Probeüberschrift
Bei mathematischen Betrachtungen, die nicht direkt im Kontext der mengentheoretischen Fundierung der mathematischen Begriffe stehen, setzt man jedoch in der Regel keine Mengenstruktur einer Funktion voraus, sondern fordert lediglich die Definiertheit des Bildes zu einer gegebenen Stelle. Mengenoperationen werden dann nicht auf Funktionen ausgeführt (etwa würde sin ∩ cos {\displaystyle \sin \cap \cos } dann meist nicht als sinnvoller Ausdruck angesehen), in einigen Fällen ist es jedoch gerade praktisch eine Funktion als Menge zu betrachten mit den auf Mengen definierten Operationen und Eigenschaften; diese Betrachtung geschieht über den Graphen der Funktion. Neben der Möglichkeit, eine Funktion dadurch als geometrische Figur zu betrachten, seien hier als weitere Beispiele genannt:
hier geht es zum Block
hier gehts zum Dokument
Probeüberschrift
Bei mathematischen Betrachtungen, die nicht direkt im Kontext der mengentheoretischen Fundierung der mathematischen Begriffe stehen, setzt man jedoch in der Regel keine Mengenstruktur einer Funktion voraus, sondern fordert lediglich die Definiertheit des Bildes zu einer gegebenen Stelle. Mengenoperationen werden dann nicht auf Funktionen ausgeführt (etwa würde sin ∩ cos {\displaystyle \sin \cap \cos } dann meist nicht als sinnvoller Ausdruck angesehen), in einigen Fällen ist es jedoch gerade praktisch eine Funktion als Menge zu betrachten mit den auf Mengen definierten Operationen und Eigenschaften; diese Betrachtung geschieht über den Graphen der Funktion. Neben der Möglichkeit, eine Funktion dadurch als geometrische Figur zu betrachten, seien hier als weitere Beispiele genannt:
Probeüberschrift
Bei mathematischen Betrachtungen, die nicht direkt im Kontext der mengentheoretischen Fundierung der mathematischen Begriffe stehen, setzt man jedoch in der Regel keine Mengenstruktur einer Funktion voraus, sondern fordert lediglich die Definiertheit des Bildes zu einer gegebenen Stelle. Mengenoperationen werden dann nicht auf Funktionen ausgeführt (etwa würde sin ∩ cos {\displaystyle \sin \cap \cos } dann meist nicht als sinnvoller Ausdruck angesehen), in einigen Fällen ist es jedoch gerade praktisch eine Funktion als Menge zu betrachten mit den auf Mengen definierten Operationen und Eigenschaften; diese Betrachtung geschieht über den Graphen der Funktion. Neben der Möglichkeit, eine Funktion dadurch als geometrische Figur zu betrachten, seien hier als weitere Beispiele genannt: