahl C aus.

Stellen Sie eine explizite Formel f�ur u

n+1

j

auf.

� Vergleihen Sie: ist diese Formel neu oder entspriht sie einem bekannten Di�e-

renzenverfahren?

� Was erhalten Sie bei linearer Interpolation zwishen u

n

j�1

und u

n

j+1

?

� Und was ergibt quadratishe Interpolation?

Other linear and quasi-linear examples

The advetion equation is a simple example for a �rst-order linear partial di�eren-

tial equation. The general form for this type of equation for an unknown funtion

u(x

0

; : : : ; x

n

) would be

n

∑

i=0

a

i

u

x

i

= a;

where a

i

and a are ontinuously di�erentiable funtions of x

0

; : : : ; x

n

; in the ase of a

quasilinear equation the oeÆients do not only depend on x

0

; : : : ; x

n

but also on the

unknown u.

In our �rst example, the advetion equation, the independent variables are x

0

= t and

x

1

= x ; the attribute \one-dimensional" refers to the spatial oordinate.

Spatially three-dimensional versions for a ow �eld v = v(x) and a soure term S(x; t)

(onservation equation for a passive salar):

u

t

+ div(v u) = S:
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Quasi-linear relatives: invisid Burgers' equation (models gravity waves in shallow wa-

ter)

u

t

+ u u

x

= 0:

Burgers' equation an be written in a di�erent form (onservation form, see below),

whih is equivalent for smooth solutions.

u

t

+

(

1

2

u

2

)

x

= 0:

If we multiply the quasilinear equation by 2u �rst,

2uu

t

+ 2u

2

u

x

= 0;

the onservation form is

(u

2

)

t

+

(

2

3

u

3

)

x

= 0:

Another formulation, also in onservation form: for solutions u(x) 6= 0 8x we ould

divide by u and write

(log u)

t

+ u

x

= 0

Now set w = logu, then

w

t

+ (expw)

x

= 0

is another onservation equation, equivalent for smooth solutions but giving di�erent

front positions when disontinuities develop.

Whih of the three equations is \the right one"? This depends on the quantity that is

onserved in physial reality: u, u

2

or logu, respetively.

Exerises

Chek di�erene shemes for a nonlinear advetion equation u

t

+(v(u)u)

x

= 0 where

v depends on u in the form v = u=2 (Burgers' equation). Try them for the spike initial

ondition.

Systems of onservation laws

General form of a system of onservation laws in one spae dimension

u

t

+ F(u)

x

= 0

In two- or three-dimensional spae

u

t

+ divF(u) = 0

also written as

u

t

+r � F(u) = 0

The vetor u ontains the onserved quantities; their transport is governed by a on-

served ux vetor F(u). Meaning: for any omponent of u and any interval on the

x-axis (or area or volume in spae), aumulation equals the net ux aross the bound-

ary.
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Remember Equation (5), the salar equation u

t

+ f (u)

x

= 0. Integrate it over an

interval,

∫

b

a

(u

t

+ f (u)

x

)dx = 0; gives

d

dt

∫

b

a

u dx = f (a)� f (b)

for arbitrary intervals [a; b℄ in the spatial domain of u.

Interpretation: The rate of hange of the \total amount of u", i.e. the integral of

u in some spatial domain is the di�erene of in- and outow aross the ends of the

interval. The same statement holds in two or three spae dimensions.

A di�erene sheme that preserves this property is alled onservative.

For smoothly di�erentiable u this integral formulation is mathematially equivalent to

the di�erential equation.

Weak solutions

Beause

d

dt

∫

b

a

u dx is only de�ned for u suÆientltly smooth with respet to t, we

integrate also over a time interval, so that the time derivative vanishes.

∫

t

1

t

0

∫

b

a

(u

t

+ f (u)

x

) dxdt = 0; yields

∫

b

a

uj

t=t

1

dx �

∫

b

a

uj

t=t

0

dx =

∫

t

1

t

0

(f (b)� f (a)) dt:

Verbal formulation: The di�erene of the \total amount" of u between t

0

and t

1

in

some spatial domain equals the di�erene between in- and outow during that time

interval.

We de�ne a weak solution of the onservation law as a funtion u whih ful�ls the

integral form above for arbitrary [a; b℄ and t

0

; t

1

within the domain of u.

A weak solution is de�ned for a muh larger lass of problems and initial onditions

than a solution of the PDE in the lassial sense. In our example with the advetion

equation, the traveling triangular spike is not everywhere di�erentiable, so it is not

really a lassial solution of the PDE, but it learly is a weak solution.

Rankine-Hugoniot Condition

Important features that may develop in weak solutions are shok fronts. These are

disontinuities (steps, jumps), whih travel along in time.

Let there be a front at a position x

f

= x

f

(t) (between a and b in the drawing). The

onservation law provides a relation, the Rankine-Hugoniot ondition, between front

speed v

f

=

dx

f

dt

and jump height.
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The ondition is

v

f

=

[f (u)℄

[u℄

;

where the square brakets [�℄ denote di�erene between the limit values from left and

right at the front.

Eine L�osung der Burgers-Gleihung im Charakteristiken-Diagramm

F�ur die Burgers-Gleihung u

t

+ (u

2

=2)

x

= 0 sind die Charakteristiken in der xt-Ebene

Gerade mit Steigung

dx

dt

= u. Entlang einer Charakteristik ist der Wert von u konstant.

Das Diagramm zeigt Charakteristiken zu den Werten u = 0;

1

10

;

2

10

; : : :1 f�ur eine drei-

ekige Zake als Anfangsbedingung (linearer Anstieg von u

0

= 0 auf u

0

= 1 zwishen

x = 0 und x =

1

10

, danah linearer Abfall auf u

0

= 0 bis x =

2

10

Ab t =

1

10

entsteht eine Shokfront. An ihr tre�en Charakteristiken f�ur u > 0 von

links mit Charakteristiken f�ur u = 0 von rehts zusammen.

0.1 0.2 0.3 0.4 0.5
x

0.1

0.2

0.3

0.4

0.5

t

� Beshriften Sie die Charakteristiken im linken Bereih, soweit es der Platz zul�asst,

mit den entsprehenden u-Werten.

� Skizzieren Sie den Verlauf der L�osung zur Zeit t =

1

2

f�ur 0 � x � 0:5. Ahten

Sie insbesondere auf die korrekte Frontposition und -h�ohe.
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� Zu t = 0;45 tri�t von links die Charakteristik zu u = 0;603 auf die Front. Welhe

Frontgeshwindigkeit ergibt sih aus den Rankine-Hugoniot-Bedingungen?

� Die Steigung der Front-Linie im Charakteristiken-Diagramm h�angt mit der Front-

geshwindigkeit zusammen. Die Gleihung der Kurve in diesem Diagramm lautet

x

f

=

p

10t + 1

5

p

2

Bestimmen Sie die Frontgeshwindigkeit f�ur t = 0;45.

Examples for Nonlinear Systems of Conservation Laws

Euler's equations for one-dimensional gas ow





�

�v

E





t

+





�v

�v

2

+ p

v(E + p)





x

= 0

Here, p is de�ned via the polytropi equation

p = ( � 1)(E �

1

2

�v

2

);  =

7

5

in air :

Isothermal ow ( is the sound speed)

[

�

�v

]

t

+

[

�v

�v

2

+ 

2

�

]

x

= 0

Shallow-water waves (' stands for gh)

[

v

'

]

t

+

[

v

2

=2 + '

v'

]

x

= 0

Although the system is frequently written in this form (whih is in onservation form), it

delivers the orret solution only as long as it remains smooth. For shok fronts (means

breaking waves) the jump onditions ome out wrong. Physially, not the veloity v

but the momentum v' is the orret onserved quantity. Thus, the physially orret

onservation form is

[

v'

'

]

t

+

[

v

2

'+ '

2

=2

v'

]

x

= 0

Hyperboli systems

The system

u

t

+ F(u)

x

= 0

is alled hyperboli if for all values u all eigenvalues of the Jaobian F

0

are real and the

orresponding eigenvetors are linearly independent. Hyperboli systems desribe phe-

nomena with �nite speed of propagation. The solution u(x; t) in some point (x; t) an

be inuened by initial onditions in a bounded interval. Whatever the initial onditions

may look like outside this interval, they have no bearing on the solution in (x; t).
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Why this eigenvalue ondition? For a general linear, onstant oeÆient one-dimensional

system of partial di�erential equations

u

t

+ Au

x

= 0

hyperboliity means that all eigenvalues of A are real, and the orresponding eigenve-

tors are linearly independent. In this ase, A an be written as

A = S �D � S

�1

where the olumns of S are the eigenvetors of A and D is a diagonal matrix of

orresponding eigenvalues. Then,

u

t

+ A � u

x

= 0

u

t

+ S �D � S

�1

� u

x

= 0 j �S

�1

S

�1

� u

t

+D � S

�1

� u

x

= 0

We an de�ne a new vetor of unknowns, v = S

�1

� u and redue the system to an

unoupled system of equations

v

t

+Dv

x

= 0

Eah equation of that system is then a one-dimensional advetion equation of the form

treated already.

In the general ase, the eigenvetors and eigenvalues are no longer onstant, and the

transformation to an unoupled system is more ompliated (if possible at all). There

are harateristi urves in the xt-plane, along whih the Riemann invariants (funtions

of the dependent variables) remain onstant. A Riemann invariant propagates quite like

the solution of the prototypial one-dimensional advetion equation.

The situation is di�erent for paraboli equations. Take the prototypial example, the

one-dimensional heat equation. Initial onditions far away from some point a�et the

solution there instantly (in�nite signal speed; no ontradition to relativity, though,

beause this equation is not valid on the atomi sale). Still, as for hyperboli equations,

boundary onditions in the future do not a�et the past.

For ellipti equations, the solution is inuened by the whole boundary (therefore a

reasonable ellipti equation does not ontain a time variable).
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