
Numerische Methoden II, 170 024, und Übungen, 170 025
Course Notes, Summer Term 2017

Some material and exercises

The Laplace equation, cylindrically or spherically symmetric case

Electric and gravitational potential, waves or vibrations are just a few typical
applications where

�u = 0 (Laplace equation)

�u = q (Poisson equation)

occur. In these equations, � denotes the Laplace-Operator, which in three-
dimensional cartesian xyz-coordinates is

� =
@2

@x2
+

@2

@y2
+

@2

@z2
(1)

The cylindrical coordinate system uses polar coordinates r and � to locate
a point in the x � y plane and the coordinate z for the height of the point
above the plane. The Laplace operator in this coordinate system is

� =
@2

@r2
+

1

r

@

@r
+

1

r2
@2

@�2
+

@2

@z2

For functions depending on r (distance from z axis) only (cylindrical sym-
metry), this reduces to

� =
@2

@r2
+

1

r

@

@r
: (2)

Similarly, in spherical symmetry (where r measures the distance from the
orign)

� =
@2

@r2
+

2

r

@

@r
: (3)

These differential operators (2,3) occur in the following examples, which
therefore in fact are just special cases of partial differential equations, reduced
to ordinary differential equations by symmetry. Many features of our simple
examples are also typical for “real” Laplace- and Poisson equations.

We use examples in cylindrical symmetry here just because one-dimensional
versions of the Laplace operator (1) in cartesian geometry would not include
first derivatives. Solutions in that case are so simple that there is not much
to learn from. (On the other hand: what’s wrong with simple examples? We
shall discuss also the simple cases.)
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Steady-state diffusion or heat conduction

A cylindrically symmetric Laplace equation, cf. (2) governs stationary heat
conduction or diffusion with axial symmetry. An example would be a cylin-
drical pipe, interior radius r0, exterior radius r1. The temperature � = �(r)

in the wall of the pipe follows the equation

�rr +
1

r
�r = 0 for rint < r < rext: (4)

Dirichlet boundary conditions specify the temperature at the interior and
exterior walls,

�(rint) = �int (“inner wall temperature”),

�(rext) = �ext (“outer wall temperature”),

(Note: there are several ways to denote derivatives of a function like �(r).

d2�(r)

dr2
; �00; �rr

all stand for the same differential operator. Depending on context, one way
or another may be more convenient to work with.)

For this problem, the exact solution is known. We will use it to check the
accuracy of our numerical approximations.

�(r) =
�int log(r=rext) + �ext log(rint=r)

log(rint=rext)
:

Alternatively, we might prescribe the heat flow rate q at the inner boundary
(A Dirichlet condition at the right and a Neumann condition at the left
end). In that case,

�r(rint) = �; �(rext) = �ext :

The exact solution here is

�(r) = �ext + rint� log
r

rext
:

For this differential equation, Neumann boundary conditions on both sides
are no good choice. If the corresponding rates are equal, the solution is
unique only up to an arbitrary additive constant. If the rates are not equal,
no steady state can develop; thus, no solution exists! This simple example
demonstrates that boundary value problems do not necessarily have a solu-
tion. (in contrast to initial value problems, where existence of a solution is
guaranteed in the vicinity of the starting point for a wide class of functions)

Dirichlet and Neumann conditions are also called boundary conditions of
the first and second kind, respectively. There are third-kind boundary
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conditions as well (some attach to them the names Robin or Sturm, or call
them radiation conditions), of the form c1p(r)+ c2p

0(r) = �. Also nonlinear
boundary conditions may occur, like c1p(r)

4 + c2p
0(r) = �, which would

model thermal radiation according to Stefan-Boltzmann’s law.

Cooling of cylindrical objects

To find solutions of the time-dependent heat equation in cylindrical symme-
try,

�t = a
�
�rr +

1

r
�r

�

we set �(r; t) = e��
2atu(r), which reduces the problem to an ordinary differ-

ential equation for u(r),

urr +
1

r
ur + �2u = 0; 0 < r < R (5)

which is (after multiplying by r2 and a transformation of variables r !

�r) a form of Bessel’s differential equation. Symmetry dictates a Neumann
boundary condition ur = 0 at the center r = 0. For an outer Dirichlet
boundary condition u = 0 at r = R, it turns out that nontrivial solutions
exist for certain values of � only (the trivial solution would be u(r) = 0 for
all r).

The solution involves J0, the Bessel function of order zero of the first kind,

u(r) = AJ0(�r)

where A is an arbitrary constant (remember: the problem is a homogeneous
one; any multiple of a solution is also a solution). The outer boundary
condition then requires � to be a root of

J0(�R) = 0

Steady one-dimensional convection-diffusion equation

Let c = c(x) denote the concentration of some quantity in a flow with velocity
w and a coefficient of diffusion D. Then

Dc00 � wc0 = 0 for 0 < x < L;

c = c0 at x = 0;

c = cL at x = L;
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models a steady-state situation where convective transport is balanced by
diffusion. This problem has the exact solution

c(r) = c0 +
ePe

x

L � 1

ePe � 1
(cL � c0):

Here Pe is the Peclet number, Pe = wL=D.

Ferzinger and Perić comment on this problem:

“Because it is so simple, this problem is often used as a test of numerical
methods, including both discretization and solution schemes. [. . . ] There
are few actual flows in which this balance plays an important role. Normally,
convection is balanced by either a pressure gradient or diffusion in the direction
normal to the flow. [. . . ] Indeed, use of this problem as a test case has probably
produced more poor choices of method than any other in the field.”

Discretization on an Equidistant Grid, Dirichlet Conditions

We discuss the example

�00 +
1

r
�0 = 0 for � = �(r); 0 < rint < r < rext

�(rint) = �int;

�(rext) = �ext:

The first step in the application of finite difference methods is the selection
of a set of mesh points in the interval (rint; rext). Let us simply take n

equidistant radius points rj,

rj = rint + jh with mesh size h =
rext � rint
n+ 1

; j = 1; : : : ; n

Boundary points are r0 = rint and rn+1 = rext. Next, we represent the
differential equation by difference equations involving values of the unknown
pressure at the mesh points. A straightforward way to do so is to replace the
derivatives by appropriate difference quotients.

Standard approximations are the difference formulae

f 0(x) �
f(x+ h)� f(x� h)

2h

f 00(x) �
f(x+ h)� 2f(x) + f(x� h)

h2

Notation: For the value �(r) of the unknown temperature at the mesh point
rj we write �j. At mesh point rj+1 = rj + h, it is �j+1, similarly �j�1 at rj�1.
This way we may write

�0j �
1

2h
(�j+1 � �j�1)
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�00j �
1

h2
(�j+1 � 2�j + �j�1)

Substitution leads to difference equations, one per interior mesh point. The
temperature values �j at all interior mesh points fulfill approximately

�

 
1�

h

2rj

!
�j�1 + 2�j �

 
1 +

h

2rj

!
�j+1 = 0 for j = 1; : : : ; n: (6)

This is a system of n linear algebraic equations. In matrix form,

A � x = b with (7)

A =

2
66666666666666664

2 �(1 + h

2r1
)

�(1� h

2r2
) 2 �(1 + h

2r2
)

�(1� h

2r3
) 2 �(1 + h

2r3
)

. . . . . . . . .

�(1� h

2rn�1
) 2 �(1 + h

2rn�1
)

�(1� h

2rn
) 2

3
77777777777777775

;

~x =

2
66666666666666664

�1

�2

�3

...

�n

3
77777777777777775

; ~b =

2
66666666666666664

(1� h
2r1

)�int

0

0

...

(1 + h
2rn

)�ext

3
77777777777777775

:

Note that this matrix is not symmetric, but diagonally dominant as long as
h < 2r1.

Exercises

Exercise 1 Solve the dirichlet problem (4) for steady-state radial flow for two
cases.

1. Strong influence of radial geometry:

rint = 0:1; rext = 10; �int = �1; �ext = 0:
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2. moderate influence of radial geometry:

rint = 1; rext = 10; �int = �1; �ext = 0:

To evaluate the results, plot

1. The error as a function of r for some values of n, say n = 10; 100; 1000.

2. The maximum error as a function of n for a range of n as large as
computer power allows. Show the error in a log-log-Plot and estimate
the asymptotic behavior as n!1. An important quantity is the slope
of the curve.

What we shall find out:

• For large n the maximum error decreases proportional to n�2. This
quadratic convergence, however, does not become apparent unless the
grid size h is comparable to the interior radius rint.

• The memory required is proportional to n. Can you specify the memory
requirements of your program more precisely?

Exercise 2 Derive a difference approximation for the convection-diffusion equa-
tion and set up the system of linear equations. Is the matrix symmetric?
diagonally dominant? Try to solve the simple case D = 1; L = 1; w = 1; c0 =

1; cL = 0 for various h, and compare results with the exact solution. Change
w = 100 and try again. Evaluate your results with similar plots as in Exer-
cise 1.

Exercise 3 The matrix (7) in our radial flow example is not symmetric. Show
that by multiplying the i-th equation by ri a symmetric matrix results. Sys-
tems with symmetric matrices are theoretically and numerically in many
ways easier to handle than non-symmetric ones. Implement the symmetric
version and check with the original version.

Exercise 4 Test the sensitivity of the system (7) to small perturbations in the
right-hand side. In our MATLAB code, insert
% or i g i n a l s o l u t i on
p = A\b ;

%so l u t i on with per turbed r i gh t�hand s i d e
% try d i f f e r e n t pe r t u r ba t i on s
e r r=r a n d (n , 1 ) ∗ 0 . 0 0 0 0 1 ;

%err=(rand (n ,1)�0.5)∗0.00001;

b = b+er r ;
perr = A\b ;
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The relative error in b is norm(err)/norm(b), while the relative error in the
solution is norm(p-perr)/norm(p).

How much larger is the relative error in the solution in relation to the rela-
tive error of the right-hand side? Calculate this quotient (a measure of the
“sensitivity” of the linear system) for different values of n and estimate the
behavior for large n. Show a loglog-plot.

In MATLAB, c = cond(A) returns the 2-norm condition number, the ratio
of the largest singular value of A to the smallest. The condition number
of a matrix measures the sensitivity of the solution of a system of linear
equations to errors in the data. It gives an indication of the accuracy of the
results from matrix inversion and the linear equation solution. It also is an
upper bound on the “sensitivity”, as calculated before. Values of cond(A)
near 1 indicate a well-conditioned matrix: errors in the data generate errors
of the same magnitude in the solution. Add a plot of the condition number
depending on n to your loglog-Plot.

Is the condition number a quite sharp or a rather pessimistic estimate on the
sensitivity in this example?

Discretization on an Equidistant Grid, Mixed Boundary Conditions

Just a few modifications in our first program are necessary to implement a
Neumann condition at the inner radius and a Dirichlet condition at the outer
boundary. We are now going to solve our second example of flow in porous
media, the problem

p00 +
1

r
p0 = 0 for p = p(r); rw < r < re

p0(rw) = �; (8)

p(re) = pe:

We may use the same grid and the same difference formula as before, but
there is one problem: For the first interior gridpoint r1, the difference ap-
proximation is

�

 
1�

h

2r1

!
p0 + 2p1 �

 
1 +

h

2r1

!
p2 = 0: (9)

However, the boundary condition does not give us any value for p0, it just
specifies the derivative there. We can exploit this information by using a
one-sided approximation of the first derivative,

f 0(x) =
1

h

�
�f(x) + f(x+ h)

�
� h

f 00(x)

2
+O(h2): (10)

7



In our case, we set

p1 � p0
h

= �; or p0 = p1 � h�: (11)

Inserting for p0 in Equation (9), we obtain a difference equation for the first
interior gridpoint at a Neumann boundary, 

1 +
h

2r1

!
p1 �

 
1 +

h

2r1

!
p2 = ��h

 
1�

h

2r1

!
: (12)

There is an inconsistency with using this approximation along with the rest of
the difference equations. Because of the one-sided approximation (10), 12 is
a fist-order approximation only. At all other points, the difference equations
are second-order approximations to the original differential equation. The
first-order approximation of the Neumann condition does indeed contaminate
our final results in the whole region. In general, the order of approximation
of a problem is the lowest order used in any parts of the problem. Sometimes,
however, a bad approximation at just a few points will not affect the overall
accuracy.

To get a second-order accurate approximation at r0, we can replace the sec-
ond derivative in 10 using the differential equation. In our case,

p0(r0) =
p1 � p0

h
�

h

2
p00(r0) +O(h2)

p00(r0) = �
1

r
p0(r0) from the differential equation

= �
�

r
from the boundary condition

From these equations follows

p0 = p1 � h�+
h2�

2r
(13)

More commonly, however, Neumann boundaries are treated by modifying
the grid. Instead of

r0 = rw; r1 = rw + h;

the modified grid at a Neumann boundary has

r0 = rw �
h

2
; r1 = rw +

h

2

All gridpoints are given by

ri = rw + (i� 1=2)h with h =
re � rw
n+ 1=2

; i = 1; : : : ; n
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The point r0 is now outside of the region where our problem is defined. (It
is called a ghost point.)

As a result of this modification, the approximation p0 = p1��h is of second
order. However, this scheme does not compute the pressure pwf directly,
since there is no gridpoint at rw. We may set pwf = (p0 + p1)=2 +O(h2).

Exercises

Exercise 5 Solve the mixed-type problem (8) and test the three ways to im-
plement Neumann boundary conditions. Data:

rw = 0:1; re = 10; p0(rw) = � = 1; pe = 0:

To evaluate the results, plot the maximum error as a function of n in a
log-log-Plot and estimate the asymptotic behavior as n ! 1. The differ-
ence between first-order and second-order accuracy should become clearly
apparent.

Exercise 6 Solve for rw = 0; 1 and re = 10 the inhomogeneos differential
equation with homogeneous mixed-type boundary conditions (quasi-steady-
state flow),

p00 +
1

r
p0 = 1 for rw < r < re;

p0(re) = 0;

p(rw) = 0:

Evaluate the accuracy of your solution as in Exercise 1. (If you have coded
this exercise, the modifications in the code should be rather marginal!)

Exercise 7 Discretize the differential equation (5). Assume simple values for
a and �. What happens to the right-hand side of the system? What solution
gives MATLAB’s A\b ? Any ideas how to proceed in this case?

Deriving Difference Approximations for Derivatives

Consider a smooth function f(x). (“Smooth” here means that as many deriva-
tives of f exixt as we may need.)

We will illustrate, by way of example, a method to find approximations to
derivatives. It is sometimes called the method of undetermined coefficients.
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Example: Derive an approximation for f 00 at gridpoint x0 using values at
gridpoints x�1; x0 and x1 of an equidistant grid with spacing h.

Expand f�1 and f1 in Taylor series around x0

f�1 = f0 � hf 00 +
h2

2
f 000 �

h3

6
f 0000 +

h4

24
f iv
0 +O(h5)

f1 = f0 + hf 00 +
h2

2
f 000 +

h3

6
f 0000 +

h4

24
f iv
0 +O(h5)

We now seek a linear combination of the three values f�1; f0 and f1 approx-
imating f 000 in the form

f 000 � af�1 + bf0 + cf1:

To determine the coefficients a; b and c, we insert the Taylor series and collect
terms in f0; f

0

0; : : :. We find

f 000 � (a+ b+ c)f0 + h(�a+ c)f 00 +
h2

2
(a+ c)f 000 +

h3

6
(�a+ c)f 0000 +

h4

24
(a+ c)f iv

0 +O(h5)

Since we have three degrees of freedom (three undetermined coefficients),
we can plan on setting the coefficients of f0 and f 00 equal to zero and the
coefficient of f 000 equal to one. We are left with the following system of
equations.

a+ b+ c = 0

�a+ c = 0

a+ c =
2

h2

Solving the above system of equations gives

a =
1

h2
; b = �

2

h2
; c =

1

h2
:

As an additional bonus, this solution makes the coefficient of f 0000 equal to
zero too. The coefficient of f iv

0 turns out to be h2=12. Hence, we get the
approximation

1

h2
f�1 �

2

h2
f0 +

1

h2
f1 = f 000 +

h2

12
f iv
0 +O(h3):

This is the well-known centered difference approximation that we have used
already.
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As an additional exercise, you may derive a five-point centered approximation
to f 0000 . The system of equations for five coefficients a; b; c; d and e in this case
will be

a+ b+ c+ d+ e = 0

�2a� b+ d+ 2e = 0

4a+ b+ d+ 4e = 0

�8a� b+ d+ 8e = 6=h3

16a+ b+ d+ 16e = 0

(Using an algebraic manipulator such as Maple or Mathematica makes solv-
ing such systems much easier!) The solution is

a = �
1

2h3
; b =

1

h3
; c = 0; d = �

1

h3
; e =

1

2h3
:

An alternative method: find an interpolating polynomial p(x) for the data
points (xi; fi). Differentiate the polynomial with respect to x and evaluate
at x0.

If you do this by hand, you should use the Lagrange interpolation formula:

The polynom p(x) that interpolates the n+ 1 pairs of values

(x0; f0); (x1; f1); : : : ; (xn; fn)

is given by
p(x) = f0L0(x) + f1L1(x) + � � �+ fnLn(x) ;

where

Lk(x) =
(x� x0)(x� x1) � � � (x� xk�1)(x� xk+1) � � � (x� xn)

(xk � x0)(xk � x1) � � � (xk � xk�1)(xk � xk+1) � � � (xk � xn)

for each k = 0; 1; : : : ; n.

In Mathematica, this method conveniently finds difference approximations
for higher derivatives.

The commands

data={{-2h,f[-2h]},{-h,f[-h]},{0,f[0]},{h,f[h]},{2h,f[2h]}};
poly=InterpolatingPolynomial[data,x];
appr=D[poly,{x,3}]/.x->0 //Together
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find an interpolating polynomial and evaluate its third derivative at x = 0.
Mathematica gives

appr =
�f(�2h) + 2 f(�h)� 2 f(h) + f(2h)

2h3
:

We may find the truncation error by the command

Series[appr,{h,0,3}]

which produces the output

f (3)(0) +
f (5)(0)h2

4
+ O(h)4:

Since many tables provide difference approximations for f 0; f 00; : : :, it is nor-
mally not necessary to derive basic formulae. However, for irregular grids,
complicated equations or some specific boundary conditions, these methods
are of great value.

Non-Equidistant Grid

Write
f� = f(x� h�); f0 = f(x); f+ = f(x+ h+);

h� = ri � ri�1; h+ = ri+1 � ri:

Then

f 0(x) =
(f+ � f0)h

�

h+
+ (f0 � f�)h

+

h�

h� + h+
�

h+h�

6
f 000

f 00(x) =
2

h� + h+

 
f+ � f0

h+
�

f0 � f�

h�

!
�
h+ � h�

3
f 000�

(h+)2 � h+h� + (h�)2

12
f iv

Note that in the second approximation, for h+ 6= h� now there is a low-
order truncation error term involving f 000. Equidistant grids usually provide
approximations with higher-order truncation errors. So you have to balance
the gain by finer meshsize against possibly higher truncation error.

Linear solvers

The Thomas Algorithm for tridiagonal Systems

The so-called Thomas Algorithm is just a form of elimination for solving tridi-
agonal systems of linear equations. Llewellyn H. Thomas used it around 1950
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to solve elliptic partial differential equations. The attribution to Thomas
seems to be more common in some engineering disciplines than it is in nu-
merical analysis.

Let A be a tridiagonal matrix and b the right-hand side of a system Ax = b.

A =

2
66666666666666664

d1 e1
c2 d2 e2

c3 d3 e3

. . . . . . . . .

cn�1 dn�1 en�1

cn dn

3
77777777777777775

; b =

2
66666666666666664

b1
b2
b3

...

bn�1

bn

3
77777777777777775

:

Transform it to upper triangular form, by Gaussian elimination. Use back-
substitution to solve the resulting equivalent system Ax0 = b0

A0 =

2
66666666666666664

1 e01
1 e02

1 e03

. . . . . .

1 e0n�1

1

3
77777777777777775

; b0 =

2
66666666666666664

b01
b02
b03

...

b0n�1

b0n

3
77777777777777775

:

The expressions for the entries in A0 and b0 follow from a step-by-step appli-
cation of the usual elimination procedure.

e01 =
e1
d1
; b01 =

b1
d1
;

for i = 2; : : : ; n:

e0i =
ei

di � cie
0

i�1

; b0i =
bi � cib

0

i�1

di � cie
0

i�1

;

Backsubstitution: xn = b0n, und f"ur i = n� 1; : : : ; 1:

xi = b0i � e0ixi+1:

This algorithm is stable if8>>>><
>>>>:

di > 0; i = 1; 2; : : : ; n;

d1 > je1j;

di � jcij+ jeij und ci 6= 0; ei 6= 0; i = 2; : : : ; n� 1;

dn � jcnj:
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Essentially these conditions require A to be (weakly) diagonally dominant.
They are sufficient but not necessary.
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